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Syndromic surveillance has been an important driver for the incorporation of “big

data analytics” into animal disease surveillance systems over the past decade. As

the range of data sources to which automated data digitalization can be applied

continues to grow, we discuss how to move beyond questions around the means

to handle volume, variety and velocity, so as to ensure that the information generated

is fit for disease surveillance purposes. We make the case that the value of data-

driven surveillance depends on a “needs-driven” design approach to data digitalization

and information delivery and highlight some of the current challenges and research

frontiers in syndromic surveillance.
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1. Introduction

The continuous and systematic collection and analysis of health-related data–a practice

coined syndromic surveillance (SyS)–has gained momentum in public health since the turn of

the century, buoyed by the putative benefit that SyS will allow detection of disease outbreaks

or other public health trends earlier than traditional surveillance which relies on laboratory test

results or clinical diagnoses.

“Big data analytics” is now recognized as a term referring not to the size of the data

handled, but to the development in technologies needed to extract information from raw data,

in an evolving and complex context (1). In animal health surveillance, this means specifically

being able to convert data into actionable information for decision-makers tasked with disease

prevention, detection and control. In 2011, Fricker (2) provided a broad overview of the issues

related to the use of (digital) biosurveillance in practice. We highlight here his emphasis on the

need to give more attention to system design, to ensure that the right information is available at

the right time and in the right place to inform animal health actions.

By 2011, the idea of incorporating SyS methods into animal health surveillance systems were

being more widely discussed (3). An intensive exploration of various sources of data ensued, as

documented in reviews in 2013 (4), 2015 (5) and 2016 (6). The various initiatives documented

in these reviews tended to share a focus on specific, individual streams of data. In these early

stages, exploration focused on the methodological aspects of converting health events and other

data streams into time-series that could be subjected to temporal aberration detection algorithms

(TADA), and on validating the statistical analyses.

Ten years later, research into what Fricker had called the “operational challenge of

biosurveillance” (ensuring statistical performance) has developed extensively across a range of

veterinary SyS initiatives. But how close are we to achieving his view of a surveillance system that

is designed to take into account stakeholders’ needs and that produces the actionable information

needed to support decision-making in practice?
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2. Materials and methods

Power (7) identified three main characteristics of a decision

support system (DSS): it should facilitate the decision-making

process; it should support rather than automate decision making;

and be able to respond quickly to the changing needs of decision-

makers. The typical components of a DSS are the same as those

we previously outlined for a data-driven surveillance framework

(8)–data acquisition, analyses models and user interface.

There is no specific technical description for a DSS, which should

be “defined in terms of the context and use” (9). System development

can therefore only be successful if the users are explicitly involved.

Sprague (10) argues, however, that not even the decision makers

can anticipate the functional requirements of the system, as their

needs are constantly changing, and the process of decision making

itself can be altered by the system. He suggested that a DSS cannot

be developed using the traditional “analysis, design, construction,

implementation” cycle. Instead, these steps should be combined into

a single step, which is iteratively repeated. The simplest system is built

and delivered to users, and their feedback is continuously captured

and incorporated into the DSS.

We reflect on some open research questions and the associated

challenges these bring to SyS implementation, and suggest how

some of those could be addressed using this simple DSS approach,

which asks a single question: “how can this information improve the

decision process of the final user?”.

In line with our view that early disease detection is too narrow

a goal for data digitalization (8), we borrow the term syndromic

surveillance for its established connotation as the “continuous

monitoring of health data,” though our discussion considers

surveillance of both exotic and endemic diseases.

We anchor our discussion around three main

complementary examples:

(A) time-series of laboratory tests submissions, representing

“typical” SyS;

(B) on-farm records relating to reproductive events in pigs, as an

example of the still under-explored use of production data within SyS;

(C) food-borne surveillance as a One-Health example;

specifically, the monitoring of gastrointestinal illness in humans and

Campylobacter positive slaughter batches of chickens.

