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Canine tumors are valuable comparative models for human counterparts, especially

to explore novel biomarkers and to understand pathways and processes involved in

metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells

which promote metastasis. Thus, it represents an opportunity to investigate both the

molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant

switch. Although this biological process has been largely investigated in different human

cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology,

where it has been mainly explored in canine mammary tumors. The presence of VM in

human osteosarcoma is associated with poor clinical outcome, reduced patient survival,

and increased risk of metastasis and it shares the main pathways involved in other type

of human tumors. This review illustrates the main findings concerning the VM process

in human osteosarcoma, search for the related current knowledge in canine pathology

and oncology, and potential involvement of multiple pathways in VM formation, in order

to provide a basis for future investigations on VM in canine tumors.
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INTRODUCTION

Vasculogenic mimicry (VM) is a unique ability of malignant cancer cells to create their own fluid-
conducting microvascular channels without the involvement of endothelial cells. It was firstly
described in human uveal melanomas as periodic acid–Schiff (PAS)-positive microvascular channel
networks (1). Since then, VM has been observed in a variety of humanmalignant tumors, including
osteosarcoma (OSA), glioblastoma and gallbladder, ovarian, prostate, lung, gastric, hepatocellular,
and breast cancer (2, 3). In addition, the presence of VM has been associated with high tumor
grade, invasion, metastasis, and poor prognosis in cancer patients (4, 5). Thus, VM has emerged as
a potential target for anti-tumor therapy (2, 3, 6).

In veterinary pathology, the VM process has been demonstrated in canine inflammatory
mammary carcinomas and in a palpebral melanocytoma (7, 8). Rasotto et al. explored the presence
of VM in primary canine mammary tumors, revealing no relation with lymphatic infiltration
(9). As well, primary cell lines from canine mammary tumors, showing ability to form VM in
vitro and in vivo, have been recently established and characterized (10–12). Moreover, canine
inflammatory mammary carcinomas were analyzed for the presence of VM by transmission and
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scanning electron microscopy (13). In addition, as far as canine
OSA is concerned, the presence of vessel-like structures in a
long-term canine D17 OSA cell cultured on type I collagen
has been recently described (14). As well, treatment with the
heat shock protein 90 (Hsp90) inhibitor 17-N-allylamino-17-
demethoxygeldanamycin (17-AAG) inhibited the migration of
D17 OSA cells, also decreasing VMmarkers in vitro and inducing
a reduction of hypoxia-inducible factor 1α (HIF1α) transcript
and protein expression (14). Notwithstanding this, information
regarding VM formation, molecular features, and prognostic
implications in canine oncology is still limited.

Since VM has been known from a relatively short time, the
molecular mechanisms involved in this process remain largely
unknown. Aggressive tumor cells capable of VM display a varied
gene profile which includes that of fibroblasts and epithelial
and endothelial cells (15). Hypoxia, epithelial-mesenchymal
transition (EMT) and in particular epithelial-endothelial
transition (EET), response to extracellular matrix (ECM), and
the presence of cancer stem cells (CSCs) are considered the key
regulators of VM (16, 17). Various signaling pathways, promoting
tumor migration and invasion, have been reported to participate
in VM formation, including those involved in vasculogenesis
such as vascular endothelial (VE)-cadherin, vascular endothelial
growth factor (VEGF)/VEGF receptor (VEGFR) and platelet-
derived growth factor (PDGF)/PDGF receptor (PDGFR) axis,
and HIF1α (3). VM progression is also mediated by pathways
involved in ECM adhesion and cell migration, such as focal
adhesion kinase (FAK) and migration inducting gene 7 (Mig7)
encoding for breast cancer anti-estrogen resistance protein 3
(BCARP 3), matrix metalloproteinases (MMPs), integrins and
erythropoietin-producing hepatocellular receptorA2 (EphA2), as
well as multiple signaling pathways including mechanistic target
of rapamycin (mTOR) and Rho-associated coiled-coil kinase
(RhoA/ROCK) (3). Finally, increasing evidence showed that VM
can be affected by microRNA (miRNA), long non-coding RNA
(lncRNA), and circular RNA (circRNA) (18).

Thus, the aim of this review is to illustrate the main findings
concerning the VM process in human OSA (Figures 1, 2),
as well as the current knowledge on the molecular pathways
potentially involved in VM formation in canine pathology and
oncology (Supplementary Table 1), in order to provide a basis
for establishing further investigations on VM in canine tumors
in the future.

CSCs MARKERS: CD133 AND ALDEHYDE
DEHYDROGENASE 1 (ALDH1)

CSCs represent an important feature of VM progression for
their ability to differentiate in endothelial cells forming new
microvessels (19). Stemness and differentiation potential of
CSCs are enhanced under hypoxic microenvironments, through
hypoxia-induced EET and ECM remodeling, thus determining
the formation of the specific features of VM (17). Bao et al. (30)
described a positive correlation between CD133 expression and
presence of VM in OSA, which was, in turn, positively associated
with ALDH1 expression. CD133, also called prominin-1, is a

common biomarker of CSCs, which encodes a 120-kDa five-
transmembrane domain glycoprotein. Its dysregulation has been
considered as a CSC biomarker in various human cancers
including OSA (20, 21), and it is correlated with VM, presence
of metastasis, and poor prognosis in different tumors (21, 22).
Little is still known about the mechanisms used by CSCs for
promoting angiogenesis and VM (23). In this respect, the ability
of CD133 to activate the Wingless-related integration site (Wnt)
signaling pathway, thus increasing the expression of VEGFα
and interleukin-8 (IL-8) (24), and its mechanistic link with cell
motility (25), may be involved in the VM process.

