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The acceleration of animal disease spread worldwide due to increased animal,

feed, and human movement has driven a growing body of epidemiological

research as well as a deeper interest in human behavioral studies aimed at

understanding their interconnectedness. Biosecurity measures can reduce the

risk of infection, but human risk tolerance can hinder biosecurity investments

and compliance. Humans may learn from hardship and become more risk

averse, but sometimes they instead become more risk tolerant because

they forget negative experiences happened in the past or because they

come to believe they are immune. We represent the complexity of the hog

production system with disease threats, human decision making, and human

risk attitude using an agent-based model. Our objective is to explore the

role of risk tolerant behaviors and the consequences of delayed biosecurity

investments. We set up experiment with Monte Carlo simulations of scenarios

designed with di�erent risk tolerance amongst the swine producers and we

derive distributions and trends of biosecurity and porcine epidemic diarrhea

virus (PEDv) incidence emerging in the system. The output data allowed

us to examine interactions between modes of risk tolerance and timings

of biosecurity response discussing consequences for disease protection in

the production system. The results show that hasty and delayed biosecurity

responses or slow shifts toward a biosecure culture do not guarantee control

of contamination when the disease has already spread in the system. In an

e�ort to support e�ective disease prevention, our model results can inform

policy making to move toward more resilient and healthy production systems.

The modeled dynamics of risk attitude have also the potential to improve

communication strategies for nudging and establishing risk averse behaviors

thereby equipping the production system in case of foreign disease incursions.
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biosecurity, human behavior (activities), risk attitude, swine production systems,
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Introduction

Worldwide, millions of farm animals are exposed to

infectious diseases on a regular basis. Humans have a pivotal

part to play to protect animals and reduce the risk of infection.

The incursion of a foreign animal disease (FAD) into a country

previously free of the disease has the potential for devastating

consequences including not only direct death of animals but

also disease-response actions such as animal depopulation or

movement control zones, market import/export restrictions and

human health threats. For example, the spread of African Swine

Fever (ASF) to countries near the United States has raised

serious concerns in the United States pork industry because of

the virus’s high contagion rate and up to 100% pig mortality (1–

3). The incursion of ASF into the United States would result

in disastrous economic losses and destabilization, and indirect

effects even in the human healthcare sector (4). Knowledge

and awareness of the disease’s pathology and geographic spread

have motivated the United States pork industry as well as

governmental agencies to lay out strategic plans and trainings for

disease prevention and response (3, 5). It is indeed understood

that humans can control the risk of disease spread but, given the

existing variability in human risk perception and behavior, what

does it take for them to control the disease?

Biosecurity protocols targeting bio-exclusion are specifically

designed to guide human decisions on agricultural practices and

protect the production system from animal disease incursions.

Important reasons for continuous support and promotion of

biosecurity practices are that technical skills need to be kept

up to date and also that human dimensions such as personality

and risk attitudes influence decisions on whether to invest

in and comply with biosecurity (6–12). For all the successes

in livestock disease prevention, many problems related to

biosecurity investments and compliance persist (7, 13–15). Some

of these problemsmay be challenging to explore in the real world

because of practical obstacles inherent to the risk of disease

spread. Modeling is therefore a key tool to explore scenarios and

investigate mechanisms acting in a production system that may

hinder or endorse disease control efforts. The goal of this article

is to apply agent-based modeling to disease prevention science

with a research focus on social dynamics that connects human

risk attitudes to decisions on biosecurity. The human role is

particularly interesting because it can alter outcomes expected

from lab-tested biosecurity implementation.

Computational science in the form of agent-based models

(ABM) is instrumental for exploring patterns of disease

spread emerging in complex systems characterized by many

individual decisions, dynamic interactions, stochasticity and

varying environments. Epidemiological models continue to

evolve thanks both to emerging analytic tools and near real-

time data collection (16–22). To our knowledge, however,

the majority of current epidemiological models rarely include

dynamics of risk attitude, its effects on individual responses

to disease presence and adaptive behaviors. An example of

the importance of human behavior is given by Nicolas et al.

(23) where transmission patterns of infectious diseases were

clearly connected to cultural events as well as to human and

animal seasonal movements. Social-ecological system studies

offer insights into understanding human risk attitude, changing

risk perceptions and consequent actions for disease prevention

or response. Over the course of several years, we have been

tackling these questions with a complementary set of research

tools (24) applied to understanding the impacts of risk attitudes

on the spread of porcine epidemic diarrhea virus (PEDv). In

this paper, we investigate via a series of simulated scenarios

the effect of risk tolerance on behaviors that influence disease

control. We pay particular attention to the role played by timing

of biosecurity interventions as producer agents learn more risk

averse behaviors while disease spreads in the system.

First diagnosed in the United States in the spring of 2013,

PEDv spread quickly to 13 states in <2 months (25). The

causative virus is highly infectious and pathogenic with a brief

incubation period of about 2 days and ranging between 1 and

8 days (26). The virus causes vomiting, severe watery diarrhea

and dehydration, and it affects pigs of all ages (27, 28). PEDv is

a coronavirus (family: coronoaviridae) with infectivity resulting

from a small infectious dose (28, 29). Among nursing piglets

the infection spreads rapidly with almost a 100% death loss.

Little death has been observed in weaned and older pigs, but

there is morbidity, suffering and visible weight loss. Adults

become immune, temporarily, after recovery. PEDv can survive

in manure and in animal feed (30, 31) with cold temperature

increasing its survival (32). It can be transmitted via both

direct and indirect contact, especially through the fecal-oral

route. Indirect transmission can occur via contaminated fomites

including farm clothing (32), feed (31, 33–35), and transport

trailers (36, 37). Airborne PEDv is another transmission

mechanism that occurs via the fecal-nasal route from pig to

pig or via aerosolized particles that move from farm to farm

(28, 38). Multiple transmission routes, including with feed,

made it particularly challenging to control PED with traditional

biosecurity practices.

PED is among the most devastating viral diseases of swine in

the United States and the world, leading to significant financial

concerns for the pork industry (39–43). The large losses caused

by PED can be significantly reduced with biosecurity strategies

that control the virus in the different nodes of the production

chain (swine production sites, feedmills, meat processing plants)

as well as during the movement of animals and products (42).

