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This experiment was conducted to compare the antibacterial ability and to identify

the antibacterial components of different fermented compound Chinese medicine

feed additives in order to develop one fermented compound Chinese medicine feed

additive product that can effectively alleviate metritis, vaginitis, and mastitis of sows.

The Oxford cup method and double dilution method were used to compare the

antibacterial ability of three fermented compound Chinese medicine feed additives (A,

B, and C). UHPLC-QE-MS-based untargeted metabolomics was used to identify the

antibacterial components of fermented compound Chinese medicine feed additives.

Results showed that among fermented compound Chinese medicine feed additives A,

B, and C, additive A had the strongest ability to inhibit the growth of Staphylococcus

aureus, Salmonella cholerae suis, Escherichia coli, and Streptococcus agalactiae. The

MIC and MBC of additive A were the lowest for Staphylococcus aureus compared

to that for the other three pathogens. The concentrations of 23 Chinese medicine

ingredients (ellagic acid, guanine, camphor, L-valine, sinapine, dipropylphthalate,

3-hydroxy-5-isopropylidene-3,8-dimethyl-2,3,3a,4,5,8a-hexahydro-6(1H)-azulenone, 7-

dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5

-trihydroxyoxan-2-yl)chromen-4-one, acetylcholine, farrerol, pyrogallol, ethyl gallate,

demethylwedelolactone, methyl gallate, kaempferide, gallic acid, eriodictyol, threonic

acid, inositol, 3′,4′,7-trihydroxyflavanone, taxifolin, asiatic acid, and isorhamnetin) in

additive A were significantly (p < 0.05 or p < 0.01) higher than those in additive B,

respectively. It is concluded that the mixture composed of 23 active components in

fermented compound Chinese medicine feed additive A plays an important role in

inhibiting the growth of Staphylococcus aureus, Salmonella cholerae suis, Escherichia

coli, and Streptococcus agalactiae.

Keywords: Chinese medicine feed additive, fermentation, in vitro antibacterial activity, UHPLC-QE-MS based

untargeted metabolomics, metabolic network
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INTRODUCTION

Metritis, vaginitis, and mastitis of sows can cause a decrease in
the number of pigs weaned per sow per year (PSY), because
an unstable implantation of fertilized eggs developed by the
chronic uteritis and vaginitis of sows will increase embryo death,
block fetal intrauterine development, or bring conception into
failure (1). Milk produced by sows with mastitis will decrease the
survival rate and growth rate of suckling piglets by the increased
diarrhea of suckling piglets (2). In the practice of treatingmetritis,
vaginitis, and mastitis of sows over the past decades, in-feed
antibiotics and intramuscular injection of antibiotics are often
used (3, 4), but since July 1, 2020, the addition of antibiotics
to feed is banned in China. Therefore, how to develop Chinese
medicine feed additive products instead of antibiotics to control
the bacterial pathogens of sows and improve sow’s immunity
is of great significance for the improvement of PSY. Previous
studies indicated that metritis, vaginitis, and mastitis of sows and
diarrhea of suckling piglets are often caused by the pathogens
of Escherichia coli, Staphylococcus aureus, Salmonella cholerae
suis, and Streptococcus agalactiae (5, 6), and these pathogens
can be killed by many additives including nanozymes, organic
acids, probiotics, herbs, and herb extracts under a certain
concentration (7–11). Supplementation of Chinese medicine
additives or Chinese medicine extracts to sows has effects in
eliminating or alleviating metritis, vaginitis, and mastitis of
sows and reducing diarrhea of suckling piglets (12–14), but the
palatability of some untreated Chinese medicine additives or
Chinese medicine extracts is not favorable owing to their bitter
taste and feeding these additives or extracts directly to animals
will decrease their feed intake. In addition, a large amount of
residues will be produced and discarded during the production
of Chinese medicine extracts, and the discarded residues will
pollute the environment (15). The solid-state fermentation of
compound Chinese medicine instead of extraction has many
advantages including the better palatability of Chinese medicine
additives and the less environmental pollution of Chinese
medicine residues. The purpose of this study is to develop a
fermented compound Chinese medicine feed additive formula
by the in vitro antibacterial experiment and the identification of
differential metabolites.

