
PERSPECTIVE
published: 11 February 2022

doi: 10.3389/fvets.2022.803093

Frontiers in Veterinary Science | www.frontiersin.org 1 February 2022 | Volume 9 | Article 803093

Edited by:

Laura Bongiovanni,

Utrecht University, Netherlands

Reviewed by:

Ellen Sparger,

University of California, Davis,

United States

Steven Dow,

Colorado State University,

United States

*Correspondence:

Federica Cavallo

federica.cavallo@unito.it

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Comparative and Clinical Medicine,

a section of the journal

Frontiers in Veterinary Science

Received: 27 October 2021

Accepted: 10 January 2022

Published: 11 February 2022

Citation:

Tarone L, Giacobino D, Camerino M,

Ferrone S, Buracco P, Cavallo F and

Riccardo F (2022) Canine Melanoma

Immunology and Immunotherapy:

Relevance of Translational Research.

Front. Vet. Sci. 9:803093.

doi: 10.3389/fvets.2022.803093

Canine Melanoma Immunology and
Immunotherapy: Relevance of
Translational Research
Lidia Tarone 1, Davide Giacobino 2, Mariateresa Camerino 2, Soldano Ferrone 3,

Paolo Buracco 2, Federica Cavallo 1*† and Federica Riccardo 1†

1Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin,

Italy, 2Department of Veterinary Sciences, University of Turin, Turin, Italy, 3Department of Surgery, Massachusetts General

Hospital, Harvard Medical School, Boston, MA, United States

In veterinary oncology, canine melanoma is still a fatal disease for which innovative

and long-lasting curative treatments are urgently required. Considering the similarities

between canine and human melanoma and the clinical revolution that immunotherapy

has instigated in the treatment of human melanoma patients, special attention must

be paid to advancements in tumor immunology research in the veterinary field. Herein,

we aim to discuss the most relevant knowledge on the immune landscape of canine

melanoma and the most promising immunotherapeutic approaches under investigation.

Particular attention will be dedicated to anti-cancer vaccination, and, especially, to the

encouraging clinical results that we have obtained with DNA vaccines directed against

chondroitin sulfate proteoglycan 4 (CSPG4), which is an appealing tumor-associated

antigen with a key oncogenic role in both canine and human melanoma. In parallel

with advances in therapeutic options, progress in the identification of easily accessible

biomarkers to improve the diagnosis and the prognosis of melanoma should be sought,

with circulating small extracellular vesicles emerging as strategically relevant players.

Translational advances in melanoma management, whether achieved in the human or

veterinary fields, may drive improvements with mutual clinical benefits for both human

and canine patients; this is where the strength of comparative oncology lies.

Keywords: canine melanoma, immunotherapy, vaccination, CSPG4, comparative oncology

INTRODUCTION

The interplay between the immune system and cancer has been widely investigated for over a
century and has provided the groundwork for the emerging field of research known as immuno-
oncology. In this setting, immunotherapy aims to exploit the immune system to change a patient’s
fate toward cancer eradication and has seen outstanding positive results.

Just like humans, dogs naturally develop a multitude of diseases, including cancer, with six
million of new diagnosis each year in the USA alone (1). Developing over a long-time period in an
intact immune system, complex interactions between a tumor and the immune system can occur
in canine patients, as they do in humans, making cancer cells susceptible to the selective pressure
of spontaneous immunity. The similarities between cancer in dogs and humans, and the recent
success of immunotherapy in human oncology, have increased enthusiasm for applying it to the
treatment of canine cancer. However, advancements in canine medicine are still running behind
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human clinics, and efforts to develop immunotherapies for dogs
are still limited (2). A deeper investigation of the canine immune
system and its response to evolving cancers would speed up the
development and successful application of immunotherapy in
tumor-bearing dogs.

Some of the most relevant comparative aspects of melanoma
immunology and immunotherapy will be discussed in
this perspective.