ALDH1 is another common biomarker of dysregulated CSCs
in a variety of human cancers (26, 27), the inhibition of
which could represent a target in OSA therapy (28, 29). In
the study of Bao et al. (30) multivariate analysis data showed
that the expression of CD133, ALDH1, and VM; grade of
differentiation; recurrence; as well as Enneking stages were
independent prognostic factors for OSA patients. Despite the
identified correlation with prognosis, the presence of CSC
markers lining VM-dependent vessels has not been demonstrated
inOSA tissues, even thoughCD133+ stem-like cell accumulation
has been observed in the melanoma perivascular niche (30, 31).

CD133 and ALDH1 as Canine CSC Markers
and Their Expression in Madin–Darby
Canine Kidney Cells
The general structure of prominin-1, including its membrane
topology, has been conserved throughout the animal kingdom
(32). Non-tumor canine cells, in particular MDCK cells, have
been widely used for understanding the mechanisms on the basis
of cell motility. In fact, considering that prominin-1 is associated
with plasma membrane protrusions, the overexpression of
Prom1 gene increased the number of MDCK microvilli, while
the overexpression of a dominant-negative mutant variant
significantly decreased ciliary length (25). The involvement of
CD133 in cell motility was also demonstrated by Liu et al.,
showing the ability of isolated canine CD133+ epithelial cells
to form a tubular-like structure when cultured on Matrigel (33).
Likewise, endothelial progenitor cells isolated from canine bone
marrow CD133+ are capable of forming a capillary structure on
Matrigel after 24 h of culture and can be transplanted in ischemic
injured tissues to enable neovascularization (34, 35).

In cancer, CD133 staining, together with functional properties
including ALDH enzyme activity and spheroids formation in
vitro, is commonly used to characterize potential CSCs in
canine OSA and others types of spontaneous canine cancer,
not only those deriving from a hematopoietic lineage (36–40).
Immunohistochemical investigations revealed that CD133 was
expressed in all grades of OSA, glioma, melanoma, hepatocellular
carcinoma, B-cell lymphoma, and granular cell tumor, with a
higher proportion of positive cells in high-grade tumors (41–45).

Although a direct association between CD133 and VM has
not been investigated in canine tumors, CD133+ cancer cells
showed different features linked to VM both in vivo and
in vitro. Highly invasive and tumorigenic canine insulinoma
CSC-like cells and canine prostate cancer cellsCD133+ showed
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FIGURE 1 | Schematic representation of VM through cancer cells (in purple) forming a vessel containing red blood cells. Figure shows the main molecular pathways

involved in the VM process in human osteosarcoma highlighting, in underlined bold, those found to be related with VM presence or tubular/vessel-like formation in

vitro in dog.

FIGURE 2 | Localization of the principal molecular pathways involved in VM. Figure shows the cellular and tumor microenvironmental distribution of the human OSA

pathways resumed in the review showing, when known, the possible interactions (black arrow) between them. Multiple arrows show multiple interactions between

pathways.
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an invasive and tumorigenic phenotype in vivo, similar to
hepatocellular carcinoma and lung adenocarcinoma cell lines
that were also capable of forming spheroids in culture (46–
49). CD133+ hemangiosarcoma cell lines cultured under normal
and sphere-forming conditions generated three distinct tumor
subtypes in vitro, associated with angiogenesis, inflammation,
and adipogenesis (50). CD133+ canine cell lines derived
from OSA, melanoma, transitional cell carcinoma, and lung
adenocarcinoma resulted to be significantly resistant against
X-ray irradiation (38). Gatti et al. observed that canine OSA
primary cultures containing CD133+ CSCs exhibited distinctive
sensitivity to anticancer agents (51), as well as spheroids derived
from canine mammary gland adenocarcinoma (52).

As far as ALDH1 is concerned, despite ALDH enzymatic
activity being also considered a cancer marker in canine samples
(37, 53, 54), to the best of our knowledge, its protein and gene
expression has not been directly investigated in canine tumors,
as well as in normal tissues or in other canine pathological
conditions (55–57).