MATERIALS AND METHODS

Formula of Compound Chinese Medicine
Feed Additives
According to the components and pharmacological
characteristics of traditional Chinese medicines, the following
traditional Chinese medicines were selected to compose three
compound Chinese medicine feed additives. Compound Chinese
medicine feed additive A comprised 20 parts of Houttuynia
cordata, 23 parts of Folium artemisiae argyi, 40 parts of
Thymifoious euphorbia herb, 8 parts of Cowherb seed, 25 parts
of Potentilla discolor, 45 parts of Acalypha wilkesiana, 10 parts
of sugar, 26 parts of wheat, 15 parts of soybean meal, 0.03
parts of Aspergillus niger, and 1.5 parts of yeast. Compound
Chinese medicine feed additive B comprised 20 parts of

Houttuynia cordata, 15 parts of Folium artemisiae argyi, 40 parts
of Thymifoious euphorbia herb, 25 parts of Potentilla discolor,
45 parts of Motherwort, 14 parts of Licorice, 18 parts of sugar, 8
parts of wheat, 8 parts of soybean meal, 0.05 parts of Aspergillus
niger, and 1.0 parts of yeast. Compound Chinese medicine feed
additive C comprised 25 parts of Folium artemisiae argyi, 12
parts of Cowherb seed, 30 parts of Potentilla discolor, 25 parts of
Thymifoious euphorbia herb, 30 parts of Acalypha wilkesiana, 25
parts of sugar, 10 parts of soybean meal, 0.02 parts of Aspergillus
niger, and 0.7 parts of yeast. Traditional Chinese medicines,
wheat and soybean meal were ground into powder using a
pulverizer to pass through 80-mesh sieves.

Solid-State Fermentation of Compound
Chinese Medicine Feed Additives
Tap water was firstly weighted at a ratio of 1:1 according to the
weight of compound Chinese medicine feed additive and heated
to 40◦C to dissolve sugar, then Aspergillus niger and yeast were
activated in this sugar solution for 30min to produce a kind
of fermentation liquid. The compound Chinese medicine feed
additive was mixed with fermentation liquid, packed with plastic
bags, and put into an oven for fermentation at 33◦C for 36 h.
The fermented additives were taken out and packed by vacuum
sealing and stored at room temperature for 15 days.

Preparation of Concentrated Liquid of
Fermented Compound Traditional Chinese
Medicine Feed Additive
Fifty gram of each fermented compound traditional Chinese
medicine feed additive was soaked with 500ml distilled water
in a beaker for 1 h; then, the liquid mixture in the beaker was
heated to boil and kept boiling for 1 h and filtered with 8 layers of
gauze. The filter liquor was transferred into a glass cup, and the
filter residue was washed into the beaker and boiled with 300ml
distilled water for 1 h; later, the mixture was filtered again. The
twice-filtered liquors were mixed together and concentrated to
25ml in an oven at 65◦C with a final concentration of 2 g/ml;
the concentrated liquor was sterilized by high-pressure steam and
stored at−20◦C for subsequent tests.

Preparation of Bacterial Solution
Streptococcus agalactiae (GDMCC 1.768), Escherichia coli
(GDMCC 1.176), Staphylococcus aureus (GDMCC 1.174), and
Salmonella cholerae suis (GDMCC 1.163) were purchased from
Guangdong Microbial Culture Collection Center. 0.3ml brain
heart infusion (BHI) broth was pipetted into the lyophilized tube
containing Streptococcus agalactiae, then the tube was vortexed
gently until the strain powder was completely dissolved; the
suspension was pipetted into 5ml BHI broth and cultured in
an incubator at 37◦C for 48 h. 0.3ml Lennox broth (LB) was
pipetted into the lyophilized tubes containing Escherichia coli,
Staphylococcus aureus, and Salmonella cholerae suis; respectively,
all tubes were vortexed gently until the strain powder was
completely dissolved, then the suspension was respectively
pipetted into 5ml LB broth and cultured in an incubator at 37◦C
for 24 h. The optical density (OD) value of bacterial solution
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was measured at 660 nm to reach a final concentration of 1.5 ×