Finally, despite several in-human studies have already
highlighted the role of small extracellular vesicles (SEVs),
including exosomes (EX), in disease progression and their
potential as biomarkers in liquid biopsies for diagnosis and
therapy, this is a relatively new topic that requires more work
before reaching clinical applicability. At the same time, the
research in veterinary medicine is still at an early stage, although
the potential of SEVs also in this setting is clear (3). As a step
forward in this direction, a mention to preliminary examples
of the potential of SEVs as promising non-invasive diagnostic
and prognostic tools in the melanoma precision veterinary
medicine has been added, with potential implications also for the
human medicine.

CANINE ORAL MALIGNANT MELANOMA

Malignant melanoma is among the most common cancers in
dogs (4, 5). The most diffuse and fatal subtype is oral malignant
melanoma (OMM), which accounts for 30–40% of all canine
oral malignancies (6, 7) and 20.3 cases per 100,000 dogs per
year (4, 5). OMM is characterized by local invasiveness and high
metastatic propensity (6, 8, 9). Up to 74% of OMM rapidly
develop distant metastasis, which are the leading cause of death.
The survival time of OMM-affected dogs is very short being of
about 200 days after diagnosis (8, 10, 11). Surgery is the first-
line treatment of choice for the local control of the tumor and
correct surgical excision plays a fundamental role in the outcome
of the disease (7). It can be flanked by radiotherapy and/or
chemotherapy (12). However, metastatic lesions are generally
resistant to chemotherapy (4).

Thanks to the release of the canine genome (13), the
annotation and deposition of genomic, transcriptomic, and
proteomic data derived from canine neoplastic lesions has
improved the characterization of the molecular foundations of
canine cancers. Although genetic alterations in OMM have not
yet been fully described, the mutation profiles of OMM resemble
UV-independent molecular etiology, which are typical of human
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macrophages; TIGIT, T cell immunoglobulin and ITIM domain; TIM3, T
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non-UV-induced cutaneous, mucosal, and uveal melanomas (4,
14–16). The same MAPK and PI3K/AKT/mTOR pathways have
been found to be activated in OMM and human melanomas,
highlighting the overlap between OMM and specific human
melanoma subtypes molecular signature. These acquisitions
may have an influence on the clinical management of canine
OMM, and the first demonstration is the targeted combination
treatments with specific human MAPK and PI3K/AKT/mTOR
pathway inhibitors that have recently been tested in-vitro in
the canine setting (17). Of note, one of the most frequently
investigated human-melanoma-associated antigens, chondroitin
sulfate proteoglycan (CSPG)4, is expressed by most OMM and
appears to play a relevant role in clinical outcome, as discussed
below (8, 10, 18–20).

Beyond the molecular background, considering the ever
more relevant role of immunotherapy in human melanoma
management, an increased attention should be dedicated to
the immunological aspects of OMM. While the “immune-
phenotyping” of human melanoma has been extensively
characterized (21), less data are available for OMM. This
could slow the development and the translation of effective
immunotherapies to veterinary care. Deeper investigations into
canine melanoma immunology could guide the application of
immunotherapies that have already been approved for use in
humans and the possibility of developing novel strategies that
could see long-lasting applications in both clinical settings.

THE IMMUNE LANDSCAPE OF OMM

TheOMM immunemicroenvironment is still widely unexplored.
Only recently the interplay between OMM and the immune
cells in the tumor microenvironment (TME) has gained
attention (22), while several studies have already documented
the immunogenicity of human melanoma (23), with a dynamic
crosstalk between cells within the TME. Tumor-infiltrating
lymphocytes (TILs) are the histopathological reflection of the
host’s immune response against cancer cells, with the CD3+,
CD4+ and CD8+ TILs having a favorable prognostic role in
overall survival in the human setting (24).

In a recent study conducted on canine samples, themajority of
OMM biopsies were found to be “briskly” infiltrated by different
T-lymphocyte subsets (25). A positive correlation between a high
TIL level, a high percentage of CD8+ T-lymphocytes infiltrating
the tumor and better patient survival was observed, which
implies the importance of TIL characterization for predicting
tumor aggressiveness and prognosis in melanoma-bearing dogs
as well (25).

