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Quantifying canine interactions
with smart toys assesses
suitability for service dog work
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There are approximately a half million active service dogs in the United States,

providing life-changing assistance and independence to people with a wide

range of disabilities. The tremendous value of service dogs creates significant

demand, which service dog providers struggle to meet. Breeding, raising,

and training service dogs is an expensive, time-consuming endeavor which

is exacerbated by expending resources on dogs who ultimately will prove

to be unsuitable for service dog work because of temperament issues.

Quantifying behavior and temperament through sensor-instrumented dog

toys can provide a way to predict which dogs will be suitable for service dog

work, allowing resources to be focused on the dogs likely to succeed. In a

2-year study, we tested dogs in advanced training at Canine Companions

for Independence with instrumented toys, and we discovered that a measure

of average bite duration is significantly correlated with a dog’s placement

success as a service dog [Adjusted OR = 0.12, Pr(>|z|) = 0.00666]. Applying

instrumented toy interactions to current behavioral assessments could yield

more accurate measures for predicting successful placement of service dogs

while reducing the workload of the trainers.

KEYWORDS

quantified interactions, computational behavior, Canine Companions for

Independence, animal behavior, instrumented toys

Introduction

A service dog is a dog that is specifically trained to aid a person with a disability (1, 2).

There are upwards of 500,000 active service dogs in the US at present time. To become

a service dog, candidates go through ∼2 years of extensive training. Depending on their

program and the career they are best suited for, raising and training costs can reach up to

$50,000 per candidate (3). Programs like Canine Companions for Independence (CCI),

who breed their dogs specifically for temperament suitable for service dogs, still incur

significant cost. Even with CCI’s large breeding and puppy raiser program, as many as

60% will fail in training due to behavioral issues. Identifying quantifiable features and

“profiles” for which dogs are likely to succeed or fail in their program as early as possible

has the potential to increase availability and save millions of dollars in training and living

expenses. This goal is important specifically because CCI is a nonprofit, and these dogs

are either gifted to their recipients or are sold at a loss to the centers that train them.
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Traditional predictors of training success for service

dogs (detailed in section Existing research on behavioral

testing) require subjective methods of temperament assessment.

Temperament is the inherent nature of a dog, which affects

(often unalterably) their behavior (4). For example, a dog’s

temperament can be generally calm, or fearful, or aggressive.

Currently, the accuracy of generalizable behavioral

evaluations have been shown to range between 64 and 87%

(5). And while specificity, which is the true negative rate and

highlights correctly identifying dogs who should fail out, is

somewhat consistent, ranging between 81.8 and 99.6%, the

sensitivity, which is the true positive rate and looks at correctly

identifying which dogs should be placed, varies between 3

and 85% (5). The problem we address in this research is to

strengthen the consistency of the true positive rate of identifying

dogs who should successfully be placed as service dogs and,

hopefully, in identifying for which programs they would be best

suited for.

Due to this variability in accuracy and true positive rate,

veterinarians and animal behaviorists are calling for robust

quantitative measures of canine behavior and interaction (6–9).

In search of a quantifiable measure of temperament, researchers

have identified four components to measure the validity of

a temperament test: the test must be (1) conducted and (2)

evaluated consistently across all participants; (3) it must be

reliable and, ideally, replicable with significant correlations;

and (4) it must accurately measure what the experimenter is

attempting to measure—in other words, it must exhibit internal

validity (10, 11).

In Byrne (12), we discussed the construction of

instrumented toys for predicting suitability of service dogs.

Although the prediction was effective (87.5% accurate) and

would save CCI over five million dollars a year in resource costs,

we had not yet delved into understanding the factors that made

the predictions so accurate. In this new study, we investigate

if the quantified toy interactions have any explanatory effects

on the outcomes of the service dogs. As John Spicer says, “it is

possible to make successful predictions without being able to

explain why these predictions work. Similarly, the workings of

a phenomenon may well be explained, but predicting its future

states may be impossible because of the many other factors that

enable or prevent the occurrence of these states” (13). In this

article, our research investigates why our predictions work and

provides an understanding of which computational play-based

interactions are indicative of service dog suitability.

Existing research on behavioral
testing

The rate of success for most service-dog-in-training

programs hovers around 30–50% of dogs entering a program

(14–16). To improve these numbers, assorted subjective

behavioral tests have been leveraged over the past 80 years

by service dog groups and breeders to varying degrees of

success (17–21). Recently, researchers have even employed

biometric means such as imaging dogs’ brains with fMRI (14,

22) and eye-tracking (22) to obtain behavioral information.

Due to behavioral variability in canines, the animal behaviorist

community has not been able to standardize a specific

vocabulary fully describing the complexity of behaviors. Even

the label “temperament“ has been defined differently across

researchers. For example, in their survey of the literature,

Diederich and Giffroy (11) compared the relationships across

the definitions of temperament and stated that “it implies that

these differences (in temperament) are: (1) present at an early

age; (2) elicited in a set of situations; (3) (relatively) stable

over time.”

To assess temperament, evaluators observe canine responses

to objects and other stimuli, such as audible or olfactory stimuli

(23). These tests typically include behavioral ratings (reactions)

to a stimulus such as a noise or a novel visual stimulus (such

as a man in a hat or an umbrella opening). Because they are

subjective, they also rely on the intuition and experience of the

evaluator. For example, as part of the C-BARQ temperament

test, the analyst rates a dog’s reaction to “sudden or loud noises

(e.g., thunder, vacuum cleaner, car backfire, road drills, objects

being dropped, etc.)” on a 5-point Likert scale from no fear or

anxiety to extreme fear (24).

