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This study aimed to evaluate the antibacterial activity of isopropoxy

benzene guanidine (IBG) against C. perfringens based on

pharmacokinetics/pharmacodynamics (PK/PD) modeling in broilers. The PK

parameters of IBG in the plasma and ileal content of C. perfringens-infected

broilers following oral administration at 2, 30, and 60 mg/kg body weight

were investigated. in vivo PD studies were conducted over oral administration

ranging from 2 to 60 mg/kg and repeated every 12h for 3 days. The inhibitory

Imax model was used for PK/PD modeling. Results showed that the MIC of

IBG against C. perfringens was 0.5–32 mg/L. After oral administration of IBG,

the peak concentration (Cmax), maximum concentration time (Tmax), and area

under the concentration-time curve (AUC) in ileal content of broilers were

10.97–1,036.64 mg/L, 2.39–4.27h, and 38.31–4,266.77 mg·h/L, respectively.

After integrating the PK and PD data, the AUC0−24h/MIC ratios needed for

the bacteriostasis, bactericidal activity, and bacterial eradication were 4.00,

240.74, and 476.98h, respectively. For dosage calculation, a dosage regimen

of 12.98 mg/kg repeated every 12h for 3 days was be therapeutically e�ective

in broilers against C. perfringens with MIC ≤ 2 mg/L. In addition, IBG showed

potent activity against C. perfringens, which may be responsible for cell

membrane destruction. These results can facilitate the evaluation of the use of

IBG in the treatment of intestinal diseases in broilers caused by C. perfringens.

KEYWORDS

isopropoxy benzene guanidine, pharmacokinetic/pharmacodynamic (PK/PD),
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Introduction

Necrotizing enteritis (NE) is widely spread in broilers, which

poses a major economic burden on poultry industry worldwide

(1). NEwas first described by Parish (2), with highmorbidity and

mortality (3). The pathogen of NE is Clostridium perfringens (C.

perfringens), a Gram-positive spore-forming anaerobic bacteria

(4). Toxins produced by C. perfringens can cause gastroenteritis,

enterocolitis or enterotoxaemia in humans and animals (5). The

use of antibiotic growth promoters in livestock industry must be

decreased worldwide to delay the spread of antibiotic resistance

(6, 7). However, these measures lead to the high prevalence

of NE (8). Broilers are prone to NE at 2–6 weeks of age (9).

Antibiotic therapy can effectively control NE. Drug resistance

of Clostridium perfringens clinical isolates is becoming common

because of the frequent use of antibiotics (10). Thus, developing

new drugs different from existing drugs is an effective method to

overcome antibiotic resistance.

Guanidine compounds have been widely used in the

treatment of various diseases because of their biological

activities, and they are potential candidates for structural

modification of new drugs (11–13). Liu et al. reported

that metformin, an antidiabetic drug, promotes intracellular

accumulation of doxycycline to restore antibiotic activity

against multidrug-resistant bacteria (14). Pi et al. reported

that robenidine analog NCL195 alone or in combination

with EDTA, polymyxin B non-apeptide, and polymyxin B has

good antibacterial activity against various bacteria including

Staphylococcus aureus (15). As a new candidate for substituted

guanidine compounds, isopropoxy benzene guanidine (IBG)

has been proven to be effective against Gram-positive bacteria

(16, 17). IBG disrupts the cell membranes of drug-resistant

Enterococci and Staphylococcus aureus. In addition, IBG can

affect colistin against colistin-resistant Salmonella (18). IBG

supplementation effectively improves the average daily gain and

reduces diarrhea rate of broilers without adverse reactions (19).

The present study sought to determine the pharmacokinetic

(PK) data of IBG in plasma and ileal content. The

PK/pharmacodynamics (PD) indexes required for different

levels of antibacterial effectiveness by using the inhibitory Imax

model were also analyzed. Furthermore, the formulation of the

dosage regimen of IBG in broilers could be used to formulate a

reasonable dosage for treating NE.

Materials and methods

Antibiotic and bacteria

Isopropoxy benzene guanidine (99.9%) was provided by

Guangzhou Insighter Biotechnology (Guangzhou, China).