Producers can invest in and implement biosecurity measures

with the aim to control or eradicate PED virus infection.

Some examples of biosecurity used in a production facility are

setting a line of separation, hot water cleaning with detergent,

disinfecting, quarantine of animals and products, heating and

drying vehicles, removing manure thoroughly, removing dead

animals, disinfection of personnel and equipment, and keeping
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visitor logs (44–46). When we reflect on who is engaged in

these procedures, we understand that, while disease contagion

is clearly linked to the epidemiological character of a disease,

humans control transmission with their behaviors and activities.

This study is part of a wider program that is focused

on developing methods to understand underlying human-

behavioral processes that influence the efficacy of biosecurity

during a disease outbreak in an animal production system. This

paper presents an agent-based model (ABM) which represents

a swine production system, designed to capture behavioral

aspects associated with decision-making in a context of animal-

disease risk. Decision-making metrics were parameterized using

information derived from experimental games. We illustrate the

potential of the approach combining ABM and experimental

games with PEDv spreading within a swine production system.

We account for both epidemiological and human-related risk

factors that affect biosecurity practices and consequent disease

incidence. Building on previously published research and

modeling efforts (47, 48), we present improvements in several

aspects of the ABM that, we believe, make it more realistic

and able to provide new insights. These improvements are

guided by developments in experimental games that provide

observations on how human decision-making affects biosecurity

investments and compliance as well as on changes in risk

perception in the participants (8, 10–12, 24, 49, 50). In general,

higher perception of disease risk shifts behavior toward more

biosecurity investments and higher biosecurity compliance (49,

51). Although it may appear self-evident that disease incidence

should increase as the population comprises more risk tolerant

individuals, this argument ignores potential complex dynamics

arising from risk behavioral changes during a disease outbreak.

The overall objectives of this work are to: (1) explore the role

of risk tolerant behaviors on system-level biosecurity and disease

incidence, and (2) conduct an evaluation of the consequences

of delayed biosecurity investments on disease control. We are

interested in answering three questions:

• If we initialize the ABM with a risk tolerant population of

swine producers rather than a risk naïve (calibrated model

set up) population, how does disease incidence evolve after

a breakout?

• If we model biosecurity investment at increasingly

higher levels of tolerance (delayed investments), do we

observe a tolerance scenario where percolations of disease

in the system (pandemics) become the majority of

simulation outcomes?

• How important is learning risk-aversion to counteracting

initial conditions of risk tolerance?

The idea for these questions came from conversations

with veterinarians in our advisory team who remembered

the 2013 PEDv outbreak in the United States and observed

first hand that the time it took for the system to upgrade

their biosecurity caused high disease-transmission rates and

production losses for about 2 years. We simulate this situation of

low preparedness and delayed biosecurity response by encoding

risk tolerant behaviors. The results will contribute reflections on

the importance of timing biosecurity response and can inform

design of biosecurity policies.

Methods

Our model links biosecurity—investment and compliance—

to infection dynamics at two different scales, within networks

of production premises and in individual premises (Figure 1).

Note that in the paper, we use the term hog producer agent,

hog producer and production premises interchangeably. The

willingness of a producer agent to invest in biosecurity is based

on network dynamics. Each producer is part of a network of

premises overseen by a veterinarian who communicates the

level of infection in the network. A producer decides whether

or not to invest in biosecurity depending on the perceived

risk of infection when the veterinarian sends information.

Biosecurity compliance is based instead on what happens at

the scale of a premises and it is set to decline with time

while the premises is disease free, but it is set to the premises’

maximum biosecurity capacity as soon as the premises becomes

symptomatic of disease.

Model architecture

In this section, we provide an overview of the model

architecture and functioning. More details can be found in the

ODD + D document in the Supplementary material. The ABM

was developed in the AnyLogic software (https://www.anylogic.

com) with the code written in Java (https://www.oracle.com/

technetwork/java/index.html). Themodel architecture simulates

a swine production system with agents representing production

premises, feed mills and slaughter plants. The system simulated

for this study mirrors the density, operation types and sizes of

production units found in North Carolina with data provided

by the Farm Location and Agricultural Production Simulator

(FLAPS) tool, which draws from the 2012 Census of Agriculture

and aerial photography (52). This is a region in which swine are

intensively raised. The ABM production system has the six types

of producer agents found in United States swine production

chain: farrow-to-wean, wean-to-feeder, feeder-to-finish, farrow-

to-finish, wean-to-finish, and feeder-to-finish. Networks are

built with producer agents and service area agents (feed mills

and slaughter plants) trading according to their role in the

industry, and their links have a nearest neighbor structure. These

networks underlie the movement of livestock and feed and

encode the contact patterns between agents that the pathogens

follow as the epidemic spreads.
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FIGURE 1

Infection probability is directly related to biosecurity in the ABM. The biosecurity level of a hog-producer agent in the model depends on its

compliance, willingness of making biosecurity investments and on its risk attitude, which can change with time (learning). Disease infection

feeds back in biosecurity in two ways: biosecurity investments in response to disease vicinity, and full compliance when a premises turns

symptomatic. The implemented learning mechanism is agnostic and therefore independent of simulated disease conditions.

Epidemiology

The ABM epidemiological component simulates disease

transmission via both direct and indirect mechanisms linked to

the movement of animals and feed across networks of agents.

The model does not explicitly model airborne transmission

of PEDv (28). Each agent (hog producer, slaughter plant and

feed mill) has a stochastic state transition model including

Clean (susceptible), Infected subclinical (asymptomatic) and

Infected symptomatic states (Figure 2). Disease transmission

can occur during any agent interaction with probability

functions dependent on three variables: agent’s biosecurity, the

type of network interaction and seasonality. Coefficients were

estimated using expert opinion. The inclusion of a disease

incubation time regulating the transition from the subclinical

to the symptomatic state has been an important addition to

the current ABM epidemiological component compared to

previous versions (47, 48). The incubation period of infectious

diseases is the time from infection to onset of symptoms.