108 CFU/ml.

In vitro Antibacterial Test
The tryptone soybean agar (TSA) was poured into the petri
dishes; after agar solidification, a total of 0.1 µl Escherichia coli
suspension (Salmonella cholerae suis or Staphylococcus aureus
suspension was also spread according to this method) was
uniformly spread on the surface of agar and three Oxford cups
(7.8 ∗ 6 ∗ 10mm) marked A, B, and C were placed on the
agar medium in each petri dish. Two-hundred microliter of
concentrated liquor A, B, or C was added to the corresponding
Oxford cup; each strain had 3 replicates. All petri dishes
were incubated at 37◦C for 18 h and then taken out for
the measurement of diameter of bacteriostatic circles. The
blood culture medium was prepared to measure the abilities
of concentrated liquor A, B, and C against the growth of
Streptococcus agalactiaewith the above method. Among the three
concentrated liquors, the one with the best bacteriostatic effects
against Streptococcus agalactiae, Escherichia coli, Staphylococcus
aureus, and Salmonella cholerae suis was selected to determine
its minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC).

MIC and MBC Determination
The double dilution method was used to determine the MIC.
The selected concentrated liquor was successively diluted with LB
broth (for Escherichia coli, Staphylococcus aureus, and Salmonella
cholerae suis) or with BHI broth (for Streptococcus agalactiae)
to give concentrations ranging from 1 to 0.0078125 g/ml in 8
culture tubes, and the ninth tube was only added with 2ml LB
broth as the positive control. Fifty microliter of bacteria solution
was added into each tube, and all tubes were incubated for 18 h
at 37◦C. The lowest concentration of the selected concentrated
liquor that caused a visible inhibitory effect was defined as the
MIC. The MBC was determined by incubating 10-µl samples
from each tube with an inhibitory effect on plates with TSA (for
Escherichia coli, Staphylococcus aureus, and Salmonella cholerae
suis) or with blood culture medium (for Streptococcus agalactiae)
at 37◦C for 18 h, with the lowest concentration of sample with no
visible sign of growth determined as the MBC. All experiments
were conducted in three replicates.

UHPLC-QE-MS-Based Untargeted
Metabolomics
Metabolomics was applied using 1,290 ultra-high-performance
liquid chromatography (Agilent, CA, USA) coupled with Q
Exactive focus MS/MS (Thermo Fisher Scientific, Waltham, MA,
USA). Chromatographic separations were performed using a
Waters ACQUITY system equipped with an ACQUITY UPLC
BEH C18 column (1.7µm, 2.1 × 100mm). The mobile phase
consisted of 0.1% formic acid water (A) and 0.1% formic acid
acetonitrile (B) at the flow rate of 0.5 ml/min, and the injection
volume was 4ml. The gradient program was as follows: 85–
25% B (0–11.0min), 25–2% B (11.0–12.0min), 2–2% B (12.0–
14.0min), 2–85% B (14.0–14.1min), 85–85% B (14.1–15.0min),
and 85–85% B (15.0–16.0min). The ESI source was applied to

analyze the chemical composition in both positive and negative
ion modes with full scan/ddMS2. The MS parameters were set
as follows: the scan range was 50–1,000 m/z, the spray voltages
were set at 4.0 and 3.6 kV in positive and negative modes,
respectively, sheath gas was 35 arb, auxiliary gas was 10 arb,
the capillary temperature was 400◦C, the maximum injection
time for MS1 and ddMS2 was 100 and 45ms, respectively, and
the resolutions for MS1 and ddMS2 were 70,000 and 17,500,
respectively; putative molecules of interest were fragmented
using three different collision energies (10, 20, and 40 eV).