In their review, Bremhorst et al. (5) discuss the current

state of temperament assessment techniques, reporting that

assessment tool accuracy is only 64–87% accurate according

to studies (25–27). However, the ability of these tools to

predict which dogs will fail is extremely variable, as low as 3%

accuracy up to 85% accuracy. Overall, the tests tend to bias

the results toward keeping a dog in a program; they rarely

recommend releasing a dog in error. They also found that adding

physiological predictionmethods (such as fMRI) in combination

with behavioral tests produce better accuracy (14, 28).

Within the last 5 years, researchers have been increasingly

investigating prediction of a dog’s suitability using these

qualitative assessments. Harvey et al. show that adaptability,

body sensitivity, distractibility, excitability, general anxiety,

trainability, and stair anxiety can predict outcome; discusses

the use of thresholds and scales to assess dogs (n = 1,401)

(29). Additionally, Bray et al. (30) show that a decrease in body

tension during an exam, a decreased reactivity to noise and prey,

a decreased resistance to handling, and increased recall response

in the presence of another dog are related to success.

Toward the quantified assessment of
behavior and computational ethology

In recent years, there have been calls for more universal

and measurable definitions of behaviors and behavioral

categories (6, 31). Based on a survey from 174 biologists
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and 3 biology societies, Levitis et al. define behavior as “the

internally coordinated responses (actions or inactions) of whole

living organisms (individuals or groups) to internal and/or

external stimuli, excluding responses more easily understood

as developmental changes (32).” Extending this definition, a

unit measure of behavior can be defined as a specific spatio-

temporal distribution of an animal’s body parts (“behavior

category/unit/element”) and the likelihood of those actions

occurring in some order. These actions can occur sequentially

or in parallel and should be related to context, aka they should

exhibit “connectedness” (e.g., a tucked tail and the baring of

teeth are less likely to occur in the presence of a familiar,

friendly human) (33). According to Miklòsi, “the quantitative

assessment of behavior [measures] the temporal distribution

of these predefined behavior categories” (33). Furthermore,

Miklòsi decomposes the complexity of measuring behavior as

understanding behavior categories and ethograms, the temporal

dynamics of behavior, splitting and lumping behaviors, arbitrary

behavior measures that exist, and the importance of intra- and

inter- observer agreement (33).

In the emerging field of computational ethology, the goal

is to facilitate the automation of quantifying animal behaviors,

particularly in ways that do not alter the animal’s interactions

(9, 34). Current literature focuses on using computer vision

techniques for pose estimation and tracking, and the automatic

behavior analysis from audio (34, 35). However, recently,

Mealin et al. show extremely promising results using

inertial measurement unit (IMU) data for predicting a

dog’s performance with 92% accuracy on the behavioral

checklist (BCL), a behavior scoring system developed for and

in collaboration with several US service dog organizations

(23, 36, 37). Their research looks at the relationship of

on-body, passive-sensing methods, specifically capturing

electrocardiography and inertial data, to the activities and

physiological responses exhibited during the BCL evaluation

tasks (23, 36, 38). Recently, Menaker et al. (39) have started to

look beyond this analysis and investigate the implications of

these techniques and their ability to provide information for

improving a researcher’s decisions with respect to data analysis.

In this paper, we approach computational ethology from the

perspective of the object being interacted with, capturing actions

(9) using rule-based methods (34) that are difficult to quantify

using video-based techniques that rely on human coding to

identify behaviors.

Advantages of quantifying canine
behavior

In Toward a Science of Computational Ethology, Anderson

and Perona state that the “reliance on human observation

to score behavior imposes a number of limitations on data

acquisition and analysis” (9). They list the limitations of human

observation as (1) it is slow and time-consuming, (2) it is not

precise and is inherently subjective, (3) it is low-dimensional, (4)

it is limited by the capabilities of human vision, (5) it is limited

by what humans can describe in language, and our favorite, (6)

“it is mind-numbingly boring (9).” Together, these factors can

influence a study’s sample size, and consequently, its statistical

power and the theoretical reliability of results. Without proper

considerations, the potential for various observer ascertainment

biases is limited by the tools of measurement (36). In contrast,

quantified methods, such as sensors and biometrics, can provide

more accurate measurements that do not require tedious

human observation. Data can be collected and processed with

computation such as machine learning to identify patterns

in the behavioral data, making temperament evaluation more

efficient and effective. Sensors can also detect subtle differences

in behavior that cannot be reliably observed by a human, such as

the bite pressure on a toy.

Limitations of quantifying canine
behavior

There are a variety of different approaches to measuring

canine activities, including body-worn sensors and video

analysis (40); however, these approaches all have similar

limitations. When we employ sensors to measure something,

we receive valuable data about behavior, but we also introduce

several constraints. First, we restrict ourselves to only what

the sensors can measure (33). Aspects of the behavior that are

not specifically measured by the sensors can be lost. Secondly,

by adding on-body sensors or cameras in the environment,

our measurements potentially introduce bias into our systems

(41). For example, Clara Mancini showed how the placement of

GPS on a collar changed the ranging behavior of both human

and canine participants (42). Lastly, Miklòsi states that sensor

systems can only recognize those categories of behavior that

had been previously defined (33). In other words, sensors are

unlikely to detect novel or previously unobserved behaviors.