Mueller–Hinton broth and Mueller–Hinton agar were obtained

from Qingdao Hope Bio-Technology Co., Ltd. (Qingdao,

China). Tryptone-sulfite-cycloserine agar was obtained from

Guangdong Huankai Microbial Technology (Guangdong,

China). Twenty-four isolates of C. perfringens were used,

including a standard strain (ATCC13124) was purchased from

the Chinese Veterinary Culture Collection Center and 23 strains

isolated from broilers in five cities in Guangdong province from

March to November in 2021.

Animals

Two-week-old healthy Sanhuang broilers with weights 100

± 10 g were used in this study. Broilers were allowed 7-day

acclimation prior to experiments. All broilers were allowed

with antibiotic-free food and water supply ad libitum. All

procedures were approved by the Institutional Animal Care

and Use Committee of South China Agricultural University

(Approval Number: 2022A001).

Determination of MIC, MBC, MPC, and
PAE

The susceptibility of the selected C. perfringens isolates

to IBG in MH broth was evaluated in accordance with

the micro-dilution method recommended by the CLSI (20).

Minimal inhibitory concentration (MIC) was defined as the

lowest concentration of IBG that inhibited the visible bacterial

growth after 24 h of incubation. The MIC in ileal content was

also evaluated in using the micro-dilution method (21). The

mutant prevention concentration (MPC) of IBGwas determined

using the agar method (22). The 1010 CFU/mL C. perfringens

strains were inoculated on the agar plates containing serial

concentration of IBG (1 MIC, 2 MIC, 4 MIC, 8 MIC, 16

MIC, and 32 MIC) and cultured at 37◦C for 72 h. The MPC

was defined as the lowest concentration of IBG on agar plates

without bacterial growth.

For the post-antibiotic effect (PAE) determination, the

bacterial was exposed to three different concentrations (1MIC, 2

MIC, and 4 MIC) of IBG for 1 or 2 h. The media containing IBG

was removed by centrifuge at 12,000× g for 5min. The bacterial

was re-grew in fresh media without IBG for another 24 h. The

bacterial numbers were determined at different time points.

The PAE was the time difference (in hours) for antimicrobial-

treated bacterial to increase in number by 1 log10 minus the

same determination for non-treated cultures of the same test

bacterial (23).

In vitro time-killing curves

Different concentrations of IBG: 1/4MIC, 1/2MIC, 1MIC,

2MIC, and 4MIC were prepared in MH broth, the tubes
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were then inoculated with C. perfringens (106 CFU/mL)

and incubated at 37◦C. The bacterial count (CFU/mL) was

determined for each tube after 0, 1, 2, 4, 6, 8, 12, and 24 h of

incubation. In brief, 100 µL of culture was obtained for each

time point, and serially diluted, and the colonies were counted

the nextmorning. The limit of detection (LOD)was 10 CFU/mL.

All experiments were performed in triplicate.

Establishing C. perfringens infection
model

Based on references and proper modification (24, 25),

broilers were infested by oral challenging with coccidial

sporulated oocysts propagated from field isolates (30,000/in

1 mL/bird). After 4 days, broilers oral gauge with 1mL of

culture containing 109 CFU/mL of C. perfringens ATCC13124

for 3 days. Broilers were observed after inoculation for clinical

symptoms and pathological changes.

Pharmacokinetics of IBG in a C.

perfringens infection model

A total of 132 broilers were randomly divided into three

groups and a single dose of 2, 30, or 60 mg/kg body weight

(b.w.) IBG following oral gavage. At 0.08, 0.25, 0.50, 0.75, 1,

2, 4, 6, 8, 12, and 24 h after oral administration of IBG, four

broilers in each group were euthanized to collect ileal contents

and blood samples. The concentration of IBG in plasma and

ileal content was determined by validated high-performance

liquid chromatography (HPLC). In brief, ileal contents (0.5 g)