Multivariate Statistical Analysis and
Metabolite Identification
Raw data of UHPLC-QE-MS were processed using the XCMS
online platform, and the qualified data were uploaded to SIMCA-
P (Version 16.0.2, Sartorius Stedim Data Analytics AB, Umea,
Sweden) for multivariate statistical analysis. Partial least-square-
discriminate analysis (PLS-DA) and orthogonal partial least-
square-discriminate analysis (OPLS-DA) were performed to
find out the metabolic distinction. The variable importance
of projection (VIP) values was used to characterize the
contributions of the metabolites to the change rates of Y variety
in OPLS-DA, and metabolites that meet these criteria including
MS2 score > 0.80, VIP > 1.0, and p < 0.05 were selected as the
differential variables; metabolite identification was performed by
searching the in-house database and web databases (METLIN,
HMDB, PubChem, and ChemSpider).

Network Analysis of Targeted Differentially
Metabolites
To further investigate the mechanism of targeted differential
metabolites, the network pharmacology approachwas introduced
to uncover the related pathways, compounds, enzymes, and
reactions. Compounds with MS2 score > 0.80, VIP > 1.0, fold
change > 1, and o < 0.05 were selected as the target differential
metabolites and used to construct the network with FELLA
R package (16). The nodes in the network were compounds,
enzymes, pathways, modules, and reactions, and the relationship
between them was represented by the lines between the nodes.

Statistical Analysis
Statistical analysis was performed by SPSS 17.0 (version
17.0, USA), comparisons between two groups were made
with Student’s t-test; the value at p < 0.05 was considered
as significance threshold, and the results were presented as
mean± SE.

RESULTS

In vitro Bacteriostatic Effect of Different
Fermented Compound Chinese Medicine
Feed Additives
The abilities of additives A, B, and C in inhibiting the growth of
Streptococcus agalactiae, Escherichia coli, Staphylococcus aureus,
and Salmonella cholerae suiswere different and ranked as follows:
A > C > B. Results in Figure 1 and Table 1 indicated that
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FIGURE 1 | Diagram of the bacteriostatic circle of three fermented compound Chinese medicine feed additives.

TABLE 1 | In vitro antibacterial effects of different fermented compound Chinese

medicine feed additives.

Concentrated

liquors

Bacteriostatic circle diameter (mm)

Escherichia

coli

Staphylococcus

aureus

Salmonella

cholerae suis

Streptococcus

agalactiae

A 11.41 ± 0.27A 21.54 ± 0.27A 14.66 ± 0.48A 8.83 ± 0.24A

B 0.00 ± 0.00B 0.00 ± 0.00C 0.00 ± 0.00C 0.00 ± 0.00C

C 0.00 ± 0.00B 11.92 ± 0.10B 7.92 ± 0.41B 7.88 ± 0.10B

In the same column, values with the same or no letter superscripts mean no significant

difference (p > 0.05); values with different capital letter superscripts mean significant

difference (p < 0.01).

additive A was the most effective in inhibiting the growth of
Staphylococcus aureus but had the worst effect in preventing
the growth of Streptococcus agalactiae, additive B had no
bacteriostatic effect, and additive C had the ability in controlling
the growth of Streptococcus agalactiae, Staphylococcus aureus,
and Salmonella cholerae suis but had no bacteriostatic effect on
Escherichia coli.

MIC and MBC of Fermented Compound
Chinese Medicine Feed Additive A
Fermented compound Chinese medicine feed additive A was
used to determineMIC andMBC because additive A had the best
bacteriostatic effect compared to the other two additives, and data
in Table 2 showed that additive A had the lowest MIC and MBC
for Staphylococcus aureus among all tested bacteria.

Major Antibacterial Components of
Fermented Compound Chinese Medicine
Feed Additive A
In order to find out why additive A had better antibacterial
ability than additive B, the metabolomics untargeted analysis
was performed to identify the differential metabolites between
additives A and B, and metabolites with MS2 score > 0.80,
VIP > 1.0, fold change > 1, and p < 0.05 were selected
as the target compounds. Results in Table 3 indicated

that additive A had significantly higher concentrations
of ellagic acid, guanine, camphor, L-valine, sinapine,
dipropylphthalate, 3-hydroxy-5-isopropylidene-3,8-dimethyl-
2,3,3a,4,5,8a-hexahydro-6(1H)-azulenone, 7-dihydroxy-2-(4-
hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-
yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one, acetylcholine,
farrerol, pyrogallol, ethyl gallate, demethylwedelolactone, methyl
gallate, kaempferide, gallic acid, eriodictyol, threonic acid,
inositol, 3′,4′,7-trihydroxyflavanone, taxifolin, asiatic acid, and
isorhamnetin than additive B.