ENDOTHELIAL MEDIATORS

VM takes place independently of angiogenesis or endothelial
cell proliferation, although it is often associated with endothelial
marker expression (15). Gene expression analysis showed that
aggressive tumor cells capable of VM display a diversified gene
profile, expressing genes from multiple cell types including those
of endothelial cells (58). In fact, the concept of “embryonic-like
and vascular phenotype in the absence of endothelial markers,”
referred to as the first histological definition of VM (1), is
controversial. In this respect, it has been demonstrated that
primary and established sarcoma cell lines, after prolonged
stimulation with post-surgery fluids from a cohort of patients
affected by giant cell tumors of bone, transdifferentiated into
VE-Cadherin+ and CD31+tubular-like structures (59). For this
reason, the term “endothelial mediators” (and not endothelial
markers) is preferred, to avoid controversy concerning the
attribution of specific endothelial markers to highly aggressive
cells that undergo VM. In several tumors, especially melanoma,
an important group of endothelial mediators has been found
in association with VM, including VE-cadherin (60–62) and
VEGFR1 (63).

In MG63 OSA cells, the inhibition of Cdh5 gene encoding for
VE-cadherin with small interfering RNA (siRNA) reduced the
ability of cells to form endothelial-like networks when cultured
on type I collagen or Matrigel (64), and the same phenomenon
has been observed in silencing the Vegf gene (65). In fact,
autocrine VEGF/VEGFR1 signaling, associated with increased
tumor growth and tumor vascularity, may possibly confer the
capacity to develop vasculogenic properties to OSA cells (66).
In recent studies, differentially expressed genes (DEGs) were
investigated between different OSA cells cultured on Matrigel
for profiling the molecular patterns involved in VM phenotypes.
Results from these studies showed that the endothelial mediators
PDGFRα and PDGFRβ were correlated with malignancy and
tubular-like structure formation in vitro (67, 68).

VE-Cadherin as Regulator of EMT and
Vascular Integrity in Canine Pathology
VE-cadherin is an endothelial cell-specific cadherin that
functions to stabilize cell structure because of its involvement in
calcium-dependent intercellular adhesion (69). In dog, it has not
been linked with VM, nor investigated in MDCK cells, although
its role in EMT, a process closely related to VM and vascular
integrity, has been explored (70, 71). In fact, VE-cadherin gene
expression and immunohistochemical staining was evaluated in
canine myxomatous mitral valve disease to investigate the role of
EMT in chronic valvulopathies, showing a significant cdh5 gene
dysregulation (72).

In cancer, VE-cadherin protein expression was observed at
intercellular junctions in both normal canine tissue-derived
cells (NECs) and in canine tumor-derived cells (TECs), isolated
from thyroid carcinoma and perianal gland epithelioma. The
observed zigzag pattern in TECs, with respect to the linear
in NECs, may be indicative of VE-cadherin dysfunction and
increased vascular permeability, probably dependent on the
high concentration of VEGF in the tumor microenvironment
in vivo. In fact, an abnormal VE-cadherin expression pattern
was observed in 100% confluent NECs, following culture in
a tumor-conditioned medium containing excessive VEGF (73).
Moreover, this study showed that Combretastatin A-4 phosphate
(CA4P) has selective effects on TEC morphology and NECs in
tumor culture conditions, also disrupting vasculature in canine
OSA xenografted into mice (74). Furthermore, genome-wide
methylation analysis performed in canine mammary tumors
showed a significant hypermethylation at the PAX5 (paired box
protein 5) motifs in the intron regions of cdh5 gene and a
consequent gene down-regulation (75).

VEGF/VEGFR Axis in Relation to VM in
Canine Osteosarcoma and Mammary
Tumors
As far as VEGF/VEGFR axis in veterinary oncology is concerned,
VEGF family members were identified in several canine cancers
(76), as well as OSA tissue, serum, and cultured cells (77–
79). A relation between VM and VERGFR was found in
D17 canine OSA cells cultured on type I collagen where
malignant cancer cells with endothelial morphology express
VEGFR1 (14). Correlation between VM and VEGF axis has
been firstly investigated in dogs with mammary tumors (7).
VEGFα, VEGFγ, and VEGFR3 were expressed in spontaneous
canine mammary tumor and xenograft models (80), showing
increased expression in the inflammatory mammary carcinoma
(IMC) model compared to non-IMC and mammary OSA (80,
81). VM has been shown to occur more frequently in IC
compared with other types of canine mammary tumors (7).
Furthermore, overexpression of VEGFα, VEGFγ, and VEGFR3
was observed in canine malignant non-IMC, and it was
correlated with cyclooxygenase 2 (COX2) immunoexpression,
which is particularly related to VM progression (82, 83).

Another indirect relation to VM can be found in the study of
Cam et al. in which VEGFα expression in different OSA cell lines
and its correlation with 1Np63 and cell migration on Matrigel
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was described, demonstrating that1Np63 exerts its angiogenesis
and invasion property through VEGFα (84). It has been also
demonstrated that VEGFα is the direct target of miR34a, which is
less expressed in OSA cell lines with respect to normal osteoblast;
OSA cells that have been induced to overexpressingmiR34a show
decreased motility and invasion ability onMatrigel and increased
levels of VEGFα (85). On the other hand, a correlation between
VEGFα transcript and chemical hypoxia was not observed (77).