B cells may also play a relevant part in TIL composition. A
recent retrospective study conducted on tissue samples collected
from canine melanocytic tumors, including the OMM subtype,
revealed that there existed a correlation between higher CD20+

cell infiltration and the risk of metastasis and tumor relapse (22).
Worse survival was observed for dogs whose tumor was more
highly infiltrated by CD20+ cells, which finally indicates the
negative role played by B-lymphocytes in caninemelanomas (22).
As far as humanmelanoma is concerned, contradictory roles have
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been observed for tumor-infiltrating B cells, with both positive
and negative correlations with patient clinical outcome being
suggested (26–30). Tumor localization and the markers used to
detect B cells may be relevant aspects to take into consideration in
explaining the discrepancies. A deeper investigation into the role
of melanoma-infiltrating B cells in canine and human patients
may help in formulating new hypotheses that can be mutually
informative in both veterinary and human clinics.

It is also well known that the activation of immunosuppressive
cell subpopulations, such as regulatory T cells (Tregs), in
human melanoma constitutes an immune-escape mechanism
that facilitates tumor growth and progression (31). Starting from
this point, a number of studies in veterinary medicine have
focused on the characterization of Tregs in canine melanomas
(22, 32, 33). An increase in Tregs has been linked to a higher
hazard of death in dogs, confirming the connection between
Tregs infiltration and worse prognosis (22).

Finally, alterations in peripheral blood leukocytes that mirror
systemic inflammation triggered by cancer have already been
characterized in humanmelanoma patients (34). The neutrophil-
to-lymphocyte ratio (NLR) and the lymphocyte-to-monocyte
ratio (LMR) are prognostic indicators of the evolution of the
disease in humans (35, 36), being low LMR counts linked to
poorer prognosis in several types of cancers, including metastatic
melanoma (37). As such, this aspect is also being investigated in
both hematological and solid canine tumors, and LMR is now
widely accepted as a prognostic indicator of patients’ outcome
(38–41). As well, pre-treatment high LMR has been reported to
be of significant prognostic value in melanoma-bearing dogs that
received anti-PD1 treatment (42), establishing this parameter as
a possible indicator of response to immunotherapy. However,
neither prognostic nor predictive significance has yet been
found for NLR and LMR in a small cohort of canine patients
which received anti-CSPG4 immunotherapy (see below), nor any
correlations to histological/immunohistochemical parameters of
melanoma well-known prognostic factors (43).

Overall, the interest in the contribution of the immune
system in shaping the TME in canine patients is growing. The
identification of common features in the immunology of human
and canine melanoma could help to accelerate the acquisition
of novel information that could be exploited to design more
effective therapeutic interventions for both settings. Nonetheless,
the development of new investigation tools specific for dogs are
required to reach the level of knowledge that has been obtained
in human oncology.

NOVEL IMMUNOTHERAPEUTIC TARGETS
FOR OMM TREATMENT

Many advancements have been made in immunotherapeutic
management of melanoma, especially with the introduction of
immune checkpoint inhibitors (ICIs). Regardless of the still-high
percentage of patients who do not respond to such therapies (44),
ICIs are a true breakthrough in human melanoma treatment,
strikingly improving the prognosis of responder patients. Hence,
veterinary medicine is now shifting attention to the use of ICIs

as a potentially effective systemic treatment also for tumor-
bearing dogs.

The expression of Cytotoxic T lymphocyte associated protein
4 (CTLA-4), Programmed death-1 (PD-1) and of PD-1 ligand-
1 (PD-L1) on canine immune cells and/or cancer cells has
already been investigated and reported (45, 46). Chimeric rat-
dog anti-PD-1 and anti-PD-L1 (45) and “caninized” anti-CTLA-
4 (46) and anti-PD-1 (42, 47) monoclonal antibodies (mAbs)
have been developed. Anti-PD-1 mAbs tested in canine cancer
patients, including OMM cases, exerted a significant effect on
the inhibition of the PD-1/PD-L1 axis in pilot clinical studies
and exhibited remarkable anti-tumor activity, resulting in the
increased survival of treated dogs, compared to conventionally
treated controls (45, 47).