Experimental methodology

This section summarizes our background study described

in Byrne et al. (12). Our goal was to create devices that do

not require training. Fetch toys are among the most common

objects used in play between humans and dogs (43). Although

different breeds tend to vary in their desire to play with a

ball, the retrievers that CCI raises and trains tend to enjoy toy

play. Consequently, we designed new sensors in the form of

common toys with which many dogs naturally engage. We built

a self-contained, ball-shaped sensor approximately the size of

a tennis ball consisting of food-safe silicone. We designed the
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instrumented ball-shaped sensors so that they could be used with

or without a human so we could test for changes in interaction

with the instrumented toys when humans were not directly

involved in the play. Prior research indicates that companion

dogs prefer play activities and interactions that involve humans

over asocial interactions (44). Therefore, we wanted to be able to

test whether the toys with human interaction, vs. the toys alone,

could tell us anything about a dog’s eventual success.

Ethics

The methods and materials were reviewed and approved by

the Institutional Animal Care and Use Committee (IACUC),

the animal subject ethics board, at the authors’ institution. The

experimental protocol (A14109) was informed by conversations

with DogStar Technologies and Canine Companions for

Independence (CCI).

Participants

We collected data from 48 dogs undergoing advanced

training at the CCI facilities in parallel with Berns et al. (14),

as they performed their fMRI experiments on the same cohort.

All the dogs were either Labrador retrievers, golden retrievers,

or lab/golden crosses. All of these dogs were purpose-bred for

the CCI program. Eight of these dogs were selected for other

programs outside our scope (breeding or diabetic alert) or

released due to medical reasons and were removed from our

cohort, leaving us with 40 dogs. Some of the dogs were still

in advanced training and some were already released; however,

we were blind to the outcomes of the dogs during the study

to prevent bias. All dogs had basic obedience training and

socialization and were between 17 and 21 months old, which

is the age that the puppies transition from their puppy-raiser

homes to advanced training at the CCI training centers. More

detailed information on the demographics can be found in (12).

At the end of our study, we learned that of the 40 dogs, 10 were

released due to behavioral reasons, which varied from excessive

barking to fearfulness of riding an elevator. The remaining 30

dogs successfully finished advanced training and were placed

in one of five categories. They could be placed as a skilled

companion, a service dog, a hearing dog, a post-traumatic stress

disorder (PTSD) dog, or a facility dog, each of which has varying

levels of service dog skills involved. Table 1 shows the dog

outcomes for the study.

A skilled companion typically has a calm temperament (as

assessed by the CCI trainers), no health issues (as assessed

by CCI veterinarians), and basic obedience training. They are

placed with individuals who cannotmanage a dog by themselves,

such as children or non-independent adults with disabilities.

A service dog assists with both physical tasks and provides

TABLE 1 Demographics and outcomes of the service dogs.

Outcomes #

Service dog 17

Skilled companion dog 6

Facility dog 4

Hearing dog 1

PTSD dog 2

Behavioral release 10

Medical release (removed) 3

Breeders (removed) 4

Diabetic alert dog (removed) 1

Total dogs 48

emotional support for independent individuals with a disability.

A hearing dog is trained to recognize different sounds for the

hearing impaired. A PTSD dog is trained to help veterans

who suffer from flashbacks or other PTSD-related conditions.

A facility dog is trained to work with a professional therapist

or teacher to help multiple individuals, such as at a school or

therapy facility.

Data collection process

We tested the dogs with a silicone instrumented ball

(described in detail below). We traveled to CCI’s National

Headquarters in Santa Rosa, CA four times, testing a total of 48

dogs.We were blind to any history on the dogs other than names

and ages, to reduce bias in the study. CCI trainers brought the

dogs to us and took them back to the kennels after the study; we

did not observe them outside of the study. We tested each dog

with ten trials of each of the two ball conditions in a randomized

order, with at least 30 mins of rest between:

1. Ball sensor, rolled by human (researcher)

2. Ball sensor, rolled down a ramp (machine)

We performed ten trials of each condition for each dog, for a

total of twenty trials per dog. Each run of ten trials was video

recorded, and after each run, the device’s battery was changed,

and the data and video were uploaded to determine if any loss

occurred. If there was a loss, we re-ran the missing trials. Each

trial was video recorded from two perspectives. One camera was

near the researcher, allowing us to review the trials from the

perspective of the researcher, and another camera was at the

other end of the room focused on the researcher, to capture

early interactions.
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FIGURE 1

Ball-Human Sensor experiment setup. The experimenter rolls the ball, and then (left) the dog is mildly restrained for one second, and (middle)

released to pursue the ball. The dog then retrieves and interacts with the ball (right).

Silicone ball sensor experiment

The silicone ball sensor experiment was conducted in a

closed room, with the shades drawn, to prevent distraction from

trainers and other dogs. Figure 1 shows the experimental setup

for the ball-human condition. Both conditions had a 15
′
×

4
′
wide section of the floor covered in 5mm non-slip PVC

mats so that, as the dogs ran after the ball, they wouldn’t slide

and hit the wall. Before and after each dog’s session, we ran a

magnet along the length of the ball so that we knew the exact

start and finish times. After each session, the sensing board was

removed from the silicone enclosure and the data was uploaded

and removed.

Condition 1—Ball rolled by a stranger. For the first condition,

a researcher unfamiliar to the dogs stood at the end of the

“runway” and rolled the ball toward the other end, holding the

dog back for one second before releasing the dog.