3. Results and discussion

3.1. Data acquisition

Most of the early SyS work was data-driven, i.e., focused on data

that was relatively easy for system developers to access. Working

example (A) is a typical case, where data owners, analysts and

decision-makers all sit within the same organization (e.g., a national

veterinary service).When data access is treated as amain impediment

to further system development, only the needs of a subset of animal

health stakeholders are considered. However, the majority of health-

related data is collected by entities within the “animal health” network

(e.g., industry groups) whose interests are different from those

who are trying to draw actionable inferences from those data. For

example, reproductive inefficiency will primarily be considered from

an economic profitability standpoint by the manager of a dairy

operation. That same increase in the number of abortions may be

perceived by the veterinarian as an indicator of some underlying

health issue in the herd. The regional veterinary services, which have

received notifications in the previous 2 weeks of a large number of

calves born with congenital deformities, may interpret this further

as additional suspicion of a regional Bovine Viral Diarrhea outbreak

which may require the enactment of an eradication scheme.

As a result, the field has started to move away from the

pre-conception that data centralization is necessary to conduct

population level surveillance. The technology of data federation

allows the distribution of queries and models from a central

location/body to the data nodes in a stakeholder network, rather

than data having to flow in the opposite direction. In this “code

to data” scenario (as opposed to the traditional “data to code”),

data interoperability is prioritized over data harmonization. We have

previously addressed this discussion and highlighted the importance

of ontologies as a research priority (8).

Some surveillance systems may need to fulfill the decision

support needs of the individual data providers themselves as well

as those of the (non-data generating but policy-making) central

node in the network. System design for implementation in the

case of example (B) will require in the first instance the elicitation

of the farmers’/associations’ management requirements (i.e., their

motivation to join the DSS). More research will subsequently be

required around the technology available to deliver a system that

analyses and delivers information at source, while sending only

limited signals back to the network. Finding a balance between

keeping farmers data as private as they wish, while collecting enough

information to add value to decisions at a broader population level

will require further discussions, with active farmer involvement.

The One Health example (C) represents yet another complex

network of stakeholders. In this case, it is typical for separate

central governmental bodies to have access to different data sets at

the population level. The obligations of animal health and public

health agencies to safeguard the identity of animal owners and

individuals, respectively, may prevent data sharing between agencies

at a high level. These data sources may be accessible, but can

rarely be readily integrated. This is not an issue to solve with data

management technology, but rather a feature to incorporate explicitly

in DSS implementation, and we address this in the data analyses

section below.

3.2. Syndromic indicators

SyS is mainly based on time-series analyses. The creation of a

time-series is straightforward when data providers record the health

events of interest in discrete time slots (commonly, days or weeks), as

in examples (A) and (C): number of tests, number of cases, etc. per

time unit.

Production data are recorded continuously on farms during

normal activities, and events recorded are not necessarily associated

with any health hazard. As such the events of “syndromic”

interest must be defined, and metrics to determine their occurrence

developed (11). Some production data may lose value if aggregated

according to different time unit. In example (B), consider for instance

the recording of the date of farrowing for each individual sow.

The analyses may aggregate the number of farrowings per week

in a particular farm, or report the average number of farrowings
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per sow per year. However, reproductive health may be better

monitored by length of pregnancy, and farm management may thus

be more interested in the time between two farrowings. A series

where every farrowing is a new observation, and the value of the

observation corresponds to the “number of days between farrowings,”

is a continuous time-series. Observations are not grouped in any

particular unit of time, as in the discrete time-series that SyS are

typically designed to handle. Control charts, commonly used in SyS,

were originally designed to monitor industrial processes that more

closely resemble continuous time-series, so the application of TADA

to these types of series is not a bottleneck. The challenges for their

incorporation into automated monitoring systems are rather related

to the definition and interpretation of outputs, and the large number

of potential time-series that must be evaluated. We address system

outputs in more detail below.

3.3. Data analyses

Aberration detection within single time-series has been

intensively explored in SyS. When TADA are applied individually

to time-series that represent counts of one type of syndrome,

from one source, as is typical in (A), their use in practice will

depend on resolving two main questions: how should we interpret

alarms, that is, how to decide when an alarm deserves action?; and

how can we best combine the evidence from multiple series? The

answer to the first question almost certainly depends on the second,

as single alarms are likely meaningless until placed within their

broader context.

The need to combine evidence from multiple data streams

has been addressed and reviewed before in both human (12) and

animal health surveillance (13). However, the statistical solutions to

monitoring multiple parallel time-series only solve a limited part of

the problem. They are applicable in typical cases such as example (A),

when a same source can produce multiple time-series aligned in time,

or data for the same syndrome is coming frommultiple sources, such

as multiple regions (14).

