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Antibody-dependent
enhancement of porcine
reproductive and respiratory
syndrome virus infection
downregulates the levels of
interferon-gamma/lambdas in
porcine alveolar macrophages in
vitro

Liujun Zhang, Xing Feng, Huandi Wang, Shaojun He, Hongjie Fan*

and Deyi Liu*

College of Animal Science, Anhui Science and Technology University, Chuzhou, China

Fc gamma receptor-mediated antibody-dependent enhancement (ADE) can
promote virus invasion of target cells, sometimes exacerbating the severity of the
disease. ADE may be an enormous hurdle to developing e�cacious vaccines for
certain human and animal viruses. ADE of porcine reproductive and respiratory
syndrome virus (PRRSV) infection has been demonstrated in vivo and in vitro.
However, the e�ect of PRRSV-ADE infection on the natural antiviral immunity
of the host cells is yet to be well investigated. Specifically, whether the ADE
of PRRSV infection a�ects the levels of type II (interferon-gamma, IFN-γ) and
III (interferon-lambdas, IFN-λs) interferons (IFNs) remains unclear. In this study,
our results showed that PRRSV significantly induced the secretion of IFN-γ,
IFN-λ1, IFN-λ3, and IFN-λ4 in porcine alveolar macrophages (PAMs) in early
infection, and weakly inhibited the production of IFN-γ, IFN-λ1, IFN-λ3, and
IFN-λ4 in PAMs in late infection. Simultaneously, PRRSV infection significantly
increased the transcription of interferon-stimulated gene 15 (ISG15), ISG56, and
2
′
, 5

′
-oligoadenylate synthetase 2 (OAS2) in PAMs. In addition, our results showed

that PRRSV infection in PAMs via the ADE pathway not only significantly decreased
the synthesis of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 but also significantly enhanced
the generation of transforming growth factor-beta1 (TGF-β1). Our results also
showed that the ADE of PRRSV infection significantly reduced themRNAs of ISG15,
ISG56, and OAS2 in PAMs. In conclusion, our studies indicated that PRRSV-ADE
infection suppressed innate antiviral response by downregulating the levels of
type II and III IFNs, hence facilitating viral replication in PAMs in vitro. The ADE
mechanism demonstrated in the present study furthered our understanding of
persistent pathogenesis following PRRSV infection mediated by antibodies.
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Introduction

Porcine reproductive and respiratory syndrome (PRRS) is a

highly contagious disease of pigs, which first emerged in North

America in the late 1980s and subsequently in Western Europe in

the early 1990s (1). PRRS is a significant threat to swine health.

It is best characterized by severe respiratory disorders and high

mortality in piglets, preterm birth, fetal death, late-term abortions,

and mummified fetuses in pregnant sows, resulting in devastating

economic losses to the modern pig industry worldwide for over

three decades (2, 3). PRRS virus (PRRSV), as the etiological agent

of this disease, is an enveloped virus containing one single-stranded

positive RNA genome of ∼15.4 kb in length. This virus, together

with the equine arteritis virus, simian hemorrhagic fever virus,

and mouse lactate dehydrogenase-elevating virus, belongs to the

Arteriviridae family within the order Nidovirales (4). All PRRSV

strains are grouped into two species: PRRSV-1 (European or type

1 genotype) and PRRSV-2 (North American or type 2 genotype).

Interestingly, although both genotypes show only ∼60% identity

at the nucleotide levels of genomic sequences with a high degree

of antigenic divergence, they lead to similar clinical manifestations

in infected pigs (5, 6). Swine are the only known natural hosts of

PRRSV. The porcine monocyte-macrophage lineage, particularly

monocyte-derived inflammatory dendritic cells, and differentiated

macrophages, such as porcine alveolar macrophages (PAMs), are

the PRRSV principal permissive cells (7, 8). In addition, the

immortalized monkey kidney epithelial cell line, Marc-145 cells,

can be infected by PRRSV (9).

Antibody-dependent enhancement (ADE), an

immunopathological phenomenon in which preexisting specific

non- or sub-neutralizing antibodies enhance the entry and

replication of the virus in the host cells, has been described for

many viruses, including PRRSV (10). As early as 1993, Christianson

et al. reported that PRRSV infectivity increased in fetuses by adding

porcine serum containing PRRSV antibodies (11). Later, Yoon

et al. directly revealed the presence of PRRSV-ADE in vivo by

injecting swine with PRRSV-specific antibodies. The duration of

viremia is more significant in pigs injected with sub-neutralizing

anti-PRRSV immunoglobulin G (IgG) before the virus challenge

than in control pigs injected with normal IgG (12). The prolonged

duration of viremia and the isolation of the virus from the tissues

of piglets with low maternal antibodies ulteriorly provide evidence

of in vivo PRRSV-ADE activity (13). In vitro, the enhanced

replication of PRRSV in the presence of sub-neutralizing specific

antibodies against PRRSV has also been confirmed (14, 15).