The infected host can be infectious during the incubation

period and therefore the presence of this parameter is directly

relevant for epidemiologic dynamics as well as for prevention

and control. The disease incubation period allows us to model

distinct behaviors during the asymptomatic and symptomatic

states of infection. During the incubation time, a premises

is modeled to operate routinely with in and out exchanges

of pigs and onsite deliveries therefore potentially spreading

disease. After the incubation period, disease symptoms trigger

higher safety and biosecurity protocols such as interruption of

animal movements, and therefore a decrease in the chance of

disease spread.
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FIGURE 2

InfectivityState state chart defining disease states and transitions

for hog producer agents. Each agent starts in the “Clean” state

(no disease) and can transition to the infected state, which is a

composite state consisting of subclinical (asymptomatic) and

symptomatic sub-states. Transitions are regulated by messages

and timeout conditions (2 days between subclinical and

symptomatic, 50 days from Infected symptomatic to

Clean—susceptible). The feed mill and slaughter plant agents

can only be clean or infected.

Human behavior

Experimental gaming data collected by the Social-Ecological

Gaming and Simulation (SEGS) Lab have shown that low

compliance with biosecurity protocols by workers, poor

biosecurity planning by managers or weak biosecurity messages

from the leadership, create vulnerabilities in the production

system leaving it more exposed to biosecurity breaches and

diseases (8–12, 49–51, 53, 54). The experimental games also

allowed us to identify behavioral trends within the game

data, finding three distinct clusters which differ according

to risk attitude (8). Risk attitude can be understood as an

individual’s positive (favorable) or negative (unfavorable)

evaluation of taking risk when there is a disease outbreak.

Risk-averse individuals tend to invest in biosecurity even

when no or few infections are present in the network

(risk of infection almost inexistent). “Opportunists” are

willing to invest in biosecurity as risk arises meaning

that they don’t invest in biosecurity when perceived risk

is low but begin to invest more heavily when risk is

high. Finally, risk-tolerant are hardly willing to invest in

biosecurity unless the epidemic environment is perceived

as extremely dangerous. Consistent with these results,

our ABM was built on the assumption that biosecurity

compliance and investments can lead to improvements in

both animal health and production. We developed three

main mechanisms in the model that modulate how agents’

risk attitudes and decision heuristics influence biosecurity:

biosecurity investments, biosecurity compliance and risk

attitude learning.

Producer agents can choose whether or not to invest in

biosecurity based on disease status updates (number of infected

premises in the network) sent by their veterinarian agent.

Specifically, each agent’s probability of investing in additional

biosecurity is governed by a logistic function and depends

on both the number of infected farms within its veterinarian

network and the agent’s risk attitude. These heuristics are based

on data collected by SEGS showing that as infections on nearby

farms increase, managers will become more likely to invest in

biosecurity, even if it means taking a financial hit up front

(8, 51).

Biosecurity compliance is modeled based on the

phenomenon of psychological distancing whereby the longer

in the past an event occurred, the less likely it is to be a salient

decision factor (55–57). Experimental games showed that

compliance with biosecurity protocols on the part of farm

employees tends to fall off the longer it has been since the farm

experienced an infection event (9, 49). In the ABM, we encoded

this phenomenon with a linear decrease in biosecurity over

time for as long as a producer is not symptomatic, and when a

producer enters the symptomatic state the biosecurity decline

is suspended.

The producer agents can change their initial risk-attitude

over the course of a simulation in the current ABM,

while in previous versions, hog producers had fixed risk

attitudes. Risk attitude changes are encoded with an agnostic

learning process meaning the risk-attitude shifts were derived

statistically from experimental games and assigned to each

ABM agent at model start. The learning is not generated

contextually in the simulation as a response to interactions

with the model environment. The decision to add this

human behavioral mechanism as an agnostic learning reflects

our awareness of the complexity of potential drivers behind

risk-attitude changes. We know from literature and our

experimental-game results that humans can change their

response to risk, adapting it to what they experience and the

information they receive (58, 59). Risk-attitude may change

depending, for example, on combined effects of previous

disease experiences, frequency of disease occurrence, work

role, personal investment and responsibility with disease

handling. For instance, a producer who has successfully

dealt with disease in the past might learn that disease is
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not such a risk and become more risk tolerant in the

future. Our experimental game emulated the biosecurity

investment decision making process, allowing participants to

react to various outbreak scenarios by choosing whether or

not to invest in biosecurity to mitigate the probability of

infection (8, 51). Using a large sample of online participants,

we quantified distributions of behavioral risk with respect

to information regarding disease incidence and biosecurity

protection across a simulated supply chain. This also allowed

us to assess how our participants transition to more or less

risky behaviors throughout their simulated experiences. These

distributions of observed risk attitudes and their behavioral

trajectories were then embedded within the design of our

model agents.

Individual model simulations

A simulation experiment is devised to examine the agents

over time in order to explore the effect of animal and feed

movement and individual risk attitudes on the disease spread.

Upon initialization, each individual agent is assigned a role in

the production chain (hog production premises, feed mill or

slaughter plant) and in the case of hog producer premises agent,

a unique risk attitude (averse, opportunist, or tolerant) and a

risk-attitude learning rule of either remaining in the same risk

group or moving to a different one. Model simulations are run

on a daily step. A simulation starts with an initializing phase of

1,610 days (232 weeks) after which a disease outbreak is started

and the simulation continues for a total of 2,982 days (196

weeks) producing data for analyses. Thus, simulation outputs

match the number of weeks from the observed dataset (1 June,

2014 to 25 February, 2018), which was published by the United

States Department of Agriculture (Swine Enteric Coronavirus

Disease Situation report—March 2018, http://www.aphis.usda.

gov/animal-health/secd). The output variables were measures of

disease and biosecurity.

Model analyses

Our analysis followed three steps: first the calibration

the ABM, then a sensitivity analysis and finally experiments

with risk-tolerance scenarios related to our research questions.

The simulations for these model analyses were conducted

in AnyLogic. Experimental scenarios for both the sensitivity

analysis and risk-tolerance analysis consisted of Monte Carlo

(MC) simulations with 500 replicates with different random

seeds. MC experiments output weekly time series of three

variables of interest, disease incidence, number of biosecurity

investments and average biosecurity at the system level. The

simulated data were collected and exported to files for statistical

analysis and visualization.