In example (C), evidence combination may be primarily a

question of system design. If the SyS aim is to monitor cases in

humans, using the chicken cases as a predictor will actually explain

a lot of the variability in the number of observations, reducing the

chances of an alarm. It is a good explanatory statistical model, but

a poor fit for SyS goals. A better option might be to develop a

predictive model that uses the chicken data to foresee when human

cases are likely to start increasing. This will however depend on

having access to both of these data sources continuously and in a

timely manner. When data sharing is not possible, alternatives can

be sought by considering this explicitly as a DSS problem. What is

the main decision we are trying to support? If this is preparedness

to act in the case of a human outbreak, it may be enough to

monitor the chicken time-series independently. Results from this

monitoring process would then be continuously transmitted to public

health officials.

Consider now example (B). As noted earlier, the farm-level

indicators will be a combination of discrete and continuous time-

series. Statistically, this poses a challenge to parallel monitoring.

As the number of potential indicators at the farm level is

high, we must find a way to combine their evidence; otherwise,

users are left with a myriad of daily/weekly alarms that they

will find difficult to interpret. To add complexity, statistical

analyses must take into account predictors at different levels.

In a single farm, monitoring an indicator of reproductive

performance, for instance, may demand consideration of the

age/parity of sows. This is not trivial, as typical syndromic

indicators are grouped by unit of time, and therefore TADA

can typically only handle variables that can be summarized per

time point.

Making sense of multiple sources of evidence, all of which

contribute to situational awareness around the same problem,

remains an open area of research. If surveillance is framed as a

problem of DSS design, the solution may not (only) be statistical.

Rather, it involves a better understanding of the decisions we

aim to support, and how each of the pieces of information

generated can be used in that decision process. This will require

intensive social research involving all stakeholders in the network;

or, in DSS implementation terms, several rounds of iteration

with users.

3.4. Interpreting alarms–the
decision-making process

In order to start involving stakeholders in rounds of system

implementation in practice we are missing one essential component

of a DSS: the user interface. Discussions around dashboards

for visualization of times-series analyses often stumble on a

disconnection between the expertise of those who perform the

analyses, and understand their outputs, and the experience

of decision-makers.

The DSS approach suggests that the solution is to construct

the simplest dashboard we can, and be prepared to iterate

through the entire continuum, from data ingestion to output

visualization, continuously, with direct user involvement. Decision-

makers are not invited to design the system abstractly, but

to use the system and give feedback based on one simple

question: “how could this better support your decision-making

process?” (15).

This approach assumes that implementation is context-based,

which then leaves one main question–what is the decision-making

process that we are primarily trying to support? “Early disease

warning” may be too vague a goal to inform concrete design and

implementation choices. As Fricker cautioned in his seminal paper

in 2011 (2): “Looking for everything means it is harder to find any

one thing.”

Phrasing decisions in a common language which both system

designers and users are familiar with will likely require narrowing

down to concrete threats. This may mean that we design systems

not to “detect emerging diseases” but which can, for instance,

“provide an early signal of the introduction of PRRS (Porcine

Reproductive and Respiratory Syndrome) in this specific region.”

While the focus on specific diseases seems to go against the general

preparedness that SyS was intended to address, it enables us to move

forward with the practical implementation of real-world applications,

which support surveillance in practice. It will bring stakeholders

together and establish collaborative practices that can be used to
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gradually expand system goals, and address an increasing number of

decision scenarios.

4. Conclusion

The data-driven focus of SyS to date has resulted in times-

series analyses being applied to the data at hand, without sufficient

consideration being given as to the key questions such analyses

should be attempting to answer. Implementation in practice will

require that we define the following: who are the decision makers?;

what specific problems they are trying to handle?; and how will

information that supports their decisions can be delivered in

consumable ways? The field of decision support systems design

suggests that the main goal should not simply be, “getting the

right information to the right person at the right time,” but that

“the ultimate objective must be viewed in terms of the ability of

information systems to support the improved performance of people

in organizations” (7). We suggest that a DSS approach to SyS system

design will help solve many of the current methodological challenges,

in particular those associated with combining numerous and varied

sources of evidence as well as assisting users tomake sense of complex

system outputs.
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