were extracted with 1.5mL of 1% formic acid acetonitrile,

homogenized for 1min, and centrifuged (13,000 g, 10min) to

obtain supernatant. Subsequently, 0.5mL of supernatant was

added to 1mL 1% formic acid acetonitrile. After being vortexed

(1min) and centrifuged (13,000 g, 10min), the supernatant

was filtered through a 0.22µm membrane for concentration

analysis. The calibration range was 0.20–20µg/g. Intraday and

interday precision levels varied from 1.1 to 7.2% and from

1.7 to 6.5%, respectively. The LOD and limit of quantification

(LOQ) were 0.10 and 0.20µg/g, respectively. A 0.20mL aliquot

of plasma sample mixed with 0.80mL of 1% formic acid

acetonitrile. After being vortexed (1min) and centrifuged

(13,000 g, 10min), the supernatant was filtered through a

0.22µm membrane for concentration analysis. The calibration

range was 0.02–1µg/mL. Intraday and interday precision levels

varied from 1.9 to 9.1% and from 2.4 to 8.1%, respectively. The

LOD and LOQ were 0.005 and 0.010µg/mL, respectively. The

concentration data of IBG in the plasma and intestinal content

were submitted to a non-compartmental analysis in Phoenix

WinNonlin
R©

8.2 (Certara, L.P., Princeton, NJ, USA). The

corresponding intestinal content concentration-time profiles

after multiple dosage regimens were predicted using Phoenix’s

non-parametric superposition function based on the single-dose

intestinal content PK concentration-time profile.

Pharmacodynamics of IBG in an intestinal
infection model

Infected broilers were treated gavage two times a day

for three successive days with 0, 2, 5, 10, 20, 30, 40, and

60 mg/kg b.w. of IBG (n = 4) to evaluate the in vivo

effectiveness of IBG. Treatment started at 12 h post-infection.

At 24 h after the last dose, the intestinal content was sampled

sterilely and homogenized for CFU determination (26). Broilers

in the control group were sacrificed before and 24 h after

IBG treatment.

Analysis of the PK/PD relationship

The in vivo PK/PD relationships of IBG in intestinal

were simulated using the Imax model in the WinNonlin
R©

8.2 (Certara, L.P., Princeton, NJ, USA) using the following

equation (27):

E = E0 −
Imax • X

IC50 + X
(1)

where E0 is the difference in bacterial count of (log10CFU/g)

control samples. Imax is the maximum antimicrobial growth

inhibition determined as the change in log10CFU/g

after treatment with IBG. X is the predictive variable

(AUC0−24h/MIC), and IC50 is the X value producing 50%

of the maximum antibacterial effect.

The potential optimal dosage can be calculated using the

following equation (28, 29):

Dose =
(AUC/MIC) •MIC • CL

fu • F
, (2)

where dose (per day) is at a steady state; CL is the clearance

per day; AUC/MIC is the targeted endpoint for optimal efficacy

in hours; MIC is the target pathogen; F is the bioavailability

factor, and fu is the free fraction of the drug.

Cell membrane integrity assay

Cell membrane integrity assay was performed as a previous

report (30). Clostridium perfringens ATCC13124 were grown

overnight at 37◦C in an anaerobic system. Then culture cells

were washed and resuspended in PBS (pH 7.4) to obtain
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FIGURE 1

MIC distributions of IBG against 23 C. perfringens.

OD600 of 0.5, followed by the addition of 0.5 µmol/L of

propidium iodide (PI; Beyotime, Catalog No. ST511) in the

presence of IBG (final concentrations ranging from 0 to

16 mg/mL). After incubation for 30min, fluorescence was

measured by using a Hitachi F-7000 Fluorescence Spectrometer

with an excitation and emission wavelengths of 535 and

615 nm, respectively.

Membrane depolarization assay

The membrane potential of cells was using a fluorescent

probe DiSC3(5) as described previously (14). Then bacterial

cells were washed and suspended with 5 mmol/L of HEPES

(pH 7.0, plus 5mM glucose). OD600 of bacterial suspension

was standardized to 0.5 in the same buffer, and 0.5 µmol/L

of 3,3-dipropylthiadicarbocyanine iodide DiSC3(5) (Aladdin,

Catalog No. D131315) was added. After incubation at 37◦C

for 30min, 190 µL of probe-labeled bacterial cells was added

to a 96-well plate and 10 µL of IBG (final concentrations

ranging from 0 to 16 mg/mL) was added. After incubation

at 37◦C for 30min, fluorescence was measured with an

excitation wavelength at 622 nm and an emission wavelength at

670 nm.