We processed output data using R (60) and R Studio (61).

We analyzed the variables’ time series as well as summary

variables such total incidence, total biosecurity investments and

average biosecurity over the simulation time. The summary

variables were calculated as the sum over a time series in the

case of disease incidence and biosecurity investments and as the

average across a time series in the case of average biosecurity.

We compared variables’ distributions across scenarios using

non-parametric tests because the data did not meet either the

assumption of normality (Shapiro-Wilk test) or equal variances

(Brown-Forsythe test and Fligner-Killeen test). A pairwise

comparison with the two-sample Kolmogorov-Smirnov test

evaluated differences across scenarios for these output variables

and box-plots were used to display outputs. For the risk-

tolerance analysis, we also calculated linear regression models

on the time series of incidence fitting separately each MC

replicate for every scenario. We compared the distributions

of regression slopes in the same way as we compared the

other output variables to test whether the disease decreased

(negative regression slope) or not in the system over the

simulated time.

Calibration

We calibrated the ABM by matching the weekly incidence

from the modeled system and the observed reality, so that

the simulation can be closer to the actual case. The analysis

was performed in the AnyLogic software environment using

a built-in OptQuest genetic algorithm to minimize the Root

Mean Square Error (RMSE) between the modeled and observed

incidence over the historical period 05/31/2014 to 02/25/2018.

By calibration, we determined four model parameters which

control human behavior and about which we lacked data:

the increase of biosecurity for each investment, the rate of

biosecurity decline due to lack of compliance (psychological

distancing), relative difference in the number of infected agents

necessary to trigger a biosecurity investment for the three

risk attitude groups, and the minimum time lapse allowed

between biosecurity investments. We proceeded by a first

calibration with larger ranges of search and then narrowed

those ranges around the optimized parameter values for a more

refined calibration. Each calibration scenario was run with

100 replicates.

Sensitivity analysis

With the sensitivity analysis, we wished to understand the

model behavior in response to the variation of four model

parameters directly related to disease incidence (Table 1). We

used the calibrated model as reference and tested conditional

variability in incidence by varying one parameter at a time

keeping the others at baseline values. No interactions between

parameters were tested.
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TABLE 1 Variables used to test model sensitivity.

Parameter Tested parameter values

Biosecurity increase at investment time 0.01 0.3 0.6 0.9

Biosecurity compliance—decrease rate (1biosecurity/week) 0 −0.001 –0.005 –0.01

Disease subclinical incubation time (days) 0 2 7 14 21

Initial infections: Hog farm; feed mill; slaughter plant infections 3; 1; 0 15; 5; 0 30; 10; 0 60; 20; 0

In italic bold are the values of the baseline model obtained from the calibration and used as reference for the analysis. Variables were varied one at a time keeping all the others at the

baseline value. Each table cell represents therefore a sensitivity scenario run independently with 500 replicates.

TABLE 2 Summary table of the three experiments run to test e�ects of increased risk tolerance on simulated disease spread in a hog production

system.

Experiment

Scenario variables Initial risk attitude
proportions

Risk tolerance: x0 center tolerant
and x0 center opportunist

Risk attitude
learning

1: Naïve vs. tolerant population Varied:

- Naïve: 33.3% averse, 33.3%

opportunist, and 33.3%

tolerant.

- Tolerant: 0% averse, 50%

opportunist, and 50% tolerant.

Fixed:

x0 tolerant= 3.36

x0 opportunist= 1.75

Fixed:

Learning mechanism ON

2: Risk tolerance increase (x0) Fixed:

Tolerant: 0% averse, 50%

opportunist, and 50% tolerant.

Varied:

See Table 3

Fixed:

Learning mechanism ON

3: Risk-attitude learning vs. no-learning Fixed:

Tolerant: 0% averse, 50%

opportunist, and 50% tolerant.

Varied:

Three combined cases from Table 3:

1. x0 tolerant= 3.36;

2. x0 opportunist= 1.75

3. x0 tolerant= 12.11, x0 opportunist= 6.125

x0 tolerant= 20.86, x0 opportunist= 10.5

Varied:

- Learning mechanism ON

- Learning mechanism OFF

Risk tolerance scenario experiments

The potential for widespread epidemics, delayed biosecurity

protection and unpredictability of disease spread accompanying

risk tolerance were explored via a series of simulation

experiments. We were interested in examining a simulated

producer population that reflected conditions of relatively

high-risk tolerance in the system. The decision followed

from conversations with veterinarians who witnessed the PED

outbreak and became aware that producers were not ready with

the appropriate biosecurity to face the unexpected and virulent

disease. We set up three experiments to analyze incidence and

biosecurity in simulated systems and we implemented three

ABMs where we varied different model parameters and/or

mechanisms that control risk behavior (Tables 2, 3):

1. Experiment 1: We compared the baseline system with an

initial (naïve) hog producer agent population of 33% averse,

33% opportunist, 33% tolerant to a more risk tolerant system

with an initial population of 0% averse, 50% risk opportunist,

and 50% risk tolerant. All the simulations were run with the

risk-attitude learningmechanism on. The ABM is expected to

provide an estimate of the change in disease incidence related

to different initial conditions.

2. Experiment 2: Initializing the model with a more tolerant

population (scenario 2 of experiment 1), we varied the

parameter x0, which represents the number of infected

producer agents (infected hog facilities) needed to trigger an

investment in biosecurity with a probability of 0.5. In a set of

11 scenarios, the parameter x0 is varied from 3.36 to 20.86 in

increments of 1.75 for both tolerant and opportunist and is

fixed at 0.14 for averse agents (Table 3). Despite its meaning,

the x0 values are not integer numbers because they are

rescaled for the model where they are set through an ancillary

parameter linked to the probability function of biosecurity

investment (see ODD + D). All the simulations were run

with the risk-attitude learning mechanism on. This ABM

is expected to estimate the effects of delaying biosecurity

investments due to risk tolerance.

3. Experiment 3: Building on experiment 1 and 2, we compared

the effects of the presence and the absence of the risk-attitude

learning mechanism. We selected scenarios 1, 6, and 11 from

experiment 2 (Table 3) with low, intermediate and high x0

values, respectively, and initialized the model with a producer

agent population of 50% tolerant and 50% opportunistic.