Metabolic Network Analyses
Network analysis was conducted in order to reveal the
molecular network and mechanism of the interaction of the
KEGG pathways with related compounds, enzymes, modules,
and reactions. Twenty-three differential compounds were
mapped with the KEGG database, and only five compounds
(guanine-C00242, eriodictyol-C05631, kaempferide-C10098,
threonic acid-C01620, and sinapine-C00933) indicated as green
square in Figure 2 were successfully mapped onto 5 KEGG
metabolic pathways (purine metabolism-osa00230, flavonoid
biosynthesis-osa00941, flavone and flavonol biosynthesis-
osa00944, ascorbate and aldarate metabolism-osa00053,
phenylpropanoid biosynthesis-osa00940). Figure 2 shows that
guanine, eriodictyol, kaempferide, threonic acid, and sinapine
can be converted to the following compounds via the related
enzymes and reactions: D-glucose, ascorbate, choline, D-
ribose, oxalate, deoxyguanosine, xanthine, guanosine, sinapate,
alpha-D-ribose 1-phosphate, 2-deoxy-D-ribose 1-phosphate, 1-
O-sinapoyl-beta-D-glucose, 3-dehydro-L-threonate, kaempferol,
homoeriodictyol, and eriodictyol chalcone.

DISCUSSION

Previous studies indicated that compounds listed in Table 3 have
bacteriostatic and/or bactericidal effects. Ellagic acid has strong
inhibitory effects on Staphylococcus aureus, Salmonella cholerae
suis, Escherichia coli, Streptococcus, and Bacillus cereus (17, 18).
Purine and amino acids can inhibit the growth of bacteria in the
form of riboswitches (a kind of RNA sequences that can bind
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TABLE 2 | MIC and MBC of fermented compound Chinese medicine feed additive A, g/ml.

Concentrated liquor Escherichia coli Salmonella cholerae suis Staphylococcus aureus Streptococcus agalactiae

MIC MBC MIC MBC MIC MBC MIC MBC

A 0.1250 0.2500 0.1250 0.2500 0.0625 0.1250 0.1250 0.2500

TABLE 3 | Information of differential metabolites with fold change (A/B) large than 1.

MS 2 name MS2 score Compound A Compound B Fold change

(A/B)

VIP p-value

Positive ion model

Ellagic acid 1.00 89970.65 ± 2047.27 6.03 ± 0.49 14920.51 1.44 0.048

Guanine 1.00 893248.98 ± 12338.31 630877.16 ± 30346.84 1.42 1.41 0.001

Camphor 0.97 165777.89 ± 17351.72 95213.63 ± 7517.58 1.74 1.30 0.020

L-Valine 0.96 8283283.61 ± 991023.05 4722270.50 ± 194648.71 1.75 1.30 0.024

Sinapine 0.94 84351.79 ± 15192.09 25909.49 ± 4472.36 3.26 1.33 0.021

Dipropylphthalate 0.94 16261.57 ± 3902.65 3521.70 ± 1481.38 4.62 1.21 0.038

3-Hydroxy-5-isopropylidene-3,8-dimethyl-

2,3,3a,4,5,8a-hexahydro-6(1H)-azulenone

0.92 14268.67 ± 1464.43 956.23 ± 86.74 14.92 1.43 0.012

5,7-Dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-

trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-

(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

0.92 95382.59 ± 7467.40 57754.10 ± 484.49 1.65 1.38 0.037

Acetylcholine 0.91 4467186.16 ± 430688.27 47437.4 ± 4997.85 94.17 1.44 0.009

Farrerol 0.81 91502.75 ± 10528.55 41296.36 ± 4047.05 2.22 1.37 0.011

Negative ion model

Pyrogallol 1.00 217175.34 ± 26949.40 85161.91 ± 7780.19 2.55 1.12 0.047

Ethyl gallate 0.99 15482400.23 ± 2865182.97 49027.25 ± 4807.40 315.79 1.42 0.033

Demethylwedelolactone 0.98 178662.97 ± 15761.08 55273.17 ± 12557.93 3.23 1.32 0.004