As far as OSA ex vivo samples are concerned, literature
data regarding VEGF axis and VM are lacking. Moreover,
no correlation was observed between VEGF expression and
clinicopathological parameters or hypoxia markers, which
are often related to VM (77). On the contrary, its serum
concentration has been previously correlated with poor
prognosis in canine OSA (86). Increased levels of VEGF in
serum or in cell supernatant were also observed after treatment
of canine OSA with tyrosine kinase inhibitors such as Toceranib,
Erlotinib, and Masitinib mesylate, probably due to a mechanism
of feedback response to VEGFR2 inhibition (87–90).

PDGF/PDGFR Axis in Osteosarcoma and
Other Canine Tumors
An extensive knowledge concerning PDGF/PDGFR axis is
available in veterinary literature. This molecular axis has been
investigated as endothelial marker (91), in wound healing
(92), spontaneous canine astrocytoma (93), fibrosarcoma (94),
squamous cell carcinoma (95), lymphoma (96), prostate cancer
(97), hemangioma and hemangiosarcoma (98), melanoma
(99), mast cell tumors (100), hepatocellular carcinoma (101),
mammary tumors (102), and nervous system tumors (103, 104).

PDGFs and PDGFRs were also found to be coexpressed and
overexpressed in canine OSA, suggesting an autocrine and/or
paracrine loop. In particular, in the study of Maniscalco et al.
(105) all evaluated canine OSA cell lines overexpressed PDGFRα,
while 6/7 overexpressed PDGFRβ, when compared to a normal
osteoblastic cell line (106). The involvement of an autocrine loop
of PDGF signaling pathway in the pathogenesis of canine OSA
was confirmed in other studies, showing the overexpression of
cis, the coding gene of PDGFRβ, in a OSA cell line (CO8), and
the ability of its supernatant to induce tyrosine phosphorylation
and therefore the activation of the PDGFRα and PDGFRβ on
murine 3T3 cells (107, 108). Meyer et al. demonstrated that, in
addition to tumor cells, giant cells and osteoblasts in canine OSA
were positive for PDGFBB immunostaining, composed of two
subunits β, also showing the detection of its mRNA in all study
cases (109). Finally, the dysregulation of the expression levels
of PDGFRβ in canine OSA has been attributed to the strong
demethylation of CpG sites within the promoter (110).

No evidence currently exists concerning a relationship
between VM and PDGF/PDGFR axis in canine oncology.
Furthermore, no significant correlation was observed between
the expression of these molecules and survival or histological
grading in canine OSA (105). Despite this, the significant relation
of this axis with malignant features of canine OSA has been
observed both in vivo and in vitro (111). In fact, treatingOSA cells
with Toracenib, a potent inhibitor of PDGFRs, has been shown to

induce a decrease in cell growth, migration, motility, and colony
formation, as well as a significant blunting of tumor growth and
proliferation index in an orthotopic xenograft model (111). These
findings suggest that PDGF/PDGFR axis can represent a target
therapy more than a diagnostic tool. With the coming of new
technologies linked to miRNA, miR34a was tested on OSA cell
lines and xenograft mouse models, showing PDGFRα reduction,
together with decrease in cell proliferation and migration in vitro
and tumor growth in vivo (112).

RESPONSE TO ECM ENVIRONMENT AND
CELL ADHESION

Among the myriad of microenvironmental factors affecting
cancer cell resistance, cell adhesion to the ECM has been recently
identified as a key determinant (113). FAK is a non-receptor
tyrosine kinase that mediates signaling events downstream
of integrin engagement of the ECM, regulating cell survival,
proliferation, and migration and supporting neovascularization
and maintenance of CSCs (114). FAK is expressed in different
cancer types, where it is involved in the progression of tumor
aggressiveness. Small molecule FAK inhibitors in clinical phase
trials demonstrated to be effective in cancer by inducing tumor
cell apoptosis in addition to reducingmetastasis and angiogenesis
(115). Association between FAK and VMor invasive behavior has
been observed in different cancer types, including OSA. Ren et al.
showed FAK staining in the cytoplasm of OSA tissue cells with
high intensity around VM vessels (116). Similarly,Mig7 gene was
expressed in the cytoplasmwith higher percentage of positivity in
the VMwith respect to non-VM group, suggesting an association
between Mig7expression and VM formation and identifying in
VM a prognostic marker of OSA (116).Mig7 protein is enriched
in embryonic cytotrophoblast cells during placental development
and in more than 80% of tumors compared to normal tissue
samples and blood from normal subjects (117). It was found
to colocalize with VE-cadherin in cells lining VM structures
in a lymph node metastasis (118) and to initiate a signaling
cascade that results in tumor VM (119, 120). Moreover, Mig7
knockdown inhibited tubular-like vessel formation and invasion
of MG63 and 143B OSA cells cultured on Matrigel, as well as
growth and metastasis of OSA cells in a mouse model (121).
Parispolyphylla, from traditional Chinese medicine, inhibited cell
migration, invasion, and VM formation in vitro and in vivo by
reducing expression of FAK, Mig7, MMP2 (gelatinase A), and
MMP9 (gelatinase B) (122). MMP1 (interstitial collagenase) also
resulted to be the first upregulated gene among the DEGs of
the abovementioned studies performed on OSA cells cultured on
Matrigel (67, 68).