In each of the previous experiments, the ABM with the
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TABLE 3 Values of x0 used for the experiment scenarios.

Scenario x0 center tolerant x0 center opportunist Learning mechanism Old scenario name

Baseline 3.36 1.75 Yes

1 3.36 1.75 Yes NI048

1 NL 3.36 1.75 No

2 5.11 2.625 Yes NI073

3 6.86 3.5 Yes NI098

4 8.61 4.375 Yes NI0123

5 10.36 5.25 Yes NI0148

6 12.11 6.125 Yes NI0173

6 NL 12.11 6.125 No

7 13.86 7 Yes NI0198

8 15.61 7.875 Yes NI0223

9 17.36 8.75 Yes NI0248

10 19.11 9.625 Yes NI0273

11 20.86 10.5 Yes NI0298

11 NL 20.86 10.5 No

These values increase in bins of 1.75 and correspond to the number of infected producers within a producer agent network that will trigger an investment in biosecurity with a probability

of 0.5. All scenarios have a producer agent population composed by 0% averse, 50% opportunist and 50% tolerant except for the baseline scenario that has an evenly distributed population

with 1/3 of producers in each risk group.

TABLE 4 Initial and final proportion of producers in each risk attitude group when the risk-attitude learning mechanism is turned on.

Time phase

Risk attitude group Averse Opportunist Tolerant

Initial population 0 50% 50%

Final population 47% 30% 23%

risk-attitude learning mechanism was set to lead to a final

population with 47% risk averse, 30% opportunist, and 23%

tolerant (Table 4). When the learning mechanism is off, the

population keeps the initial risk attitude distribution for the

entire simulation time. This ABM is expected to provide

information on the effect of the opposing force provided

by risk-attitude learning against the dynamics triggered by

tolerant behaviors.

Results

Calibration

The calibration of the ABM optimized all four parameters

with a minimum RMSE of 3.275 in incidence units (Table 5).

This means that modeled incidence matched with ≤14% error

the observed incidence, which ranges between 0 and 23 weekly

new infection cases. The parameter combination was carefully

cross-checked by running several calibration experiments with

different starting parameter values and ranges. The search

process yielded other possible parameter assignments with

values close to the selected ones but higher RMSE. The calibrated

model reproduces the seasonal variability and the negative trend

of the observed data but on average, it misses the high winter

peaks in incidence (Figure 3).

Sensitivity analysis

Figure 4 displays the sensitivity analysis outputs and can

be read as follows. The incidence distribution for the baseline

model parameterization can be considered as reference and

the other incidence distributions as outputs from different

parameterization scenarios. We observed that changes in

incidence are significant and follow the directions expected in

the real-world observations. Only in two cases (Figures 4B, C)

a change from the baseline to lower parameter values leads to

the correct direction of incidence change, but this change is not

significant. In the case of biosecurity compliance (Figure 4B),

this means that removing the mechanism of psychological

distancing (compliance decrease rate = 0) will not significantly

change incidence totals compared to those obtained from the

baseline model with a compliance decrease rate = −0.001.
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However, more negative decreased rates of compliance do have

significant increasing effects on incidence. In the case of disease

subclinical incubation time, 2 vs. 0 days does not significantly

influence the total incidence when the model is initialized with

the baseline parameterization (Figure 4C). However, incubation

times ≥ 7 days lead to significant increase in incidence. In

summary, we confirmed that the disease mechanisms built in the

model and controlled by these four parameters follow realistic

behaviors, and we can trust the underlying model mechanisms

controlled by these parameters.

Risk tolerance scenario analysis

Using the ABM, three experiments were conducted, which

systematically swept across treatments varying three parameters

TABLE 5 Model calibration results: Optimized values for four

parameter values linked to human behavior.

Calibration parameter Best parameter
combination

Biosecurity increase at investment time 0.3

Biosecurity investment—min. time interval

(days)

28

Relative shift of investment probability across

risk groups

0.07

Biosecurity compliance—decrease rate −0.001

Objective value based on RMSE metric 3.275

The last row reports the root mean square error (RMSE) for the optimized

parameter combination.

that control risk tolerance: the relative proportion of producer

agents among the risk-attitude groups, the number of disease

cases necessary for a producer to make a biosecurity investment

and the ability of producers to change their risk attitude (risk-

attitude learning). We summarize the results in the graphs

displayed in Figures 5–7. The time series in these figures

(panels E, G, and H) report the lines for the averages across

the 500 Monte Carlo replicates and the shaded areas show

the standard deviations. Our simulated data show that the

system’s epidemiological resilience can be significantly affected

by changes in these parameters.

From Experiment 1, we learn that an initial absence of

averse producers along with a higher number of tolerant

and opportunist producers in scenario 1 cause a significant

increase in the total incidence compared to the baseline scenario

(Figures 5A, E). In the two scenarios, incidence decreases with

the same slope, but this decrease takes longer in the more

tolerant system. This outcome can be related to the lower

average level of biosecurity in the more tolerant scenario due in

part to fewer biosecurity investments (Figures 5C, D). Although

the number of biosecurity investments toward the end of the

simulation time in the two scenarios tends to converge, the

biosecurity effect on disease is delayed in the tolerant scenario

(Figures 5G, H). In summary, a change from a model initiated

with a population of hog producers evenly distributed across

the risk attitude groups (33% averse, 33% opportunist, and 33%

tolerant) to a model initiated with a population of hog producers

more tolerant and unprepared to a new disease (50% opportunist

and 50% tolerant) means lowering the initial biosecurity in

the system and that leads to longer times to boost biosecurity

defenses and control infection.