Condition 2—Ball released by machine/ramp. For the second

condition, the dog started each trial next to a ramp, which was

a tube with a curved end constructed of PVC pipe (shown in

Figure 2). Researchers put the ball into the ramp and released it,

simultaneously releasing the dog.

Instrumented ball data collection
system

The instrumented ball sensor is composed of an inner

ball and an outer ball, both molded from silicone. As

shown in Figure 3, the inner ball (bottom) has an opening

to accommodate inserting the electronics and has a locking

mechanism to prevent the outer ball from rotating on the inner

ball. The outer ball (top) has an opening to allow insertion of the

inner ball. The outer ball protects the electronics and provides

air space for the barometric pressure sensor to operate. When

a dog bites the sensor, the air pressure inside the ball increases,

and the electronics record the pressure on an SD card.

Bite force estimations

Tools for measuring bite force continue to be developed,

however, we can provide an approximation of expected bite

forces per breed and by weight. Hyytiäinen et al. constructed a

bite sleeve embedded with compression force sensors and found

that on average German Shepherd Dogs (GSD) (n = 7) and

Belgian Shepherd Dogs, Malinois (BSDMs) (n= 13) police dogs

produced a median bite force of 360.4 Newton (N) and 247.0N,

respectively (45). Lindner et al. (46) use a rawhide-covered force

transducer to measure bite force across 22 pet dogs that range in

weight and size. On average, literature shows that dogs ranging

between 11 and 23 kgs exhibited 168N of bite force, with a

range of 66–340N. Dogs ranging between 23 and 34 kgs had

a mean bite force of 180N (range 40–367N) and dogs heavier

than 34 kgs had a mean bite force of 442N (range 184–937N).

Ultimately, we can expect service dogs to exhibit a bite force of

anywhere between 44N and 937 N.

However, there are several important differences between

measuring bite force and the work presented here. First, it is

important to note that tools for capturing bite force measure

at the point where the teeth meet the sensors. Our work,

however, is not measuring bite force but is measuring the

variability of pressure within the ball. We use this as a proxy

for capturing bite strength, assuming that there is a linear

relationship. Secondly, the measurements are dependent upon

the type of sensors used. For example, a series of compression

force sensors, such as those in the Hyytiäinen et al. paper, will

provide high granularity force measurements across a sleeve,

providing a range of localized measurements where presumably

the force closer to the temporomandibular joint (fulcrum) is

higher than the forces exhibited by the canine teeth; whereas

a single-dimension transducer, such as the Lindner paper, will

provide an average bite force across the rawhide “plate.” We

did not perform a full calibration of our instrumented ball to

capture the mapping of pressure to force, however, the lack of

calibration doesn’t affect the model’s ability to discriminate dogs’

performance. This calibration will be included in future work.
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FIGURE 2

Ball-Ramp experiment setup. The experimenter drops the ball down the enclosed ramp and then (left) the dog is mildly restrained for one

second, and (middle) released to pursue the ball. The dog then retrieves and interacts with the ball (right).

FIGURE 3

Ball sensor. left: outer ball and inner ball; right: electronics and

battery that are placed inside the inner ball.

Instrumented ball implementation

The electronics consist of a custom printed circuit board that

we designed. A barometer and a 9-axis inertial measurement

unit (IMU) were integrated into the board. The barometer is

a sensor that measures the changes and variations in internal

pressure based on the ambient internal air pressure. We chose

this barometer specifically for its calibration specifications—

the value provided for barometric and atmospheric pressure

accounted for pressure sensor linearity and the variability

in ambient temperature, such as a city’s altitude1. Data was

collected in kiloPascals (kPa).

Additionally, our electronics incorporated an IMU device

to capture the force and angular movement exhibited on the

ball. Specifically, the IMU collected changes in X, Y, and Z

values of the accelerometer, gyroscope, and magnetometer. The

accelerometer in the IMU measured the rate of change in

velocity, which allowed us to capture some “kill behaviors”

(shaking toy) as well as characterize the intensity and duration

of the dog’s play behaviors. The IMU’s gyroscope measured

orientation and angular velocity, and let us quantify movement

“gestures,” as well as detect a rolling ball. The magnetometer in

1 Miniature I2C Digital Barometer.16.

the IMU measured the strength and direction of magnetic fields

and gave us the opportunity to perform a sync trigger with a

small magnet useful for synchronizing our data collection with

the video recording.

Lastly, the translucence of the ball allows researchers to

observe the green light inside, indicating that the board has

power. We built two new boards for the ball sensors and six new

silicone balls to prepare for our first test at CCI.

Analysis methodology

Our previous analysis focused on predicting whether a

service dog would be placed in advanced training; however, for

this study, we were interested in constructing hypotheses about

the differences and relationships of toy interactions between

successfully being placed as a service dog or not. Using the data

from our final cohort of 40 dogs, we start by engineering features

and generating a set of summary statistics of the trials. Next, we

used a general linear model (GLM) with a binomial probability

distribution over a dog’s individual trial summary features to

explore which interactions were more likely to be exhibited by

service dogs who are placed in homes. Additionally, to gain

more insight into how these relationships change with respect

to each feature, we estimate service dog success given specific

instrumented ball interactions. This analysis was conducted in

RStudio (47).

Feature engineering of the instrumented
ball

One primary method for automatic behavior classification

is to use rule-based methods for feature engineering. The

disadvantages of this method according to Egnor and Branson

(34) are that rule-based detection is difficult to tune; it may

depend only on a minimal number of features; it fails for

more complicated behaviors; and it rarely generalizes well.