However, no specific ICI therapy has yet been commercially
approved for the treatment of dogs. Nevertheless, in line with
human findings (48, 49), veterinary medicine is going toward
the characterization of other poorly explored immune checkpoint
targets to increase the immunotherapeutic armamentarium. The
“next generation immune checkpoints” include B7 homolog 3
protein (B7-H3), lymphocyte activation gene-3 (LAG- 3), T cell
immunoglobulin and mucin-domain containing-3 (TIM-3), T
cell immunoglobulin and ITIM domain (TIGIT), and CD200.
These molecules exert a co-inhibitory function, and strictly act
by co-operating with CTLA-4 and PD-1/PD-L1 axes to modulate
the anti-cancer immune response (48, 49).

As already demonstrated in humans, TIGIT is upregulated
on NK cells of dogs with naturally occurring metastatic
osteosarcoma after IL-15 treatment, suggesting a successful
possible combinatorial approach for treating metastatic tumors
in dogs (50). CD200 blocking in high grade glioma-bearing dogs
by means of synthetic peptide ligands, has revealed an increased
therapeutic efficacy when combined to an autologous tumor
cell lysate vaccine (51). Equally, agonistic mAbs targeting co-
stimulatory molecules belonging to the tumor necrosis factor
receptor superfamily, such as CD27, OX40, and CD40, have
shown impressive anti-tumor effects in pre-clinical and clinical
studies (52–54). Interestingly, promising results have been
obtained in melanoma-bearing dogs treated with an adenovirus
encoding the CD40 ligand (CD40L) (55).

Therefore, targeting different checkpoint molecules and/or
finding novel combinatorial strategies in patients which do
not respond to PD-1/PD-L1 blockade is essential, and could
represent a promising approach to achieve a greater therapeutic
effect in a variety of both human and canine tumors.

B7-H3 CHECKPOINT MOLECULE AS A
TARGET FOR OMM

Among the novel immune checkpoints, B7-H3 has recently
emerged as an interesting target (56–59). B7-H3 is a type I
transmembrane protein member of the B7-superfamily (60). The
human B7-H3 gene codes for four immunoglobulin (Ig)-like
domains; two pairs of IgV-IgC. The transcribed RNA can be
alternatively spliced to generate two proteins, 4IgB7-H3 (B7-
H3b) and 2IgB7-H3 (B7-H3) (61). B7-H3 has conserved its
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amino acid sequence throughout evolution (61, 62) and both
the 4Ig- and 2Ig-B7-H3 isoforms are expressed in other species
besides humans, including dogs (61, 63). Furthermore, there is
94% amino acid homology between the dog and human B7-H3
sequences (64, 65).

B7-H3 has been suggested to play both a co-stimulatory and
inhibitory role in human tumor immunity, depending on the
context (62, 66–70). In parallel, the B7-H3 over-expression on
tumor cells and its role in promoting tumorigenesis through non-
immunologic mechanisms is becoming evident and clinically
relevant. The efficacy of the first anti-B7-H3 therapeutic mAb
(Enoblituzumab) against B7-H3 expressing tumors, including
melanoma, is under examination, alone or in combination with
other ICIs, in Phase I-II human clinical trials (71) (https://
clinicaltrials.gov/ct2/show/NCT02475213).

B7-H3 role has gained attention also in veterinary oncology.
A recent study performed on canine osteosarcoma patients has
demonstrated that B7-H3 plays a non-immunological role in
sustaining tumorigenicity (72). However, no involvement for B7-
H3 in OMM has been reported to date. We found that B7-H3
is expressed by CMM12 (Figure 1A), a canine OMM cell line
(9). CMM12 cells that were treated with an anti-human B7-H3
mAb (376.96), which cross-reacted with the canine molecule,
displayed a significant reduction in proliferation (Figure 1B),
suggesting that B7-H3 downstream signaling potentially sustains
OMM cells’ proliferative behavior.