FIGURE 3

Weekly time series of disease incidence. Data related to the calibrated model outputs are shown in black: average modeled disease incidence

(non-linear black line), its standard deviation generated across 100 iterations (gray shades) and the linear trend with an average slope of −0.017

± 0.017. The green line depicts the observed incidence data for North Carolina with a linear trend superimposed of slope −0.021.
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FIGURE 4

Results from sensitivity analysis. Each table row represents a sensitivity experiment where one model parameter was varied across a range of

values (scenarios) as indicated in the left column. Capital letters distinguish the experiments: (A) for the parameter “Biosecurity increase at

investment time”; (B) for “Biosecurity compliance”; (C) for “Disease subclinical incubation time” and; (D) for “Initial number of infections”. Box

plots display the distributions of disease incidence totals with letters indicating significance from the pairwise distribution comparisons of

scenarios. The baseline was used as reference scenario. Distributions not sharing any letter are di�erent by the two-sample

Kolmogorov-Smirnov test at the 5% level of significance.
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FIGURE 5

Outputs from experiment 1 comparing the system with the baseline population (33% averse, 33% opportunist, 33% tolerant) to a system with a

more risk tolerant population (0% averse, 50% opportunist, 50% tolerant). The top row displays the box plots of system variables with the x axis

showing the scenarios and the y axis reporting values for disease incidence totals (A), incidence slope from time series (B), total number of

biosecurity investments (C) and average system biosecurity (D). Letters on top of box plots report results from pairwise distribution comparisons

of baseline against the tolerant scenario. Distribution not sharing any letter are di�erent by the two-sample Kolmogorov-Smirnov test at the 5%

level of significance. The standard deviation value of each distribution is printed below the box-plot x axis. The bottom row of the figure (E–H)

displays the time series with weekly frequency for the variables; the colored shades show the variability provided by the Monte Carlo replicates.

Panel (F) zooms into the average weekly incidence lines of panel (E) and includes the linear trends.

FIGURE 6

Outputs from experiment 2 comparing the system across a gradient of increasing tolerance with scenario 1 having the lowest tolerance and

scenario 11 the highest. This is done by increasing the parameter x0, which represents the threshold in number of infected premises in the

neighborhood of a producer before triggering the producer’s investment in biosecurity. The top row displays the box plots of system variables (y

axis): disease incidence totals (A), incidence slope from time series (B), total number of biosecurity investments (C), and average system

biosecurity (D). The x axis reports the di�erent scenarios. We applied a Bonferroni adjustment and test each hypothesis at level alpha = 0.0045.

Letters on top of the box plots report results from pairwise distribution comparisons across scenarios. Distribution not sharing any letter are

di�erent by the two-sample Kolmogorov-Smirnov test at the alpha level of significance. The standard deviation value of each distribution is

printed below the box-plot x axis. The bottom row of the figure (E–H) displays time series with weekly frequency for the variables. The colored

shades show the variability provided by the Monte Carlo replicates. Panel (F) zooms into the average weekly incidence lines of panel (E) and

includes the linear trends.
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FIGURE 7

Outputs from experiment 3 comparing the system with and without risk-attitude learning mechanism for three di�erent scenarios of

experiment 2 (1, 6, and 11). The top row displays the box plots of system variables (y axis): disease incidence totals (A), incidence slope from time

series (B), total number of biosecurity investments (C), and average system biosecurity (D). The x axis reports the di�erent scenarios. We applied

a Bonferroni adjustment and test each hypothesis at level alpha = 0.0083. Letters on top of the box plots report results from pairwise distribution

comparisons across scenarios. Distribution not sharing any letter are di�erent by the two-sample Kolmogorov-Smirnov test at the alpha level of

significance. The standard deviation value of each distribution is printed below the box-plot x axis. The bottom row of the figure (E–H) displays

the time series with weekly frequency for the variables. The colored shades show the variability provided by the Monte Carlo replicates. Panel (F)

zooms into the average weekly incidence lines of panel (E) and includes the linear trends.

Experiment 2 starts with the more tolerant risk attitude

distribution from Experiment 1 and varies the trigger point

x0 for biosecurity investment. Results (Figure 6) indicate that

increasing tolerance to the number of infections needed to

trigger biosecurity investments leads to two main outcomes: a

significant increase in disease incidence and an overall increase

in incidence variability. Higher variability means that the system

becomes more unpredictable and susceptible to experience

widespread epidemics with the introduction of a new disease

(Figures 6A, E). This experiment reveals a switch in the epidemic

patterns around scenarios 5 and 6, as demonstrated by the

median regression slopes (Figures 6B, F) transitioning from

negative to positive values:

• In scenarios numbers ≤ 6, the median of the incidence

regression slope is <0, meaning a reduction of disease

incidence over the simulation time. We learn that values

of the parameter x0 set to ≤12 neighbor infections for

risk tolerant agents, and ≤6 infections for opportunist

agents are necessary for negative slopes (median values).

According to the medians, higher x0 values delay but do

not prevent control of disease in this set of scenarios. These

threshold values of x0 are not sufficient however to always

assure disease control and cases of pandemics (positive

slopes) can still happen as shown by the variability across

Monte Carlo replicates (Figures 6A, B, E).

• In scenarios numbers > 6, the median of the regression

slope is ≥0, meaning no decrease of incidence over the

simulation time. Positive slopes indicate that the disease

incidence cannot be controlled and may increase over the

simulation time. Slopes close to zero are still an indication

that the disease does not subside, remaining at initial levels,

with seasonal variations, despite investments in biosecurity

made by agents. In these scenarios, the higher values of the

parameter x0 cause hog producers to react relatively slowly

to disease presence and significantly restrain the chance

to control an outbreak. The graphs highlight a rushed

increase in biosecurity investments toward the end of the

simulation time (Figure 6G), but it is unsuccessful at raising

biosecurity to levels that contain disease (Figures 6A, H).

The counteraction of risk-attitude learning in rising risk

aversion in the system is not strong enough to prevent large

percolations of disease as proved by experiment 3.