Here, we are more interested in looking at the base features,

constructing summaries of these interactions as opposed to

building out trajectories over time. The primary advantage of
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feature engineering is that it allowed us to simplify our model,

making it faster to run and easier to understand and maintain

over time. Feature engineering allowed us to also understand the

underlying behaviors of the different dog classes and therefore

provide further insight into how these tools can benefit working

and service dog programs.

We constructed 22 features from the raw data of each

of the ball conditions. We constructed these features from

observations during previous generic canine interactions. To

generate the trial summary statistics, we calculate a core set of

features and then determine the average, maximum, and total

measurements of these features during each trial. These features

are visualized in Figure 4.

For the instrumented ball, our features were:

• Interaction Time: the amount of time required for a single

trial, from the time the ball rolled out of the ramp or hand

until the dog retrieved the ball to the handler.

• Number of Bites: the number of times the pressure crosses

a threshold during each trial in a dog’s session.

• Average bite strength: the peak pressure throughout the

duration of a bite.

• Average bite duration: the amount of time between the

beginning and end of a bite.

• Average bite frequency: number of bites in a trial, divided

by the length in seconds of that trial.

• Average bite RMS: the root mean square of all pressure

samples throughout the duration of a bite.

General linear model

The trial summary statistics data is an unbalanced dataset,

where the number of trials was between 8 and 10. The general

equation for GLM is:

yi = β0 + β1X1i + β2X2i + ...+ βkXki + εi,

where the binary response variable, yi, i = 1, is modeled by

a linear function of a set of k explanatory variables, X =

(X1, X2, ... Xk), plus an error term. β represents the coefficients,

or weights, for their associated variable X.

Before conducting our analysis, we used a heatmap

correlation matrix (shown in Figure 5) to identify the

highly correlated features and determine which features

lack multicollinearity. We then remove the variables with

high inter-correlations and perform the analysis with the five

following independent, explainable variables:

1. Average bite duration: Average bite duration within a trial.

2. Average bite strength: Average peak pressure throughout

the duration of a bite.

3. Interaction time: the amount of time required for a single

trial, from the time the ball rolled out of the ramp or hand

until the dog retrieved the ball to the handler.

4. Peak bite frequency: The maximum number of bites in a

trial, divided by the length in seconds of that trial.

5. Condition: This feature can either be “human” or “ramp”.

We then calculate the odd ratios for each feature, which provide

us with an estimate and the confidence intervals of a relationship

between our binary outcomes (48).

Estimated marginal means

We use the output of the GLM to calculate the estimated

marginal means, and their confidence intervals. The estimated

marginal means provides us with the mean response for each

class, adjusted for each of the covariates (49), and visualizes the

deltas between classes.

To calculate the estimated conditional expectation of Y

we use:

E[Y = y |Xi = x, Xcondition],

where Y is the outcome and X is the expectations of the

outcomes given the independent variable on the x-axis and

the condition. We provide a corresponding plot to show the

expectation of predicted outcome over the range of each feature.

Results

In total, we ran 960 trials (10 trials ∗ 2 conditions ∗ 48

dogs).We discard the 160 trials collected from the dogs removed

from our cohort. Out of the remaining trials, the dogs didn’t

interact with the instrumented ball for 41 of the trials in the

“Machine/Ramp” condition and 36 of the trials in the “Human”

condition. We report those as zeros in the data. For example, in

Figure 6, you will see an average bite strength of zero in the plots

and this refers to zero interaction.

Adjusted odds ratios

Adjusted odds ratios provide an interpretable measure to the

general linear model output. These adjusted odds ratios provide

insight into the strength of correlation of a feature to an outcome

while also controlling for other predictor variables. Thus, we

use this adjusted odds ratio to discuss feature importance.

The “Intercept” gives us the “base” log odds, which is the log

odds when all the variables are 0, and the coefficients that are

associated with a variable give us how much that log odds

increase every time the corresponding variable goes up by

1 unit. Per the results shown in Table 2, both Average Bite
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FIGURE 4

A visual description of the engineered bite.

FIGURE 5

Correlation matrix of CCI features collected by the instrumented ball (modeling feature importance with respect to class).
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FIGURE 6

Likelihood and distribution plots for each feature. (A) Top: The likelihood of passing the CCI criteria using average bite strength plotted by

condition. Bottom: Distribution of average bite strength for each condition plotted against CCI outcome. (B) Top: The likelihood of passing the

CCI criteria using peak bite frequency plotted by condition. Bottom: Distribution of peak bite frequency for each condition plotted against CCI

outcome. (C) Top: The likelihood of passing the CCI criteria using average bite duration plotted by condition. Bottom: Distribution of average

bite duration for each condition plotted against CCI outcome. (D) Top: The likelihood of passing the CCI criteria using interaction time plotted

by condition. Bottom: Distribution of interaction time for each condition plotted against CCI outcome.
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Duration [Adjusted OR = 0.12, Pr(>|z|) = 0.00666] and Peak

Bite Frequency [Adjusted OR = 0.97, Pr(>|z|) = 0.07264] show

decreased odds with the likelihood of becoming a service dog.

Across all four features we see that the human condition is more

likely to provide us with higher and potentially more precise

estimates of passing the criteria for being a service dog at CCI.