Proton motive force assay

The PMF ofC. perfringensATCC13124 treated with IBGwas

measured with pH-sensitive fluorescence probe BCECF-AM (20

× 10−6 M, UElandy Catalog No. B3016). After the fluorescence

was stabilized, varying IBG were added. The excitation and

emission wavelengths on the fluorescence spectrometer were set

to 488 and 525 nm, respectively.

ATP determination

Intracellular ATP levels of C. perfringens ATCC13124 were

determined using an Enhanced ATP Assay Kit (Beyotime,

Catalog No. 50027).C. perfringensATCC13124 grown overnight

at 37◦C in an anaerobic system was washed and resuspended

to obtain OD600 of 0.5 with PBS (pH 7.4). After treating

with different concentrations (0–16 mg/L) of IBG for 30min,

bacterial cultures were centrifuged and the supernatant was

removed. Bacterial precipitates were lysed with lysozyme and

centrifuged, and the supernatant was prepared for measurement

at intracellular ATP levels. Recording in the luminescence model

using the Hitachi F-7000 Fluorescence Spectrometer.

Results

In vitro susceptibility testing and
time-killing assays

MICs of IBG against 23 C. perfringens strains varied, ranging

from 0.5 to 32 mg/L. The percentage of each MIC (0.5, 1, 2, 4, 8,

16, and 32 mg/L) was 8.70, 21.74, 34.78, 13.04, 8.70, 8.70, and

4.35%, respectively. The MIC distribution is shown in Figure 1.

The MIC and MBC of IBG against C. perfringens ATCC13124

in MH broth were 2 and 4 mg/L, whereas those in ileal content

were eight times higher at 16 and 32 mg/L, respectively. The

MPC in the medium was eight times higher than the MIC, with

a value of 16 mg/L. The PAE of C. perfringens exposed to IBG for

1 and 2 h ranged from 0.39 to 1.37 h and from 0.82 to 1.51 h,

respectively (Table 1). The in vitro time-killing curves of IBG

against C. perfringensATCC13124 and GDZ21C59W in the MH

broth are illustrated in Figure 2. The time-killing curves imply

a concentration–dependent killing characteristic of IBG. When

C. perfringens was exposed to IBG with a concentration >2

mg/L, the continuous inhibitory effect on bacterial growth could

be observed.

Pharmacokinetics analysis

The concentration–time profiles of plasma and intestinal

content in C. perfringens-infected broilers following single oral

gavage at 2, 30, and 60 mg/kg is shown in Figure 3. The

PK parameters of IBG in plasma and intestinal content are

illustrated in Table 2. After oral administration, IBG had a

significantly lower AUClast and Cmax in plasma vs. in intestinal

content (P < 0.01). In plasma, AUClast and Cmax ranged from

0.38 to 2.18 mg·h/L and from 0.08 to 0.27 mg/L, respectively.

In intestinal content, AUClast and Cmax ranged from 38.31 to

4,266.77 mg·h/L and from 10.97 to 1,036.64 mg/L, respectively.

A good linearity of IBGwas observed in the intestine (R2 ≥ 0.988

for Cmax and AUClast).
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TABLE 1 Antibacterial activity of IBG against C. perfringens ATCC13124.

MIC (mg/L) MBC (mg/L) MPC (mg/L) PAE (h)

Concentration Expose 1 h Expose 2 h

Artificial medium 2 4 16 1 MIC 0.39 0.82

2 MIC 0.85 0.92

4 MIC 1.37 1.51

Ileal content 16 32 – – – –

FIGURE 2

In vitro time-kill curve of IBG against C. perfringens ATCC13124

(A) and GDZ21C59W (B).