Since B7-H3 actively supports tumor cells resistance to
chemotherapy (74), we tested the sensitivity of CMM12 to
chemotherapy in combination with treatment with the 376.96
mAb. The combinatorial treatment was remarkably more
effective than the single treatments alone (Figure 1B). To
achieve better and more significant results other combinatorial
protocols should be tested, using different mAb and doxorubicin
concentrations. Nevertheless, these results prompt further
investigations to determine the relevance of blocking B7-H3 to
increase the efficacy of chemotherapy for OMM treatment, and
we are actively working in this direction. The results obtained
in the canine setting could be eventually of clinical relevance for
human melanoma treatment too.

ANTI-CANCER VACCINES FOR OMM
TREATMENT

Therapeutic vaccines against cancer aim to educate the immune
system to recognize antigens that are expressed by tumor cells
and induce effector immune responses. Several melanoma-
associated antigens have been characterized in both humans and
dogs, including the disialogangliosides GD2 (75) and GD3 (76–
78), tyrosinase (79, 80), gp100 (81), CSPG4 (19, 82), and others.

A number of anti-cancer vaccination strategies targeting
these antigens have been tested in companion dogs affected
by different tumors, including melanoma (83). These include
dendritic cell (DC) vaccines loaded with tumor antigens (84),
autologous whole-cell vaccines (81, 85), tumor antigen combined
with adjuvants (86) and gene-based vaccination (19, 87); some
have already been tested in clinical veterinary trials.

Considering the translational relevance of GD2 and GD3
antigens for both canine and human melanomas, relevant
veterinary studies of vaccination against these targets suggested
their safety and ability to protect canine melanoma patients
when provided as an adjunct to conventional therapies (86, 88).
Nevertheless, adjuvants and/or antigen modifications are needed
to increase the immunogenicity of the vaccine to be successfully
translated in a standard of care (88, 89).

Regarding gene-based vaccination, DNA vaccines against
tumor-associated antigens are a promising approach for treating
cancer (90, 91). The huge number of DNA-vaccines that have
been tested in the last decades in pre-clinical and clinical
studies highlights the potential relevance of this strategy for
future medical applications. Nevertheless, DNA vaccines face
many challenges that till now have prevented their successful
translation in the human clinic. Indeed, the first and only FDA-
approved DNA vaccine for anti-tumor therapy is ONCEPT
(Merial), a xenogeneic DNA plasmid that carries the sequence
of human tyrosinase. It was approved for the treatment of dogs
affected by locally controlled OMM, since it increased survival
times of treated dogs as compared to unvaccinated controls, with
no adverse events (92). ONCEPT approval signed the beginning
of a new era in treating melanoma in dogs. Nevertheless,
some studies have risen controversy around the effectiveness of
ONCEPT after its licensing (93, 94).

Whether the human or the veterinary clinical context is
concerned, one of the main reasons for the just modest
therapeutic effect demonstrated by DNA vaccines in clinical trials
could be the strong immunosuppressive condition induced by
the tumor. Indeed, a clinically evident tumor triggers several
mechanisms of immune suppression that may remain active
despite local tumor control. Among them T cell exhaustion
and expansion of T regulatory cells, myeloid-derived suppressor
cells (MDSCs), and tumor-associated macrophages (TAMs).
Several approaches could be applied to enhance vaccine efficacy.
Recently, a strong consensus for combining cancer vaccines with
ICIs, concomitantly or after immunization (95, 96) is emerging.
Various combinatorial strategies have been already tested in
pre-clinical and clinical studies for different cancers, resulting
promising in coupling the benefits of ICIs in overcoming
immunosuppression, with the ability of vaccines to prime the
antigen-specific cytotoxic response (97–99).

The combination of immunotherapy with local radiotherapy
and/or chemotherapy that can induce immunogenic cell death
is likewise a favorable way to prompt a more effective systemic
anti-tumor immune response (100–102).