Distributions and their estimated
marginal means

To understand the influence of these features further, we

display the estimated conditional expectation, or likelihood, of

being placed as a service dog for each feature: Average Bite

Strength (in Figure 6A, Top), Peak bite frequency (in Figure 6B,

Top), average bite duration (in Figure 6C, Top), and interaction

time strength (in Figure 6D, Top). The line in these plots shows

the estimation of a dog passing against a feature, while the

ribbon displays the 95% confidence intervals associated with

those estimations, and the points display the data points of

each class. Per the legend, blue features refer to the Ball-

Human condition, while the red features refer to the Ball-Ramp

condition. Below each likelihood plot, we also provide a boxplot

displaying the distributions of each feature across conditions and

CCI outcomes (see in Figures 6A–D, Bottom).

We also provide the mean, minimum, and maximum values

of the independent features for each condition. Average values

across the entire cohort of dogs are reported, as well as the

mean, min, and max values for the dogs who succeeded in

being placed (pass) and the dogs who did not succeed (fail).

Values for the Ball-Ramp condition can be found in Table 3 and

values for the Ball-Human condition can be found in Table 4.

The primary goal of these tables is to give insight into what

the range of values looked like when the dogs were interacting

with the ball. Therefore, we did not include trials where the

dog did not interact with the ball in this analysis. These “zero-

interaction” trials, however, were included in the estimated

marginal means analysis.

Average bite strength

Average bite strengths for interactions with the Ball-Ramp

condition range between 60 and 139 kPa, reporting a mean

strength of 108 kPa. For trials interacting with the Ball-Human

condition, on average the dogs exhibited a minimum of 102

kPa bite strength and a maximum of 258, where the mean bite

strength hovered around 111 kPa.

Looking across the outcomes of each dog, we see that dogs

who do not get placed, who fail, demonstrate a range of average

bite strength, within the Ball-Ramp condition, from 102 to 119

kPa, with a mean value of 106 kPa when they interact with

the toy. For the Ball-Human condition, however, their average

bite strengths range from 101 to 135 kPa, with a mean value of

TABLE 2 Adjusted odds ratios of the general linear model for CCI

outcomes.

Adjusted OR 2.5% 97.5%

(Intercept) 0.88 0.56 1.40

Average bite strength 1.00 0.99 1.00

Peak bite frequency 0.97 0.93 1.00

Average bite duration 0.12 0.02 0.49

Interaction time 1.00 0.99 1.00

Condition (Human) 1.13 0.80 1.60

109 kPa, and demonstrate a wider range of values than in the

Ball-Ramp condition when they interact.

Dogs who are placed in a role have a wider range of average

bite strength when they interact in the Ball-Ramp condition,

from 60 to 140 kPa, with a mean bite strength of 109 kPa. In

the Ball-Human condition, we find that the minimum values

of bite strength stay around 102 kPa, similar to the dogs who

fail, however, their maximum average bite strength values within

a trial can go up to 258 kPa when the dog interacts with the

instrumented ball. Their mean bite strengths are also slightly

higher than the dogs who fail, at 112 kPa.

The distributions at the bottom of Figure 6A visualize some

of the trends. The plot shows higher ranges of bite strength

when the dogs are interacting with a human and that the bite

strength shows higher variability for dogs who are placed. The

top of Figure 6A shows a downward slope in the likelihood of

passing for dogs who have a higher bite strength, suggesting

that dogs who have higher bite strength will not become active

service dogs.

Peak bite frequency

When the dogs interact with the toys during the trial,

the average peak bite frequencies in the Ball-Ramp condition

range between 0 and 111 max bites/trial time (s), with a mean

frequency of 7 max bites/trial (s). Contrastingly, the dogs exhibit

average peak bite frequencies for the Ball-Human condition

between 0 and 74 max bites/trial (s), however their mean values

are similar to the Ball-Ramp condition, around 6 max bites/trial

(s). The range in general for peak bite frequency in the Ball-

Human condition appears to have less variability. Interestingly,

the zeros as minimum values here demonstrate that there is a

quick but minimal interaction with the toy, as showcased by the

low values in average bite duration and interaction time.

For dogs who do not get placed, their peak bite frequencies

in both the Ball-Ramp and Ball-Human conditions show ranges

of 0–20.20 and 0–41.67 max bites/trial (s), respectively. The Ball-

Human condition shows more variability in dog interaction, as

their mean values are slightly higher at 4 max bites/trial (s).
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TABLE 3 Mean, min, and max values for each independent feature for the ball-ramp condition (feature average and by outcome; does not include

trials with zero interactions).

Avg bite strength (kPa) Peak bite freq [max #/trial time (s)] Avg bite duration (s) Interaction time (s)

Avg Pass Fail Avg Pass Fail Avg Pass Fail Avg Pass z

Mean 108.07 108.96 105.97 6.82 7.16 3.44 0.21 0.24 0.14 10.95 12.11 8.19

Min 60.33 60.33 101.83 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02

Max 139.61 139.61 118.65 111.11 111.11 20.20 2.70 2.70 0.34 64.95 64.95 43.18

TABLE 4 Mean, min, and max values for each independent feature for the ball-human condition (feature average and by outcome; does not include

trials with zero interactions).

Avg bite strength (kPa) Peak bite freq [max #/trial time (s)] Avg bite duration (s) Interaction time (s)

Avg Pass Fail Avg Pass Fail Avg Pass Fail Avg Pass Fail

Mean 111.04 111.87 109.13 5.56 4.58 4.44 0.23 0.23 0.21 9.77 8.64 12.37

Min 101.86 101.93 101.86 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Max 258.19 258.19 135.27 74.07 74.07 41.67 1.04 1.04 0.94 198.50 60.72 198.50

The dogs who do get placed show peak bite frequencies of

0 to 111 max bites/trial (s) in the Ball-Ramp condition, with

a mean peak bite frequency of 5 max bites/trial (s). For the

Ball-Human condition, we find lower values, ranging from 0 to

74 max bites/trial (s), with a mean value of 5 max bites/trial

(s). While the means of the two conditions are the same, the

variability differs.