These studies show that ADE is likely to increase the severity

of PRRS and the susceptibility to PRRSV in pigs with declining

maternal antibodies for PRRSV or with low levels of specific

antibodies induced by exposure to wild-type or vaccine virus

strains. Currently, commercially available PRRS vaccines provide

insufficient protection against PRRSV, especially emerging and

heterologous field virus strains (16–18). The immunological effect

of PRRS vaccines is impacted by multitudinous host factors, in

which ADE may be one crucial factor (19, 20). Vaccine-induced

enhancement of susceptibility to virus infection or aberrant viral

pathogenesis is also a significant obstacle in developing certain

paramyxo-, corona-, flavi-, and lentivirus vaccines (21, 22).

Therefore, more effective prevention and control strategies for

PRRSV are still needed. A clear understanding of the ADE event

could prevent the disease.

The innate immune response is the first line of host protection

against viral infections. The suppression of intracellular antiviral

immune signals by the virus using the ADE mechanism plays a

vital role in the pathogenesis of persistent infection of the disease

(23–25). PRRSV modulates host innate antiviral immunity by

modifying the expression patterns of crucial antiviral cytokines

such as interferons (IFNs) (26, 27). However, the roles of PRRSV-

ADE in the natural immune defense system of the host are

not well understood. In this study, we assessed the effect of

PRRSV-ADE infection on the production of type II (IFN-γ)

and III (IFN-λ1, IFN-λ3, and IFN-λ4) IFNs, and surveyed the

transcription expression of several critical downstream antiviral

protein genes (interferon-stimulated gene 15, ISG15; ISG56; and 2
′
,

5
′
-oligoadenylate synthetase 2, OAS2). The current study suggests

that PRRSV infection suppressed IFN-γ/λs antiviral responses

via the antibody-dependent pathway in PAMs in vitro. These

results would help facilitate the understanding of PRRSV-persistent

pathogenesis and antiviral vaccination strategies.

Materials and methods

Cells

Marc-145 cells maintained in Dulbecco’s modified Eagle’s

medium (Sangon Biotech, Shanghai, China) supplemented with

10% fetal calf serum (FCS) (Tianhang Biotech, Huzhou, China)

were used to propagate PRRSV and titrate its 50% tissue culture

infectious dose (TCID50) employing the Reed–Muench method.

PAMs derived from 3 to 6-week-old PRRSV-negative piglets using

lung lavage were cultivated in a Roswell Park Memorial Institute

(RPMI)-1640 medium (Sangon Biotech) containing 10% FCS plus

100µg/ml streptomycin and 100 U/ml penicillin (Sangon Biotech).

These two cells were kept in a humidified atmosphere with 5% CO2

at 37◦C before use.

Virus and antibodies

The type 2 PRRSV HeN-3 strain used in the current study

was a kind gift from Prof. Pingan Xia of Henan Agricultural

University. The inactivated purified HeN-3 virus particles were

used to immunize pigs to produce PRRSV-positive sera (Enzyme-

linked immunosorbent assay (ELISA) titer: 6400). PRRSV-

negative serum samples were collected from PRRSV-negative

healthy piglets. The IgG antibodies were depurated using diethyl-

aminoethanol chromatography.

Preparation of infectious PRRSV–antibody
complexes

Approximately 2000 TCID50/ml of PRRSV was fully incubated

with an equal volume of 850µg/ml of purified PRRSV-positive
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IgG (PPI) or PRRSV-negative IgG (PNI) for 1 h at 37◦C to yield

infectious virus–antibody complexes (PRRSV+PPI) or controls

(PRRSV+PNI), respectively.

PRRSV or PRRSV-ADE infection in PAMs

Six hours before infection, PAMs were dispensed into 24-

well plates (Sangon Biotech) at a density of 5 × 105 cells/well.

After discarding the culture solutions and washing the cells

gently three times with FCS-free RPMI-1640, 200 µl poly (I:C)

(100µg/ml) (Sigma, Missouri, USA), PRRSV (200 TCID50),

PRRSV+PNI, or PRRSV+PPI was inoculated onto the cell

monolayers at 37◦C for 2 h. Then, the inoculum was removed,

and 500 µl fresh growth media was added. The uninfected

cells served as mock trials. The cells of each well and culture

supernatants were harvested every 12 h post-infection for real-

time RT-PCR (28), virus titration, relative quantitative RT-PCR, or

ELISA assay.