Methyl gallate 0.98 334131.77 ± 26014.26 3559.89 ± 977.21 93.86 1.21 0.006

Kaempferide 0.98 386085.28 ± 48610.66 238295.59 ± 10102.16 1.62 1.24 0.041

Gallic acid 0.98 17732911.31 ± 246955.79 63766.36 ± 4747.67 278.09 1.42 0.000

Eriodictyol 0.92 408383.73 ± 16484.25 220608.55 ± 11549.24 1.85 1.39 0.001

Threonic acid 0.92 1163675.16 ± 61626.38 539744.37 ± 78673.13 2.16 1.32 0.003

Inositol 0.86 1927229.94 ± 103370.35 1419620.73 ± 40982.28 1.36 1.33 0.010

3′,4′,7-Trihydroxyflavanone 0.85 5546.82 ± 981.38 2073.68 ± 610.07 2.67 1.21 0.040

Taxifolin 0.84 73540.26 ± 12851.85 15961.30 ± 2362.12 4.61 1.36 0.012

Asiatic acid 0.84 25611.49 ± 3923.63 1894.61 ± 459.78 13.52 1.38 0.025

Isorhamnetin 0.81 204543.52 ± 25406.85 46807.20 ± 2097.82 4.37 1.40 0.024

to small molecular ligands and regulate gene expression, which
can regulate the corresponding downstream gene expression
after binding to purine and amino acids and other ligands), so
as to achieve the antibacterial and bactericidal effects (19–21).
Camphor can inhibit the growth of Salmonella cholerae suis
and help animals to excrete toxins (22), while sinapine can
inhibit the growth of Escherichia coli (23). 5,7-Dihydroxy-2-(4-
hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-
2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one named as
isoxiafota glycoside has inhibitory effects on Escherichia coli,
Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus
aureus, and Enterococcus faecalis (24). Farrerol can inhibit the
growth of Staphylococcus aureus (25); however, pyrogallol and
demethylwedelolactone (norwedelide) not only can inhibit
the growth of Staphylococcus aureus but also can prevent the

growth of Escherichia coli and Salmonella (26, 27). Kaempferide,
gallic acid, and taxifolin have good antibacterial effects on
Staphylococcus aureus, Escherichia coli, dysentery bacilli,
Pseudomonas aeruginosa, and Streptococcus (28–30). Ethyl
gallate can inhibit the growth of Staphylococcus aureus and
Escherichia coli (31, 32). Eriodictyol and inositol have good
inhibitory effects on Escherichia coli, Staphylococcus aureus,
and Pseudomonas aeruginosa (33, 34). Trihydroxyflavanone,
asiatic acid, and isorhamnetin have good inhibitory or killing
effects on Shigella dysentery bacteria, Salmonella, Streptococcus,
Staphylococcus aureus, and Escherichia coli (35–37). These plant-
derived active ingredients exert bacteriostatic and bactericidal
effects through inhibiting the production of extracellular
polymers (EPS), reducing bacterial adhesion, destroying
the integrity and permeability of bacterial cell membrane,
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FIGURE 2 | The compound–reaction–enzyme–pathway networks of the targeted metabolites. Compounds: C00031 (D-glucose), C00072 (ascorbate), C00114

(choline), C00121 (D-ribose), C00209 (oxalate), C00242 (guanine), C00330 (deoxyguanosine), C00385 (xanthine), C00387 (guanosine), C00482 (sinapate), C00620

(alpha-D-ribose 1-phosphate), C00672 (2-deoxy-D-ribose 1-phosphate), C00933 (sinapine), C01175 (1-O-sinapoyl-beta-D-glucose), C01620 (threonate), C03064