As an example, combinatorial approaches encompassing
the use of cytokines, STING agonist and/or vaccines have
indeed demonstrated enhanced efficacy when combined
to radiotherapy in both pre-clinical and clinical studies,
achieving improved therapeutic effects on melanoma-derived
metastasis (103, 104). Recently the combination of trimodal
radiotherapy and intratumoral immunocytokine vaccination has
been tested in advanced stage tumor-bearing dogs, including
melanoma cases, and has preliminarily showed to induce
positive immunomodulatory effects within the primary tumor
(100). All these studies provide the proofs of principle of
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FIGURE 1 | B7-H3 expression and targeting in OMM. (A) Flow cytometry analysis of B7-H3 expression on canine CMM-12 OMM cells performed using a FACS Verse

(BD Biosciences). The results were analyzed using FlowJo software and representative FACS curves are reported, showing CMM-12 staining using a control IgG1

isotype (filled gray area) and the anti-human B7-H3 mAb 376.96 (filled blue area; 25µg/ml final concentration). (B) Cell proliferation assessed using an MTT assay, as

described in (73). The results are expressed as the percentage (mean value ± SEM) of the viability of cells treated with anti-B7-H3 mAb, with respect to cells treated

with the control IgG1 isotype, considered as 100%, alone or in combination with doxorubicin at a final concentration of 0.5µM. Graph shows the results of three

independent experiments. Student’s t-test: *p < 0.01; ***p < 0.001.

combining different strategies to achieve better therapeutic
effects, eventually allowing to broaden the percentage of patients
who might potentially respond to anti-cancer therapy.

In addition to tumor induced immunosuppression, antigen-
loss variants of tumor cells may persist after local tumor
control that may escape vaccine-induced immune responses.
The selection, as vaccination targets, of not disposable tumor
associated antigen(s) with a key role in cancer progression may
reduce the risk of variant escape. Similarly, the accurate selection
of patients for tumor expression of the target antigen would result
into more informative clinical trials (105).

DNA VACCINATION AGAINST THE CSPG4
ANTIGEN

For its features, we have focused our attention on CSPG4, as a
promising tumor-associated antigen to target for effective anti-
cancer vaccination against both canine and human melanoma.

CSPG4 is a well-established tumor-associated antigen in
human melanomas (106–108), with a widespread expression
on cancer cells, but absent in normal adult tissues (108–111).
It is highly evolutionarily conserved, with over 88% similarity
between the human and canine amino acid sequences (9, 10),
suggesting a possible overlapping role in these species. It acts
as a scaffold for signaling molecules, forming a complex that
drives the activation of key transduction pathways that confer the
malignant behavior (108, 112–114). Being a cell-surface tumor

antigen, CSPG4 represents an ideal target for effective anti-
cancer immunotherapy as CSPG4+ cancer cells are potentially
susceptible to the concomitant attack of vaccine-inducible T cells
and antibodies (20, 91).

As for human melanoma patients, CSPG4 overexpression in
canine OMM (18) is clinically relevant, since CSPG4+ OMM-
affected dogs have worse prognosis than those whose tumors
do not express the antigen (9, 19). Therefore, we tested the
safety and efficacy of anti-CSPG4 immunotherapy, by means of
DNA vaccination, in combination with in-vivo electroporation
(19, 91, 115) in companion dogs affected by naturally occurring
CSPG4+ OMM. Dogs affected by a CSPG4-negative OMM were
not included in the trials, since they could not benefit from
the anti-CSPG4-immunotargeting and would risk leading to
confounding results regarding the real vaccination efficacy.