PK/PD analysis

At the start of IBG therapy, bacterial burdens were 8.05 ±

0.25 log10CFU/g. The most effective IBG dosage regimens result

in the reduction of bacterial number at the start of treatment

(4.06 ± 0.19 log10CFU/g). The relationship between the effect

of IBG against C. perfringens and each of the PK/PD indices in

the intestinal infection model is shown in Figure 4. The PK/PD

index of AUC0−24h/MIC (R2 > 0.9542) had a strong correlation

with antibacterial activity in the intestinal infection model. The

AUC0−24h/MIC ratios required for various efficacy targets are

shown in Table 3.

FIGURE 3

The time–concentration profile of IBG in plasma (A) and

intestinal contents (B) of broilers following a single oral

administration of 2, 30, and 60 mg/kg (n = 4).

IBG disrupted cell membrane in multiple
ways

Based on IBG killing against C. perfringens in vitro and in

vivo, we try to elucidate its potential mechanisms. In addition,

IBG killing against Staphylococcus aureus and Enterococcus

by damaging cell membrane (16, 17), may exert antibacterial

activity against C. perfringens in a similar manner. Thus,

we first tested the effect of IBG on the permeability of the

cytoplasmic membrane.We used a fluorescent probe PI to assess

the effect of IBG on the inner membrane of the bacteria as

previously described (31). The results showed that IBG increased
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TABLE 2 Pharmacokinetic parameters of IBG in plasma and ileal content following single gavage in C. perfringens-infected broilers.

Dose (mg/kg) Plasma Ileal content

Tmax (h) Cmax AUClast T1/2 (h) Tmax (h) Cmax AUClast T1/2 (h)

2 2 0.08 0.38 4.06 1.50 10.97 38.31 2.04

30 4 0.12 0.99 11.21 1.00 452.70 1,688.93 4.22

60 4 0.27 2.18 7.99 1.50 1,036.64 4,266.77 5.83

Mean± SD 3.33± 0.94 – – 7.75± 2.92 1.33± 0.24 – – 4.03± 1.55

Tmax , time ofmaximumobserved concentration; Cmax , maximum concentration; AUClast , the area under the concentration–time curve from 0 h to the last sample time point; T1/2 , half-life.

FIGURE 4

Relationships between the e�ect of IBG against C. perfringens

and PK/PD indices AUC0−24h/MIC in the intestinal infection

model. R2 is the coe�cient of determination.

the permeability of C. perfringens ATCC13124 (Figure 5A).

The fluorescence value clearly increased with IBG treatment

compared with that of untreated cells., which indicated that

IBG might cause dysfunctions in the cytoplasmic membrane.

Hence, DiSC3(5) was used to evaluate the bacterial membrane

potential (32). When the concentration of IBG was more than

four times that of MIC, the fluorescence was significantly

reduced, suggesting that IBG disrupted the electric potential

of C. perfringens (Figure 5B). Existing research has shown

that membrane depolarization is related to the production of

ROS and PMF (33, 34). Dyes DCFH-DA (35) and BCECF-

AM (36) were used to analyze the effects of ROS and PMF,

respectively. There was no effect on ROS accumulation in

C. perfringens treated with IBG. A large reduction in the

magnitude of PMF accumulation was observed in the IBG-

treated group compared with untreated cells (Figure 5C).

Considering that PMF is the driving force for ATP synthesis

(37), the intracellular ATP levels of C. perfringens treated with

TABLE 3 PK/PD parameter of in vivo data after oral administration IBG

in broilers.

Parameter Unit PK/PD fitting

parameters

E0 (log10CFU/g) 0.11

Imax (log10CFU/g) 6.11

IC50 h 232.03

AUC0−24h/MIC for

bacteriostatic action

h 4.00

AUC0−24h/MIC for

bactericidal action

h 240.74

AUC0−24h/MIC for bacterial

elimination

h 476.98

E0 , difference in number of bacteria counts (log10 CFU/g) in a drug-free sample between

0 and 24 h; Imax , difference in greatest amount of antibacterial reduction (log10 CFU/g);

IC50 is the AUC0−24h/MIC value producing 50% of the maximal antibacterial effect.