Among the plethora of membrane proteins interacting with
the ECM, integrin-α2 (ITGA2) has acquired an important
role for its involvement in tumor cell proliferation, invasion,
metastasis, and angiogenesis. In fact, its abnormal expression
correlates with unfavorable prognosis in multiple types of
cancer (123). Itga2 gene overexpression has been reported to
be related to increased OSA metastasis and invasion (124) and
was upregulated in malignant OSA cells in vitro (68). In the
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study of Yao et al., gene signal transduction networks (Signal-
net) were performed to identify the key genes involved in VM
formation in OSA and the top-ranked ones resulted to be Itga2,
integrin subunit alpha 1 (Itga1) and integrin subunit alpha 6
(Itga6) together with protein kinase cAMP-activated catalytic
subunit beta (Prkacb), actinin alpha 1(Actn1), actinin alpha 4
(Actn4), phospholipase C beta 4 (Plcb4), gap junction protein
alpha 1(Gja1), and the already mentioned gene encoding for
PDGFRβ and PDGFα. Finally, this study demonstrated that Itga1
knockdown inhibited VM formation by 143B cells in vitro and
in vivo (68).

In addition, the tyrosine kinase EphA2, which belongs to the
family of Eph tyrosine kinase receptors, is highly expressed in
tumors, while it has been found at relatively low levels in most
normal adult tissues, indicating its potential application in cancer
treatment (125). Recent evidence suggests that VM occurrence
is positively correlated with high expression of EphA2 and that
its gene silencing inhibits VM formation (126). Interesting is
also the correlation with Epstein–Barr virus (EBV) infection that
stimulates plasticity in epithelial cells to express an endothelial
phenotype (127). As well, Zhang et al. demonstrated that Epha2
gene silencing inhibited VM formation inMG63 OSA cells (128).

FAK Protein in Canine Tumor Progression
Interactions between tumor cells and tumor microenvironment
are considered critical in carcinogenesis, tumor invasion, and
metastasis (129). The involvement of adhesion proteins in canine
OSA has been demonstrated through an expression profiling
comparison between dogs with disease-free intervals (DFI) of
<100 and >300 days (130).

The study of Brachelente et al. exploring the differential
expression between melanomas and melanocytomas, identified
differentially expressed gene clusters including nine genes
belonging to the focal adhesion family (129). As far as FAK
protein in humans is concerned, it is well-established that FAK
serves as a scaffold for multiple protein signaling complexes, and
its scaffolding function is very important for tumor progression
(131). In canine oncology, interesting results were shown by
Rizzo et al., demonstrating that the treatment of highly invasive
D17 cells and other two OSA cell lines with Sulforaphane
significantly decreased the phosphorylated state of FAK, also
diminishing the invasion ability of cells cultured on Matrigel
(132). These findings indirectly suggest a correlation between
FAK activity and VM, considering that the inhibition of D17OSA
cell invasiveness corresponds to a decrease of VM features in vitro
(14). Moreover, inhibition of FAK phosphorylation improved
migration of canine hemangiosarcoma cells (133). FAK-mediated
signaling was induced by numerous microenvironmental inputs
and plays a central role in tumor-associated EMT and epithelial
cells extrusion, migration, and response to the transforming
growth factorβ (TGFβ) and the hepatocyte growth factor (HGF),
as often demonstrated on MDCK cells (134–140). The use of
these cells has also allowed understanding the involvement of
FAK in the EMT induced by latent membrane protein 1 (LMP1)
of EBV (141). Finally, the FAK inhibitor Masitinib mesylate
(AB1010) has been the first anticancer therapy approved in

veterinary medicine for the treatment of unresectable canine
mast cell tumors (142).

MMPs in Canine Tumors
In veterinary literature, current knowledge on the activity and
function of proteases and stroma and their relationship with
canine cancer malignancy is still limited (143), despite the fact
that MMPs have been widely explored in several human cancers
and are strictly related to the VM process (144, 145). Inhibition
of extracellular proteolysis, in particular of collagenases MMP1,
MMP2, and MMP9, is recognized as a valid approach to canine
cancer therapy including OSA (146). In fact, Doxycycline at
doses >5µg/ml significantly decreased OSA cell proliferation
and MMP1 activity in vitro (147).

Mmp1 is the most significantly downregulated gene in Hsp70
knockdown canine OSA cells, and increased expression ofmmp2
and mmp9 was linked to increased invasive capability in canine
OSA (78, 148, 149).

Furthermore, MMP2 and MMP9 enzyme activity was found
by means of zymography in three high malignant OSA cell
lines (150).

The association between collagenase expression and activity
and histological grade has also been demonstrated in canine mast
cell tumor and lymphoma, together with VEGF dysregulation
(151, 152), in mammary tumors, in relation to E-cadherin (153,
154), and in chondrosarcoma (153, 155–160). No differences in
MMP9 expression were observed between IMC and non-IMC,
although its expression was associated with higher nuclear grade
in IMC tumors (161). As well, MMP2 and MMP9 dysregulation
was found in canine oronasal tumors, hemangiosarcomas,
and meningiomas, not always in association with malignant
morphological patterns (143).