Experiment 3 shows that removing risk-attitude learning

does not significantly change the total incidence for any

scenario pair despite significant differences in total biosecurity

investments and average biosecurity across scenarios

(Figures 7A, C, D). It also does not significantly affect

slopes except for the paired scenarios 11 and 11NL where

learning produces flat median incidence trends while its absence

positive ones (Figures 7B, F). This means that the risk attitude as
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parameterized in the ABM is generally not able to reverse trends

set by initial conditions (Figures 7A, B, E). A notable outcome

of this experiment is that the total incidence, slope and average

system biosecurity for scenario 6NL and 11 are not significantly

different despite higher investments in biosecurity in scenario

11. This means that learning risk aversion in a system with

high risk tolerance to disease vicinity (scenario 11) reduces the

impact of disease to the level of a system that does not learn

risk aversion but starts with an intrinsic lower risk tolerance

for disease (lower x0, scenario 6NL). However, the same is

not true between scenarios 6 and 1NL: the low values of x0 in

scenario 1 protects the system from disease thanks to relatively

quick investments in biosecurity and this is significantly more

effective than learning, which takes time and therefore delays its

benefits for advancing biosecurity (Figures 7B, F). These results

highlight the strong non-linearity of this modeled system.

Discussion

The PEDv epidemic that began in 2013 provides both

a historic example of multi-year disease exposure and an

opportunity to learn from experience as food animal industries

prepare for potential new FAD in the future. FADs are

a concern because they can lead to instability in people’s

jobs, losses in income and an unsustainable use of economic

resources from both production stakeholders and governmental

entities in charge of stabilizing socio-economic functions.

Recognition of FADs’ negative and far-reaching consequences

has prompted our research and modeling work on biosecurity

and human behavior.

Koliba et al. (24) discuss how micro-level behaviors scale-

up to larger macro-level patterns influencing disease spread

across operational, tactical and strategic levels. Our agent-based

model (ABM) integrates insights from the operational and

tactical levels of analysis to inform a systems-level perspective

accounting for decision making on biosecurity. The operational

level is the farm employee level, which largely concerns

employees’ decisions to put prescribed biosecurity protocols

into action. The tactical level involves managers of a farm

or a farm company with its production network and focuses

on biosecurity investments and implementation of biosecurity

measures. Finally, the strategic level involves decision makers

who have power to influence long-term policies at macro-

scale and are concerned with the complex interaction patterns

between agents across the production chain. The three levels are

interconnected and influence one another’s decisions.

We built our ABM to explore interactions between

epidemiological and human behavioral mechanisms. As a

descriptive and demonstrative model, we used it to illustrate

that patterns of interest can be produced through agent-level

rules and interactions. In particular, the human behavioral

component controlling decisions on biosecurity is shown to

have a critical role in determining the outcomes of a disease

outbreak, which otherwise would remain subject only to

epidemiological rules related to seasonal infection variability.

We found biosecurity interventions activated by risk aversion at

the beginning of a simulated outbreak crucial to prevent long-

term presence of disease or widespread epidemics in the system.

Divergently, slow shifts toward more risk averse positions are

mostly lagging to control disease and reduce the intrinsic

unpredictability of a system left with low biosecurity protection.

The findings from the model experiments help answer our

three research questions and demonstrate that the biosecurity

decisions at the premises level have ramifications for the

protection of the whole production system:

• Question 1: If we start the model with a risk tolerant

rather than a risk naïve population of producers, how does

disease incidence evolve after a breakout? The implications

of experiment 1 are that the initial risk-attitude distribution

in the system affects the evolution of the disease. In our

case, the removal of risk averse producers (compared to

33% averse in the naïve population) reflects the assumption

of a producer population rather unprepared and unaware

of the risk of a new disease. The consequence was higher

incidence but no major pandemics since the population

raised biosecurity quickly enough. This requisite on

biosecurity-response timing is crucial to disease control as

shown by experiment 2 directed by our second question.

• Question 2: If we model biosecurity investment

at increasingly higher levels of tolerance (delayed

investments), do we observe a tolerance scenario where

percolations of disease in the system (pandemics) become

the majority of simulation outcomes? In the scenario

comparisons (Figure 6), we identified a range of x0 values

(10–12 neighboring infections for risk tolerant and 5–6 for

opportunist) that mark a transition from a system capable

of controlling disease to one more prone to major disease

percolations. In real-world situations, these specific x0

values might not apply, but this finding warns us that the

delay of biosecurity implementation can hit a threshold

beyond which disease control becomes severely harder

and pandemics more likely. The model results also point

out an increment in incidence variability associated with

increased tolerance. The implications are that the disease

dynamics in system become more unpredictable and

therefore more difficult to control with biosecurity. We

want to further reflect on this last point by focusing the

attention to the rushed increase in biosecurity investments

toward the end of the simulation time (Figure 6G), which

was unsuccessful at reaching biosecurity levels adequate

for containing disease and preventing pandemics (see

median trends in Figures 6E, F, H). We can compare

this investment behavior to a hasty emergency response

adopted at a point where disease has become so prevalent
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that many producers become aware of risk of infection or

are imposed mandatory biosecurity protocols by policies.

In either case, urgent and hasty investments do not

guarantee immediate disease control.

• Question 3: How important is learning risk aversion to

counteracting initial conditions of risk tolerance? The

data provided an unexpected weak effect of the learning

mechanism on disease dynamics. For delivery of an

effective and immediate response to a disease outbreak,

the learning mechanism is not the one to count on. As

modeled in the ABM, risk-attitude learning is a relatively

slow process that shows its results over the course of years.

We can think of learning as a mechanism that modifies risk

culture and needs more time than mechanisms imposing

quick behavioral changes such as policies. It is however a

critical mechanism necessary in the real world because a

cultural transition based on learned behaviors will prepare

producers to prompt risk averse and biosecure responses.

From the ABM simulations emerged phenomena that

corroborated the importance of human decisions and

demonstrated complex interactions between epidemiological

and human behavioral mechanisms. The present work

highlighted complex behaviors driven by path-dependencies

and non-linear dynamics. Path-dependency happens when

present events and decisions condition the path of later events

or decisions (62). In other words, the evolution of a path-

dependent system is bound to its own history. In Experiment

1 for example, the two different initial distributions of risk

attitudes determine initial decisions on biosecurity investments

(Figure 5G), which govern the system biosecurity and disease

infections, ultimately leading to significantly different paths in

the disease evolution and outcome. Experiment 2 demonstrated

a non-linear response of disease to a linear increase of risk

tolerance. An increase in disease tolerance within relatively

less risk tolerant populations triggered a higher biosecurity

response, a higher increase in disease incidence and greater

loss in disease control capacity (Figure 6, scenarios 1–6) than

the same increase in disease tolerance applied in a population

initially characterized by higher tolerance (Figure 6, scenarios

6–11). Figure 6 shows this non-linear saturation effect that

reflects an increasingly reduced capacity of disease to spread

in the system and trigger more biosecurity investments. The

system approaches its biosecurity investment capacity. This

close-to-saturation state does not mean that almost all agents

are infected but rather that key nodes of disease transfer in the

networks are infected and have already made the biosecurity

investments allowed by the model rules (48).