Our first trial with a xenogeneic human (Hu)-CSPG4 DNA
plasmid, was safe and effective in inducing a humoral immune
response, that was linked to significantly prolonged survival
in immunized dogs compared to the conventionally treated
population (9, 19, 82). Anti-CSPG4 antibodies induced by
the vaccination directly down-regulate CSPG4 expression
in-vitro hampering CSPG4 tumorigenic functions in melanoma
cells, suggesting that they could have a beneficial impact on
the clinical course of the disease (9, 19, 82). Immunological
mechanisms could be foreseen for vaccine-induced antibodies
that could be thus effective in eliminating tumor cells through
either antibody-dependent cellular cytotoxicity (ADCC) or
complement-dependent cytotoxicity (CDC); this aspect is
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currently under investigation. Importantly, patients which
received the vaccination displayed delayed metastasis
onset, compared to non-vaccinated dogs, which rapidly
exhibited metastatic spreading (19). Nevertheless, Hu-CSPG4
xenovaccination induced relatively low-affinity antibodies
against dog (Do)-CSPG4 (Riccardo et al., manuscript under
revision), thus probably limiting the efficacy of the vaccine
(116, 117). We have therefore developed a second-generation
vaccine that carries a hybrid human/dog sequence, encoding
for a chimeric protein that would result in the induction of a
more efficient humoral and cellular immune response than those
prompted by the fully xenogeneic or fully homologous ones
(117, 118). The first demonstration of the potential advantages
of applying a chimeric DNA vaccination against the CSPG4
molecule in veterinary medicine is ongoing in a prospective,
multi-centric clinical trial in dogs affected by stage II-IV
CSPG4+ OMM (Riccardo et al., manuscript under revision). To
improve the efficacy of this anti-cancer vaccine, the possibility
of combining anti-CSPG4 DNA vaccination with ICIs for the
treatment of OMM could be an interesting new therapeutic
option for canine patients’ management, being also of precious
translational value for the human context.

SMALL EXTRACELLULAR VESICLES AS A
NEW TOOL FOR MELANOMA
MANAGEMENT

Regardless of the choice of therapy, there is a clear need
to identify easily accessible biomarkers that may facilitate the
early diagnosis of the disease. In this context, liquid biopsy is
emerging as an early, non-invasive, and accessible technique
for the accurate molecular profiling of a patient’s tumor-derived
materials. This technique will likely improve diagnoses, clinical
decision making and prognostic accuracy.

Of the tumor-derived materials that can be detected in
patient biofluids by means of liquid biopsy, investigations into
extracellular vesicles (EVs) are intensifying (119). EVs are lipid-
bilayer delimited particles that are naturally shed from cells and
are amongst the main key players in cell-cell communication
in the TME (120). EVs can carry a heterogeneous variety of
biologically active molecules, depending on the cell of origin
(121), and play a fundamental role in regulating neoplastic
events (122). According to their dimension and biogenesis,
we can distinguish EX (ranging from 50 to 150 nm diameter)
and microvesicles (ranging from 100 to 1,000 nm diameter),
that are emerging as a new frontier in cancer management in
humans, with there also being potential impact for dogs (123).
The CD9, CD63 and CD81 markers of expression (123, 124)
have been usually used as EX biomarkers, although it has to
be considered that they are present also on the membrane
of other EVs (125, 126), therefore specific markers to strictly
discriminate the different subtypes of EVs released by cells are
still under discover. For this reason and due to some overlap in
size between EX andmicrovescicles, we will refer more in general
to small EVs (SEVs). In oncological patients, SEVs can provide
a comprehensive “snapshot” of the tumor status. Knowledge

of the proteome of melanoma-derived SEVs is still largely
unexplored. However, it has been shown that human-melanoma-
cell-derived SEVs-protein cargo differs from normal melanocyte
derivatives (120), and potential clinically relevant markers have
been identified for isolating circulating SEVs for diagnostic
purposes (122). It has been demonstrated that circulating SEVs
may provide clinicians with a better overview of dynamic
tumor heterogeneity (127), and guide them toward the most
appropriate personalized therapeutic approach. Moreover, it has
been highlighted the predictive value of circulating SEVs in the
melanoma immunotherapy, demonstrating that the monitoring
of circulating SEVs-PD-L1 predicts tumor response to treatment
and clinical outcome (127).

In canine patients, very few studies have been carried out
so far. It has been recently demonstrated that the number of
EV isolated from the plasma of dogs with cancer, including
melanoma, was higher than in healthy controls (128). On our
side, considering that human CSPG4+ melanoma cells release
SEVs that carry high levels of CSPG4 (111, 129), we investigated
its presence in canine-melanoma-cell-derived SEVs. Sustained
levels of CSPG4 were found in CMM12-derived SEVs (Figure 2),
indicating that circulating-SEV-CSPG4+ may be a potential
biomarker for canine CSPG4+-OMM diagnosis and prognosis
for anti-CSPG4 immunotherapy.