Integrin Signaling in MDCK Cells and
Canine Cancers
Integrin subunits may combine each other to affect the
characteristics of cancer cells and the progression of tumors, both
binding with proteins that directly regulate the actin cytoskeleton
of cells and by phosphorylating the relative kinases, including
FAKs (162). It is well-known that integrin complexes bind
ECM components to promote cell adhesion and invasion, also
mediating tissue tropism (163, 164). MDCK cells were used to
demonstrate that α2β1 integrin mediates adhesion to types I and
IV collagen in an Mg2+-dependent manner, thus improving cell
survival, EMT, cell spreading, and brunching morphogenesis.
Furthermore, overexpression of Galectin8, which activates
selective β1-integrins involved in EMT, promotes oncogenic-like
transformation of MDCK cells (134, 154, 165, 166).

In veterinary oncology, a deregulation of integrin pathway,
together with Wnt and chemokine/cytokine signaling, has
been found in relation to short survival in canine OSA
(167). The expressions of β1 integrin and α5β1 complex
were immunohistochemically evaluated in a series of normal,
dysplastic, and neoplastic canine mammary glands, and in
lymph node metastases (168, 169), while β2 integrin was
found in canine cutaneous histiocytoma (170). Finally, canine
hemangiosarcoma cell lines expressing several endothelial
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mediators including VEGF and αvβ3 integrin recapitulate
features of mitotically activated endothelia and stimulate robust
angiogenic responses in mice, forming tumor masses composed
of aberrant vascular channels. Furthermore, they showed
anchorage-independent growth and were motile and invasive,
forming vessel-like structures when cultured on a basement
membrane matrix (171, 172).

EphA2 Inhibition in Canine Tumor Therapy
and Its Mechanisms of Action
Targeting EphA2 represents an important goal in the
development of recent anti-cancer drugs also in veterinary
medicine, as shown by the attempt to evaluate the mechanism
of Desanitib in the treatment of canine histiocytic sarcoma and
the development of a cytotoxic compound that targets EphA2,
EphA3, EphAB2, and interleukin 31 receptor A2 (IL31RA2) in
canine high-grade gliomas (173, 174). The inhibition of EphA2
and IL31RA activity reduced up to 94% of tumor volume in
50% of dogs in the cohort (175). Furthermore, dogs were used
to test the performance of a nanotherapeutic encapsulating a
hydrolytically sensitive Docetaxel prodrug and conjugated to an
antibody specific for EphA2, demonstrating an improvement
in tumor penetration and antitumor activity (174). In ex vivo
specimens, EphA2 resulted to be highly overexpressed in
neoplastic cells of canine appendicular OSA, together with
EphA3 (176). In vitro, ephA2 expression was increased by up to
60-fold in canine prostate carcinoma lines derived from lung or
bone metastases (177). MDCK cells were used to demonstrate
the role of EphA2 in the epithelial morphogenesis in 3D culture
and in the apical extrusion of transformed epithelial cells as
a protective event. MDCK cells were also used to investigate
EphA2 role in the decreased integration of claudin4 into sites
of cell–cell contact as tumorigenic trigger and in the anoikis
resistance process (178–181).

mTOR AND RhoA/ROCK PATHWAYS

DEP domain-containing mTOR-interacting protein (DEPTOR)
is an important modulator of mTOR, a kinase at the center of two
important protein complexes named mTORC1 and mTORC2
(182). DEPTOR is able to interact with mTOR, thus inhibiting
its kinase activity. It is involved in several molecular pathways
controlling cellular homeostasis and it can behave either as an
oncogene or oncosuppressor, depending on the cell or tissue
type (183). It has been demonstrated that DEPTOR knockdown
significantly decreased the number of tube-like structures and the
invasion ability of the methylnitronitrosoguanidine transformed
human OSA cells (MNNG/HOS) (184).

RhoA/ROCK pathway is a versatile regulator of multiple
cellular processes, and it is dysregulated in several cancers.
Recently, ROCK has attracted attention for its crucial role in
angiogenesis, in regulating permeability, migration, proliferation,
and tubulogenesis of endothelial cells (185). RhoA/ROCK
stabilizes HIF1α during hypoxia inducing VM in hepatocellular
carcinoma (186). Moreover, RhoA/ROCK expression was found
to be higher in human OSA tissues and in the human OSA cell

line U2OS with respect to control. Inhibition of RhoA/ROCK
signaling pathway by the pharmacological inhibitor Fasudil
reduced vascular-like channels in U2OS and melanoma cells
cultured on Matrigel, decreasing cell plasticity and motility, both
of which play key roles in VM formation (187, 188).

Role of mTOR Pathway in Canine MDCK
Cells and Cancers
mTOR pathway belongs to the series of conserved pathways
that impact upon longevity and aging-related diseases such
as cancer (189). Phosphatidyl inositol 3-kinase (PI3K)-AKT-
mTOR was identified as one of the most relevant pathways
involved in OSA progression both in humans and canines
(190). The screening of protein kinase inhibitor compounds,
particularly against PI3K-AKT-mTOR activity, represents an
important topic of canine OSA therapy (191–193). Although
the effect of the aberrant PI3K-AKT-mTOR signaling on tumor
cell proliferation and apoptosis is well-known in canine OSA,
the relation between mTOR and migration, invasion, and
angiogenesis properties has been better explored in other types of
canine cancer including hemangiosarcoma (194), prostate cancer
(195), mammary tumors (196, 197), melanoma (198), and mast
cell tumors (199).