(3-dehydro-L-threonate), C05631 (eriodictyol), C05903 (kaempferol), C09756 (homoeriodictyol), C10098 (kaempferide), C15525 (eriodictyol chalcone). Reactions:

R00068 (L-ascorbate:oxygen oxidoreductase), R00190 (AMP:diphosphate phospho-D-ribosyltransferase), R00273 (oxalate:oxygen oxidoreductase), R00466

(glyoxylate:oxygen oxidoreductase), R00522 (oxalate carboxy-lyase), R00644 (L-ascorbate:hydrogen-peroxide oxidoreductase), R00646 (ascorbate + oxygen + H2O

<=> threonate + oxalate), R01021 (ATP:choline phosphotransferase), R01022 (choline:oxygen 1-oxidoreductase), R01025 (choline:acceptor 1-oxidoreductase),

R01132 (IMP:diphosphate phospho-D-ribosyltransferase), R01227 (guanosine 5′-monophosphate phosphohydrolase), R01228 (ATP:guanosine

5′-phosphotransferase), R01229 (GMP:diphosphate 5-phospho-alpha-D-ribosyltransferase), R01310 (phosphatidylcholine phosphatidohydrolase), R01559

(succinyl-CoA:oxalate CoA-transferase), R01676 (guanine aminohydrolase), R01677 (guanosine ribohydrolase), R01969 (deoxyguanosine:orthophosphate

ribosyltransferase), R02142 (XMP:pyrophosphate phosphoribosyltransferase), R02147 (guanosine:phosphate alpha-D-ribosyltransferase), R02221 [sinapate:CoA

ligase (AMP-forming)], R02379 (S-adenosyl-L-methionine:3,4-dihydroxy-trans-caffeoyl-coenzyme), R02380 (UDPglucose:sinapate D-glucosyltransferase), R02381

(sinapoylcholine sinapohydrolase), R02442 (naringenin,[reduced NADPH—hemoprotein reductase), R03075 (1-O-(4-hydroxy-3,5-dimethoxycinnamoyl)-beta-

dimethoxycinnamoyl), R03126 (dihydroflavonol,2-oxoglutarate:oxygen oxidoreductase), R03590 (flavanone,2-oxoglutarate:oxygen oxidoreductase), R03640

(flavanone,2-oxoglutarate:oxygen oxidoreductase), R03733 (L-threonate:NAD+ 3-oxidoreductase), R04901 ((2S)-flavan-4-ol:NADP+ 4-oxidoreductase), R04902

(eriodictyol,[reduced NADPH—hemoprotein reductase), R05794 (CDP-diacylglycerol:choline O-phosphatidyltransferase), R05980 (Glc2Man9GlcNAc2-[protein]

3-alpha-glucohydrolase), R05981 (GlcMan9GlcNAc2-[protein] 3-alpha-glucohydrolase), R06537 (apigenin,[reduced NADPH—hemoprotein reductase), R06538

(kaempferol,[reduced NADPH—hemoprotein reductase), R06611 (UDPglucose:flavonol 3-O-D-glucosyltransferase), R06807 (S-adenosyl-L-methionine:kaempferol

4’-O-methyltransferase), R06808 (UDP-alpha-D-galactose:kaempferol 3-O-beta-D-galactose), R06871 (phosphocholine phosphohydrolase), R07377

(phosphatidylcholine + L-Serine <=> phosphatidylcholine), R07409 (choline,reduced-ferredoxin:oxygen oxidoreductase), R07441 (sinapoyl aldehyde:NAD

oxidoreductase), R07442 (sinapoyl aldehyde:NAD oxidoreductase), R07988 (malonyl-CoA:caffeoyl-CoA malonyltransferase), R07991 (eriodictyol chalcone <=>

(Continued)
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FIGURE 2 | eriodictyol), R07992 (homoeriodictyol chalcone <=> homoeriodictyol), R08007 (UDP-alpha-D-glucose:2′,3,4,4′,6′-pentahydroxy heptanal), R08012