Overall, the variability between dogs who are placed and

dogs who do not get placed is very different. Interestingly,

in the distribution plot of Figure 6B we see that when the

dog does not get placed, the distribution is wider in the Ball-

Human condition, while the distribution is wider in the Ball-

Ramp condition when the dog is placed. In Figure 6B’s estimated

marginal means plot, we see that the likelihood of passing the

CCI criteria decreases as peak bite frequency increases.

Average bite duration

On average, the average bite duration when a dog interacts

with the instrumented toy in the Ball-Ramp condition, we see a

range between 0.01 and 2.7 s, with a mean time of 0.21 s. The

average bite duration ranges in the Ball-Human condition go

from 0.01 to 1.04 s with a mean score of 0.23s—slightly higher

than the Ball-Ramp condition.

Looking at the dogs who do not get placed, we see that

when the dogs are interacting with the toys in the Ball-Ramp

condition, their bite durations last on average between 0.01 and

0.34 s with a mean time of 0.14 s. In the Ball-Human condition,

the bite durations that the dogs exhibit on average range from 0

to 1.04 s, with a mean value of 0.23 s.

The average bite durations for dogs who do get placed

demonstrate do not appear much different. The dogs who

interact with the ball in the Ball-Ramp condition showcase

ranges from 0 to 2.7s with a mean bite duration of 0.24 s;

meanwhile, the average bite durations in the Ball-Human

condition are lower, ranging from 0.01 to 1.04 s with a mean

value of 0.23 s.

In the distribution plot at the bottom of Figure 6C we see

that the distributions across conditions for dogs who pass are

similar. However, we see differences in average bite duration

within the set of dogs who do not get placed and between the

dogs who get placed and the dogs who do not. Additionally, as

we can see in Figure 6C, as the average bite duration increases

over time, the estimated likelihood of that dog passing reduces.

Interaction time

Lastly, we look at the differences in interaction time. On

average, we find that active trials in the Ball-Ramp condition

had mean interaction times of 10.95 s, with a range of 0.01–

64.95 s. The Ball-Human condition shows a slightly lower mean

interaction time, 9.77 s, but wider spread from 0 to 198.5 s.

Diving into the dogs who did not get placed, we see that

the average interaction time during the Ball-Ramp condition

extends from 0.02 to 43.18 s with a mean of 9.18 s. Contrastingly,

we see that the interaction times range from 0.01 to 198.5 s in the

Ball-Human condition and have a mean value of 12.37 s.

The differences in interaction times for dogs who were

placed lie in the mean values of the distribution. In the

Ball-Ramp condition, the interaction times ranged from 0.01

to 64.95 s with a mean interaction time of about 12 s. The

interaction times for the Ball-Human condition range from 0.01

to 60.72 s and have a mean value of 8.64 s.
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As shown in Figure 6D, the mean values and ranges within

conditions are inverted between dogs who are placed and dogs

who are not. Furthermore, in the estimated marginal means plot

of Figure 6D, we see an upward trend in interaction time for

dogs who are more likely to become a service dog. However, the

high variance exhibited by the confidence intervals suggests a

lack of confidence in that estimation.

Discussion

The primary goal of this research was to assess whether

instrumented toys, and computation in general, could provide

more insight into what a successful service dog means. The

instrumented ball showed promise as a method for helping

characterize temperament by using rule-based methods for

engineering features that are difficult to quantify using other

techniques. Previously, we showed that these toys can predict

whether a service dog is placed, but not why our predictions

are successful.

In this study, we analyze the engineered features within each

trial using a GLM with a binomial probability distribution to

determine which features and interactions were more likely to

be exhibited by successfully placed service dogs. Furthermore,

we estimate the likelihood of service dog success and plot how

those change as the interactions change.We identify that average

bite duration and peak bite frequency contribute the most to our

understanding of service dog suitability using these toys, as their

odds ratios show some level of significance. One hypothesis as to

why average bite duration and peak bite frequency is important

is that service dogs are taught to bite precisely, such as biting

to pull a sock off a foot, and we could potentially be capturing

the differences in dogs who treat the ball as a play object as

opposed to a “thing to precisely interact with.” These findings,

however, support previous studies which have shown chewing as

an important feature for predicting service dog placement (30).

Additionally, it is important to highlight that within our

characterization of a dog’s average bite duration and peak bite

frequency, the distribution of the data has more variability in

the “ramp” condition for dogs who “passed” or were deemed

suitable for service dog work. Furthermore, the distribution of

data across all four features shows the mean scores are slightly

lower when interacting with a human. This finding suggests that

dogs who show less interest in playing with a human are more

likely to successfully be placed.

Except for interaction time, the dogs who do not get placed

as service dogs exhibit a narrower range of distributions for each

independent feature. Reflecting on the study, interaction time is

interesting because two of the 13 dogs who failed played “keep

away” or became aggressive when the humans rolled the ball,

extending the interaction time. This behavior again suggests that

the relationship with any human is nuanced.

In the past, hesitation has been expressed at the inclusion

of both conditions as it can be tedious to run multiple studies;

however, the distribution plots show the importance of having

a human involved in the study implementation as well as

not having a human participating. Again, this appears to be

supported by literature.