IBG was also significantly decreased (Figure 5D). Collectively,

IBG stimulates a membrane-dependent mechanism to exert an

antibacterial effect.

Discussion

Due to overuse and misuse, and resistance to commonly

used antibiotics, the control of C. perfringens is very difficult

(38). Therefore, new antimicrobial drugs are needed for the

effective management of necrotizing enteritis. IBG, as a novel

guanidine substituted compound, has been shown to be effective

against Gram-positive bacteria by disrupting cell membrane (16,

17). In this study, the MIC range of IBG to clinical C. perfringens

strains was 0.5–32 mg/L. Given the differences in bacterial

growth under in vitro and in vivo conditions, the MIC in MH

broth and ileal content were detected in this study. The MIC of

IBG against C. perfringensATCC13124 in anMH broth and ileal

content was 2 and 16 mg/L, respectively. In vitro antibacterial

effects of IBG under different conditions were quite different.

Therefore, using the MIC in ileal content is more appropriate

when calculating the PK/PD index of AUC0−24 h/MIC.

Based on the PK results, the absorption and distribution of

IBG in the intestine of broilers were rapid following oral gavage.
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FIGURE 5

Mechanism of IBG against C. perfringens. (A) Increased permeability of the inner membrane of C. perfringens ATCC13124 treated with IBG

(0–16 mg/L) for 30min. (B) IBG dissipates membrane potential of C. perfringens ATCC13124. (C) Disruption of PMF with increased IBG by

monitoring the fluorescence intensity of BCECF-AM-probed C. perfringens cells. (D) Decreased levels of intracellular ATP in C. perfringens

ATCC13124 after treatment with IBG. All data are presented as mean ± SD, and the significant di�erence was determined by non-parametric

one-way ANOVA (**p < 0.01, ***p < 0.001).

Therefore, IBG can be used to treat intestinal bacterial infections.

Previous PK/PD studies mostly focused on the integration of

PK and the serum or plasma of PD parameters to indicate

the relationship between drug time-course and curative effect

(39, 40). Taking the intestine as the target organ, the plasma

concentration of oral non-absorbable drugs such as colistin is

negligible, which cannot provide an effective quantification of

the gastrointestinal antibacterial effect (41). In this investigation,

we described the PK of IBG in C. perfringens-infected broiler

ileal content for PK/PD investigations. The concentration of

IBG in ileal content increased gradually after gavage, and then

decreased rapidly with the transportation of chyme, which was

similar to the pharmacokinetic characteristics of other oral non-

absorbable drugs (24). Thus, we used intragastric administration

once every 12 h for in vivo PD study.

PK-PD analysis has become an important tool for

formulating rational dosage regimens and preventing the

emergence of antimicrobial drug resistance (42). In this study,

the PK/PD index of AUC0−24h/MIC (R2 > 0.9542) had a

strong correlation with antibacterial activity in the intestinal

infection model. The AUC0−24h/MIC targets required to

achieve bacteriostatic, bactericidal, and virtual eradication effect

were 4.00, 240.74, and 476.98 h, respectively. According to

the dosage equation, the dose regimen could be calculated. In

this study, the MIC of C. perfringens isolate was 2 mg/L. For

dosage calculation, bioavailability considered because of the

extravascular route of administration, and Cl/F in ileal content

was 0.03 ± 0.02 L/kg·h. fu was not required for using PD data

generated in the small intestine (20). For the treatment of C.

perfringens with MIC ≤ 2 mg/L, the dose of IBG for therapeutic
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and elimination of C. perfringens was 12.98 and 25.71 mg/kg

repeated every 12 h, respectively.

This study was the first to demonstrate the antibacterial

activity of IBG against C. perfringens in vitro and in vivo and

then determine the AUC0−24h/MIC targets in the intestine

of broilers, which were simulated using an Imax model. In

addition, IBG displayed a potent antimicrobial activity against

C. perfringens by targeting the cell membrane. The results

demonstrate that IBG has the promising potential to become a

new class of antimicrobials for the treatment of C. perfringens

infections in broilers.
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