Compared to previous ABM versions that advanced studies

on network dynamics and effects of risk-attitude configurations

(47, 48, 63), the current ABM, geared with the risk-

attitude learning mechanism, allowed us to explore deeper

and more complex questions on how diverse, connected and

interdependent local actions have global impacts. Learning takes

place over the duration of the 4-year simulation time in a step-

wise fashion and as such, it can be interpreted as a process

leading to a new risk-attitude culture in the system. Our results

indicated that slowly learning risk aversion is not effective at

counteracting risk tolerant behaviors that are set in a system

where disease is already spreading. However, we believe that this

cultural aspect of biosecurity is important because of its power

to change risk culture over the long term. A biosecure culture,

meaning a collective endorsement of preventive measures, can

contribute to a more expansive sense of what is possible in

the event of a disease incursion and therefore what could be

invested now to be ready in the future. In this context, we

recognize that culture and risk attitude are descriptive labels for

complex mechanisms underlying people’s behaviors. Therefore,

the risk attitude behaviors and learning that we encoded in our

ABM likely encompass a wider spectrum of human decision-

making drivers. For example, hog producers who hardly respond

to disease vicinity with biosecurity might behave so due to

inability to access biosecurity resources or because of absence of

economic means to make biosecurity investments.

Following points raised by An (64), we want to reflect

on limitations of our model. While developing more holistic

versions of the ABM by including human behavior, we have

been incorporating rules based on data from experimental

games but also hypothetical rules based on expert opinion in

places where adequate data did not exist. For example, agents

are infected in a stochastic manner with probabilities that

depend on the type of contacts made between agents and were

estimated based on expert opinion. Calibration-based estimates

have been used to parameterize the model. For example,

three parameters of the probability function controlling the

decision on biosecurity investments were estimated via model

calibration. There are clearly limitations and disadvantages

associated with parameterizing the model with assumptions

and/or calibration-based values as they may not be appropriate.

Agent-based models deal with the study of socio-ecological

systems that can be conceptualized through a set of micro and

macro relationships and rules that leads to a complex internal

ABM architecture. In a calibration setting, it is challenging

to estimate the microscopic (agent-related) parameters directly

from the macroscopic level (system incidence) because the

large number of model parameters can result in a “curse of

dimensionality” that lead to a multiplicity of possible parameter

combinations. We minimized this issue by limiting the number

of calibration-based parameters and used expert opinion to

estimate a subset of parameters. We are therefore aware that

parameterization of behavioral rules in the ABM that we set with

these approaches should be used with caution.

The structure of the animal, feed and veterinarian networks

was built on nearest neighbor metrics. For example, a farrow-

to-wean producer agent will move its weaned pigs within a

nearest-neighbor network of wean-to-feeder or wean-to-finish

producers in the model but in the real world, a production

company might have its premises distributed over large
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geographic areas and beyond neighboring premises. The

modeled network assumption may lend to system emergent

properties that are not fully representative of actual dynamics,

which could include disease spread over larger distances.

As a potential consequence, the disease transmission in our

results is more localized and does not account for infections

brought in and out of state. Nonetheless, we trusted model

patterns based on the rationale that model calibration provided

a parameterization that realized incidence values and a

trend comparable with observations and the model validation

confirmed realistic patterns.

In summary, our work corroborated the view that

epidemiology and psychology need each other and we highlight

three main points learnt from these modeling experiments:

- The initial biosecurity settings in the system play a key role

in determining the evolution of disease spread. An initially

risk tolerant population with low biosecurity preparedness

will lead to prolonged time needed for disease control.

- Delayed biosecurity interventions due to disease tolerance

leave the system vulnerable to unpredictable disease spread

and higher likelihood of widespread epidemics.

- A slow change toward more averse behaviors (cultural

change) does not significantly help disease control once the

disease has spread in the system. However, efforts directed

at creating a risk averse culture are essential to prepare

hog producers (and other stakeholders) with the level of

biosecurity necessary to promptly counteract the incursion

of a potential new disease.

Conclusions and future research

Controlling the emergence, spread, and persistence of

infectious animal diseases is a significant challenge in our

interconnected world. Managing animal diseases requires

stakeholders of the production chain as well as policy makers

to adopt a perspective that adequately represents the complex

causal relationships between disease transmission and human

behavior. Agent-based modeling is a powerful method to study

complex systems such as the animal production chain and

simulate epidemiological and human interactions. This paper

explored questions on the coupled epidemiological-human

behavioral aspects that influence disease control. The results

show that a strong initial response with biosecurity investments

associated with low risk tolerance is more effective than a steady

shift toward a more risk averse culture in the face of a new

infectious disease such as PEDv. A clear danger for a systemwith

low biosecurity levels is that disease dynamics become highly

variable and unpredictable. This means that delayed biosecurity

interventions, even if rapidly implemented, might not prevent

occurrence of widespread epidemics.

Our ABM is still under active development, and as such

there are a number of features we intend to implement. We

are working to link agents’ biosecurity decision-making to

a budgetary/economic sub-model, since, in the real world, a

hog producer could not implement a new biosecurity protocol

without sufficient cash or capital on hand for a bank loan.

We also will scale up the model to include system dynamics

across the entire United States. It is vital that both the scientific

community and the industry embrace and adopt innovative

and advanced research methods to identify the best directions

for research, practice, and policy to support the resilience of

food animal production in the face of emerging and exotic

disease threats. Disease transmission takes place within social-

ecological systems and therefore, aspects of human behavior

are an essential construct in modeling work for understanding

disease dynamics. Their incorporation in our agent-basedmodel

lead to robust insights on how personality and variability in

behavior can lead to very different outbreak signatures that

require attentive interventions and preparedness plans.
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