Additionally, SEVs that were isolated from human-patient
plasma have also been found to be enriched in immunoregulatory
proteins (111, 129). Although the immunomodulatory role of
B7-H3 in canine cancers still needs to be defined, we sought
to discern whether soluble B7-H3 in melanoma-derived SEVs

FIGURE 2 | CSPG4 and B7-H3 expression in canine-OMM-cell-derived SEVs.

EX purification columns (Exo-spin Midi-Columns, Cell Guidance System,

Cambridge, UK) were used to purify enriched EX-SEVs from the supernatant

of fetal bovine serum-deprived CMM-12 cells. Briefly, the collected media was

centrifuged to remove any cell debris and then incubated with the Exo-Spin

Buffer to precipitate SEVs including EX and purified using Exo-Spin

midi-column. Eluted SEVs were then ultracentrifuged at 100,000 x g and the

pellet was resuspended in RIPA buffer for protein extraction. Representative

immunoblot of CSPG4 and B7-H3 of lysates of SEVs is shown. Western Blot

analysis for CSPG4 was performed as described in (73), mAb 376.96 was

used for B7-H3 detection. CD9 (10626D; Thermo-Fisher Scientific) was used

as the SEVs marker and β-Actin (AC-15; Santa Cruz Biotechnology) was used

as the protein-loading control.
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could be detected and potentially used as a prognostic biomarker
for OMM. When CMM12-derived SEVs were analyzed, a
high level of B7-H3 was detected (Figure 2). This result
provides a starting point for investigating the diagnostic and
prognostic predictive value of B7-H3 in circulating SEVs in
melanoma bearing-dogs, with relevant translational implications
for human immunotherapy.

DISCUSSION

Immunotherapy has revolutionized melanoma treatment in
humans and successful clinical responses have been obtained.
Spurred by achievements in human clinics, veterinary oncologists
have started to exploit the possibility of applying this strategy to
the treatment of pet cancers.

While several immunotherapeutic approaches for treating
OMM in dogs have been translated from human to veterinary
clinics, other strategies have been developed in canine patients
first, with high translational relevance for humans (19, 45,
79, 80, 82, 130, 131). Anti-CSPG4 DNA vaccination may
emerge as a novel therapeutic approach in veterinary medicine
to counteract OMM progression (19, 82), with important
implications for human melanoma patients. Nonetheless, the
therapeutic effectiveness of our, and other, anti-melanoma
strategies could be enhanced. In the wake of human findings,
treatments using “old” and “new”-generation ICIs together with
anti-cancer vaccination hold great promise for the management
of melanoma. In this general framework and considering that
precision medicine has become a central theme of cancer
management, particular focus must be placed on the key role that
SEVs may play in the immuno-oncology of melanoma.

However, several aspects of canine immunity are still
unexplored, representing a limitation in the development of
effective immunotherapies for dogs. For instance, the lack of a
deep characterization of the major histocompatibility complex
in dogs, the Dog Leukocyte Antigen (DLA) system, limits the
possibilities of developing T-cell-based immunotherapies and
investigating functional aspects of the anti-tumor T-cell response
in-vitro. As well, while the properties of the four human IgG
subclasses have been well established and it is known that

ADCC and CDC are mainly activated by IgG1 or IgG3, the

knowledge about both the complement system in dogs and IgG
subclasses is still growing. Up to now, four canine IgG subclasses
have been identified, and it is suggested that IgG2 subclasses
could mainly provide a specific contribution to ADCC and
CDC activity (132). Defining more in detail the components
of the canine immune system would allow to better assess the
functions of vaccine-induced antibodies for tumor cell killing.
In conclusion, exploiting the high similarity between canine and
human melanomas, the therapeutic advances achieved in both
the veterinary and the human clinics can mutually revolutionize
the treatment of melanoma patients.
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