(eriodictyol <=> homoeriodictyol), R08031 (eriodictyol chalcone <=> homoeriodictyol chalcone), R08557 (choline + NAD+ <=> betaine aldehyde + NADH),

R08558 (choline + NADP+ <=> betaine aldehyde + NADPH), R09802 (UDP-L-rhamnose:kaempferol 3-O-rhamnosyltransfase), R10261

(1-O-sinapoyl-beta-D-glucose:cyanidin-3-O-beta- D-glucoside), R10298 (1-O-sinapoyl-beta-D-glucose:pelargonidin-3-O- malonylglucoside), R10299

(1-O-sinapoyl-beta-D-glucose:delphinidin-3-O- beta -D-glucoside), R12279 (eriodictyol,[reduced NADPH—hemoprotein reductase). Enzymes: 1.1.99.1 (choline

dehydrogenase), 1.10.3.3 (L-ascorbate oxidase), 1.14.11.9 (flavanone 3-dioxygenase), 1.14.14.82 (flavonoid 3′-monooxygenase), 1.14.15.7 (choline

monooxygenase), 1.14.19.76 (flavone synthase II), 1.14.20.6 (flavonol synthase), 1.2.1.68 (coniferyl-aldehyde dehydrogenase), 1.6.5.4 [monodehydroascorbate

reductase (NADH)], 2.4.2.7 (adenine phosphoribosyltransferase), 2.4.2.8 (hypoxanthine phosphoribosyltransferase), 2.7.1.32 (choline kinase), 3.1.3.75

(phosphoethanolamine/phosphocholine phosphatase). Pathways: osa00053 (ascorbate and aldarate metabolism), osa00230 (purine metabolism), osa00940

(phenylpropanoid biosynthesis), osa00941 (flavonoid biosynthesis), osa00944 (flavone and flavonol biosynthesis).

inactivating enzymes of bacteria, changing cell metabolism,
blocking nucleic acid synthesis, and enhancing animal immunity
(38, 39). Figure 2 shows that the differential metabolites which
have been mapped onto metabolic pathways can be converted to
D-glucose and 2-deoxy-D-ribose-1-phosphate, exposure to high
concentration of glucose exerted bacteriostatic or bactericidal
effects by destroying ribosome assembly of bacteria (40),
and 2-deoxy-d-ribose-1-phosphate can achieve the purpose of
bacteriostasis by inhibiting the synthesis of bacterial nucleic
acid (41).

Results of this experiment showed that fermented compound
Chinese medicine feed additive A had significantly higher
concentrations of ellagic acid, guanine, camphor, L-valine,
sinapine, dipropylphthalate, 3-hydroxy-5-isopropylidene-
3,8-dimethyl-2,3,3a,4,5,8a-hexahydro-6(1H)-azulenone,
7-dihydroxy-2-(4-hydroxyp-henyl)-8-[3,4,5-trihydroxy-
6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-
yl)chromen-4-one, acetylcholine, farrerol, pyrogallol, ethyl
gallate, demethylwedelolactone, methyl gallate, kaempferide,
gallic acid, eriodictyol, threonic acid, inositol, 3′,4′,7-
trihydroxyflavanone, taxifolin, asiatic acid, and isorhamnetin
than fermented compound Chinese medicine feed additive B;
most of them and their derivatives have strong bacteriostatic
and/or bactericidal effects against pathogens, and this is
the reason why fermented compound Chinese medicine
feed additive A has better bacteriostatic and/or bactericidal
effects than fermented compound Chinese medicine feed
additive B.

CONCLUSIONS

Additive A had the strongest ability to inhibit the growth of
Staphylococcus aureus, Salmonella cholerae suis, Escherichia coli,
and Streptococcus agalactiae; the mixture composed of 23 active
components in fermented compound Chinese medicine feed
additive A exerted bacteriostatic and/or bactericidal effects on
the tested pathogens. The sensitivity of these four bacteria to
fermented compound traditional Chinese medicine feed additive
A is ranked as Staphylococcus aureus > Salmonella cholerae suis
> Escherichia coli > Streptococcus agalactiae.
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