The relationship of correlation and
prediction

Tying this analysis back to our original work, we discuss

the individual feature performance of the instrumented ball

interactions (12). In the prior prediction analysis, we summarize

the individual trial data used in this analysis to generate statistics

across a dog’s entire session. Using a subset of these features, we

were able to predict a dog’s suitability with 87.5% accuracy.

While investigating the validity of our prior research, we

showed that variations of the number of bites and average

bite duration independently provided between 72.5 and 82.5%

accuracy of predicting whether a dog would be suitable for

placement within a home, as shown in Table 5.

The analysis presented in this paper supports the prior

prediction analysis. As a result, we can provide insight into

why our computational play-based interactions are indicative of

service dog suitability. In particular, we can say that as a dog

takes longer to bite on their instrumented balls, the likelihood

of that dog being placed in a home reduces significantly.

Limitations

We used f2, a power analysis method for general linear

models, within RStudio’s pwr package to calculate how many

dogs we would need to run to achieve statistical significance.

With the 5 coefficients we use in the GLM, 0.5 statistical

significance, a small expected effect size, and a goal to achieve

a 0.80 power level, we would need to collect ∼641 data points.

Since we use both ramp and human conditions, we collect 20

data points per dog, which equates to 33 (to be inclusive) dogs

worth of data for each research question. Our research achieved

these significance numbers for the Service Dog analysis.

The majority of our limitations lie with our hardware and

our software. Our initial experiments highlighted situations in

which the sensors could fail and allowed us to make them more

robust. Initial problems included:

Silicone failure

Initially, dogs could bite hard enough to puncture the

silicone and consequently damage the electronics inside. We

experimented with different densities and thicknesses of silicone

and discovered that a harder silicone prevented the ball from
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TABLE 5 Individual feature performance metrics in predicting service dog placement (adapted for relevance).

%Accuracy Precision Recall F MCC AUC

Max # bites—ball ramp 82.5% 0.821 0.825 0.803 0.480 0.798

Avg # bites—ball ramp 80% 0.792 0.800 0.766 0.385 0.780

Max # bites—ball human 75% 0.563 0.75 0.643 0.000 0.500

Avg bite duration—ball ramp 72.5% 0.679 0.725 0.690 0.131 0.510

being punctured. We used the same silicone density and

hardness for all of the testing in the CCI study.

Hardware failure

In general, the hardware did not fail unless the ball was

punctured. However, we did have a few instances of the

battery being unplugged, or the SD card being ejected by bites

that perfectly aligned with those junctures. We solved this by

wrapping the inner electronics in soft fabric to cushion them and

to keep them from moving around inside the inner ball.

Inner ball rotation

Some of the harder-biting dogs were able to compress

the outer ball enough that the inner ball could rotate inside

of it, allowing the opening to be exposed. This problem was

exacerbated by the fact that the dog’s saliva could lubricate the

two pieces of the ball to allow them to slip more easily, so dogs

that interacted longer were more likely to rotate the inner ball.

We describe a fully-contained ball in our future work.

Future directions

Self-enclosed

We completed all testing with the original nested-ball

sensor design for continuity. However, we have been designing

and experimenting with a fully-enclosed silicone ball that

would be superior for “real world” use. This improvement

would minimize damage to the internal components and speed

testing, because the ball would not need to be disassembled

to upload the data and change the battery. It would also

allow for us to capture data wirelessly, transmitting all of the

data reliably.

Additional testing to boost accuracy and
increase generalizability

To further refine and verify Smart Toys, we intend to

continue testing what we have discovered on new cohorts

of dogs. As mentioned earlier, the cohort we tested

required training to enter an fMRI and to participate

in being scanned. Given that the normal graduation

rate is 40% and that the graduation rate of this set was

75%, we wonder if the ball could help reject dogs in the

average cohort of CCI candidates even more accurately

than suggested in the testing above. Investigating dogs

in other service programs would allow us to extend

the generalizability of this framework to a wider class of

working dogs.

Leveraging activity recognition to understand
the quality of each interaction and how it
changes over time

Our goal for this study was to initially examine

what it would take to predict the success and failure

of service dogs. Opportunities exist to dive deeper and

investigate how a canine’s interactions vary across different

temperaments. For example, do dogs with varying levels

of reactivity or attachment have different bite patterns?

We are also intrigued by the possibility of using changes

in our features to determine the ongoing health of an

individual dog or their ability to perform their duty on a

given day.

Exploring the relationship of familiar humans
and strangers

We know that there are differences in which portions

of the dog’s brain activate when seeing humans of varying

familiarity. The results above show evidence that play

interactions are altered when a human is involved and

their importance to successful placement as a service

dog. Given the socialization strategies used by most

service dog organizations and the fact that these dogs are

placed in new homes, it would be interesting to study

how varying levels of familiarity influence quantified

play behavior.

Conclusion

In this study, we have shown that play-based interactions

measured using an instrumented ball can quantify a canine’s

object-play behavior. We also constructed a novel methodology
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for building and evaluating predictive models that forecast the

suitability of puppies successfully completing advanced training.

Exploring outputs from the sensors allowed us to identify

various features that are more valuable for the prediction

of a service dog and we used these features to validate

our original predictive model demonstrating 87.5% accuracy.

Furthermore, we discuss why these models are effective models

that could be significant for helping service dog organizations

reduce the cost of training dogs, increase the efficiency of

their programs, and enable trainers to spend more time

developing dogs with temperaments more suitable for service

dog careers.
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