Of relevance, MDCK cell model was used to demonstrate
that mTOR signaling plays important roles in the regulation of
epithelial tubule formation onMatrigel. It was observed that PI3-
kinase regulates early epithelial remodeling stages, while mTOR
modulates latter stages of tubule development (200), suggesting
a possible involvement of mTOR pathway in VM progression.
To the best of our knowledge, there are no studies investigating
mTOR modulation mediated by the DEPTOR domain in dog.

RhoA/ROCK in Canine MDCK Cells
Considering that cell migration plays crucial roles in cancer cell
invasion, the study of mechanisms of junction and cytoskeletal
organization mediated by guanosine triphosphatases (GTPases)
of the Rho family has acquired great importance (201, 202).
RhoA/ROCK pathway has been widely investigated in MDCK
cells as a model of cell migration, cell-cell interaction and
adhesion, EMT promotion, and virus entry (201–204).

In Moloney sarcoma virus-(MDCK)-invasive (MSV-MDCK-
INV) variant tumor cells, it has been observed that Rho/ROCK
activation may affect tumor cell migration and metastasis
by stimulating the pseudopodal translocation of mRNAs and
thereby regulating the expression of local signaling tumorigenic
cascades (205, 206). RhoA hyperactivation can also influence
normal MDCK cell polarity (Yu et al., 2008). The inhibition of
RhoA pathway leads to a decrease of anchorage-independent
growth of MDCK cells in vitro and in syngeneic mice, also
downregulating Cox2gene (207, 208).

LncRNAs

Non-coding RNAs, especially miRNAs and lncRNAs, have
been widely investigated due to their roles as key players in
regulating various biological and pathological processes involved
in OSA progression, including cancer cell migration, invasion,
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angiogenesis, and metastasis (209, 210). LncRNAs are non-
coding transcripts >than 200 bp in length, and different studies
demonstrated the influence of these molecules in gene expression
at the epigenetic, transcriptional, and post-transcriptional
levels. One of the most classical mechanisms through which
lncRNAs regulate gene expression involves their association
with chromatin modeling complexes and transcription factors,
influencing transcriptional repression and activation of gene
promoters (211).

Ren et al. profiled the expression of lncRNAs in highly
aggressive OSA cell line 143B in comparison with its parental
poorly aggressive cell line HOS, both plated on Matrigel. The
top five upregulated lncRNAs were n337322, n333984, n381586,
n338209, and TCONS_l2_00028738-XLOC_l2_014777, while the
five downregulated lncRNAs were n334144, n342556,n410003,
n335665, and ENST00000442174, also indicating that the top-
ranked hub lncRNA that had the highest connections with
the majority of the others in the network was n340532 (67).
Through VM assay, this study also showed that VM ability of
143B cells strongly decreased following n340532 knockdown,
as well as the number of metastatic nodules after injection of
143B cells stably transfected with sh-n340532 into nude mice.
Tumor tissues collected from the sh-n340532 group exhibited
a decreased number of VM channels compared to the control
group (67). FTX and MALAT1 were also strongly upregulated
in this study. As far as FTX is concerned, its involvement in
migration and metastasis was also previously demonstrated, as
well as the induction of VM by MALAT1 (16, 212).

Among others, lncRNA AFAP1-AS1 was found to be
aberrantly expressed in OSA together with HOTAIR, HULC,
and H19 that were upregulated in human OSA tissues and
cell lines. Shi et al. also performed an in-depth investigation
to explore the role and the mechanism of AFAP1-AS1 in
OSA progression, demonstrating that the stable transfection
of different OSA cell lines with siRNA AFAP1-AS1 strongly
reduced their ability to form tube-like structures in vitro.
In the same work, a concomitant decrease of EMT and
RhoC/ROCK1/p38MAPK/Twist1 signaling pathway was also
observed (213).

Moreover, differences between non-VM and VM cells
compared in a microarray highlighted the significant
overexpression of the lncRNAs LINC00265 and LINC00342
in the VMOSA cell line with respect to control. The study
also confirmed that both LINC00265 and LINC00342 were
upregulated in OSA tissues and that the high expression of
LINC00265 was positively correlated with Spermine N1-
Acetyltransferase 1 (Sat1) and Vav Guanine Nucleotide Exchange
Factor 3 (Vav3) gene expression, as well as with poor prognosis.
LINC00265 was also demonstrated to promote proliferation,
migration, invasion, and tube formation via miR3825p targeting
Sat1 and Vav3 genes in OSA cells cultured on Matrigel. SAT1 is a
polyamine acetyltransferase that has a controversial role among
different tumors, although it has been demonstrated to promote
proliferation and metastasis of OSA cells both in vitro and in vivo
(214). VAV3 is an important factor regulating angiogenesis and
regulates the Rho/Rac family of GTPases involved in cell growth
and motility (214).

LncRNA in Dogs
Among the multiple epigenetic mechanisms found in canine
cancer, DNA methylation and histone modification have been
identified on the basis of OSA progression (211). Le Beguec et al.
characterized the expression profiles of 10.444 canine lncRNAs
in 26 distinct tissue types. Their study showed that lncRNA
expression is mainly clustered by tissue type, highlighting that
44% of canine lncRNAs are expressed in a tissue-specific manner
and also identifying more than 900 conserved dog-human
lncRNAs (215). An alignment-free program that accurately
annotates lncRNAs (FEELnc) was used on a real data set of
20 RNA-Seq from 16 different canine tissues, produced by
the European LUPA consortium to expand the canine genome
annotation, including 10.374 novel lncRNAs and 58.640 mRNAs
transcripts (216). This work allowed identifying three new
cancer susceptibility candidate lncRNAs in dogs, which are well-
described in human cancer, includingMALAT1, that is associated
with human VM and metastasis (16, 217). Other studies
observed more than 900 dog-human conserved lncRNAs using
comparative genomics, confirming the presence of well-studied
lncRNAs in dogs, such as HOTAIR and MALAT1 in canine B
cell lymphoma and identifying lncRNAs differential expression
as a prognostic tool (218–220). Of relevance, 417 differentially
expressed lncRNAs were identified in canine oral melanomas
in comparison with control samples, including the well-studied
lncRNA ZEB2-AS, a lncRNA involved in the regulation of the
transcription factor Zinc Finger E-Box Binding Homeobox 2
(Zeb2) during EMT in human colon, pancreatic, and breast
cancer cell lines, as well as SOX21Antisense Divergent Transcript
1(Sox21-as1) and Cancer Susceptibility 15(Casc15) (211, 221,
222). Finally, long non-coding transcripts from telomeres, called
telomeric repeat-containing RNA (TERRA), were identified as
blocking telomerase activity in canine tumor cell lines originated
from soft tissue sarcomas (223). MDCK cells were also tested for
the presence of tumorigenic lncRNAs, with the aim of preparing
a safer and more reliable non-neoplastic MDCK cell line for
vaccine production, founding several tumor-associated lncRNAs
(224). Furthermore, a highly upregulated lncRNA in liver cancer
was demonstrated to be a promoter during the epithelial and
smooth-muscle-like differentiation of adipose-derived stem cells
(ADSCs) via the bone morphogenetic protein 9(BMP9)/Wnt/β-
catenin/Notch network (225). Genome-wide association studies
(GWAS) identified a set of variants within the intron of a
lncRNA upstream of the adrenoceptor beta 1(Adrb1) gene which
is strongly associated with coat color. Two variants were found at
high frequency in single-coated dogs and are rare in wolves (226).

THERAPEUTIC POTENTIAL AND
CURRENT LIMITATIONS

Both western and traditional Chinese medicines were used to
evaluate a potential VM inhibition. Current anti-angiogenic
drugs are often useless in the dampening of VM, inhibiting
directly endothelial cell proliferation. At the same time, the
consequent vascular density decrease can cause hypoxia in
the tissue triggering VM as a compensatory stimulus (2).
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The combination of drugs targeting VM and classical tumor
angiogenesis can definitively reduce the blood and nutrient
supply of tumors (227). Furthermore, in the era of chimeric
antigen receptor (CAR)-T cell therapy, it is increasingly urgent
to find specific markers for cancer management, and VM can
represent an opportunity to find a cancer selective therapeutic
target. In fact, in the VM process, multipotent tumor cells with
CSC-like phenotype can transdifferentiate, generating ECM-rich,
CD31-negative, and PAS-positive vascular networks, but CD31+,
PAS-negative tubular-like structures have also been observed
(6, 59). This evidence demonstrates that the mechanism of
endothelial transdifferentiation of cancer cells within the tumor
is still unclear, and this issue complicates the identification of
specific cancer biomarkers. Recently, increasingly advanced in
vitromodels have been developed for the deeper investigation of
this relative new process.

CONCLUSION AND PERSPECTIVES

A growing body of evidence indicates that VMplays fundamental
roles in tumor invasion, metastasis, and poor prognosis in human
patients with malignant tumors, including OSA. Thus, VM may
represent a potential novel target of anti-tumor therapy, even
though the cellular mechanisms and molecular pathways by
which VM is promoted have not been fully clarified. Endothelial
mediators have been especially explored in human OSA and
in veterinary oncology, together with the presence of CSC

markers and the pathways involved in ECM interaction and cell
adhesion. The molecular pathways involving VEGF/VEGFR and
integrins have been found to be related to VM and vessel-like
formation in vitro in canine oncology, while CD133 resulted
to be determinant for tubular-like structure formation in vitro
of canine normal cells (Supplementary Table 1). Information
concerning the VM process and its biological implications
in cancer is still limited in veterinary literature, despite the
importance of canine tumor models in comparative oncology.
The current knowledge concerning VM findings in human OSA,
summarized in the present review, may provide a basis for
stimulating future studies investigating VM in canine oncology
as a possible target with great promise in cancer therapy.
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