Relative quantitative RT-PCR

Total RNA from PAMs was extracted using TRIzol reagent

(Takara Bio, Beijing, China), and cDNAs were synthesized using

RT reagent Kits (Takara Bio). Subsequently, the cDNAs were used

for the amplification of relative quantitative RT-PCR. The primer

pairs are described in Table 1. The PCR reaction volume was 20

µl and comprised 10 µl TB Green R© Premix Ex TaqTM II (Tli

RNaseH Plus) (Takara Bio), 2 µl forward and reverse primers

(20 pmol/µl), 2 µl cDNA template, and 6 µl sterile double-

distilled water. The relative quantitative RT-PCR was performed

on a QuantStudio5 Real-Time PCR System (Applied Biosystems,

Massachusetts, USA). The thermocycling conditions were 95◦C

for 5min, 95◦C for 5 s, and 60◦C for 34 s with 40 cycles. The

2−11C
T method was adopted to analyze the quantification of the

target genes.

ELISA assay

The protein concentrations of IFN-γ, IFN-λ1, IFN-

λ3, IFN-λ4, and TGF-β1 in the cell culture supernatants

were detected using commercial ELISA Kits according

to the manufacturer’s protocols. The ELISA Kits for

IFN-γ or TGF-β1 were purchased from R&D Systems

in the United States (Minnesota). MyBioSource Inc.

(California, USA) provided the IFN-λ1, IFN-λ3, and IFN-λ4

ELISA Kits.

Statistical analysis

The statistical analyses were conducted using a two-way

analysis of variance (ANOVA) followed by Bonferroni post-tests

using GraphPad Prism 5.0 (GraphPad Software Inc.). A p-value of

<0.05 was considered significant.

TABLE 1 Primers used for the relative quantitative RT-PCR.

Name# Sequence (5
′
-3′)

IFN-γ F AGCCAAATTGTCTCCTTCTA

IFN-γ R AAGTCATTCAGTTTCCCAGA

IFN-λ1 F AACTTCAGGCTTGCATCAGG

IFN-λ1 R TCTTTCTTTGTGGCTTCTTGG

IFN-λ3 F TTGGAGGACTGGAACTGC

IFN-λ3 R AGCTGGGCGTGGATGTG

IFN-λ4 F GTGGCTATGGGACTGTGGG

IFN-λ4 R TCCAGGGAGCGGTAGTGAG

TGF-β1 F GAGCCAGAGGCGGACTA

TGF-β1 R GGGTGCCCTTGAATTTATC

ISG15 F GGTGCAAAGCTTCAGAGACC

ISG15 R GTCAGCCAGACCTCATAGGC

ISG56 F TCAGAGGTGAGAAGGCTGGT

ISG56 R GCTTCCTGCAAGTGTCCTTC

OAS2 F CACAGCTCAGGGATTTCAGA

OAS2 R TCCAACGACAGGGTTTGTAA

β-actin F CGGGACATCAAGGAGAAGC

β-actin R CTCGTTGCCGATGGTGATG

#F, forward primer; R, reverse primer; The ISG15, ISG56, and OAS2 primers were quoted

from reference (29).

Results

Presence of PRRSV-ADE activity in swine
anti-PRRSV antibodies (IgGs)

To confirm whether swine anti-PRRSV specific antibodies

mediated the ADE phenomenon, PRRSV-positive IgG (PPI) and

PRRSV-negative IgG (PNI) originating from pigs were tested for

the activity of ADE infection by comparing their ability to enhance

PRRSV replication in PAMs. Approximately 850µg/ml of the

purified PPI or PNI was mixed with 2,000 TCID50/ml of PRRSV

in equal volumes and incubated at 37◦C for 1 h to accelerate

the generation of infectious virus–antibody immune complexes

(PRRSV+PPI) or control groups (PRRSV+PNI). The PAM cell

monolayers seeded into 24-well plates were infected with PRRSV,

PRRSV+PNI, or PRRSV+PPI for the indicated time points. The

infected cell supernatants were collected for demonstration of

the yields of the virus by measuring the RNA and TCID50 of

PRRSV. The results are shown in Figure 1. Compared with the

control group cells infected with PRRSV+PNI, clear and significant

increases (p < 0.001) in both PRRSV RNA and TCID50 were

observed in cell culture supernatants of PAMs infected with

PRRSV+PPI for 12–72 h. The increases in viral RNA and TCID50

in PAMs mediated by PPI ranged from 18.18 to 38.88 folds and

14.39–34.22 folds, respectively. By contrast, the kinetics of viral

infectivity in PRRSV +PNI and PRRSV alone infected cells were

similar. These results suggest that PPI facilitates the proliferation

of PRRSV in PAMs. Therefore, ADE activity exists in swine anti-

PRRSV antibodies.
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FIGURE 1

Detection of PRRSV-ADE activity in PAMs. PRRSV RNA (A) and TCID50 (B) in harvested culture supernatants of the PAM cells following PRRSV,
PRRSV+PPI, or PRRSV+PNI infection were measured using real-time RT-PCR and viral titration experiments. The bars indicate the RNA copies or
TCID50 titers of PRRSV. The error bars indicate the mean ± standard error of the mean (SEM) from three independent experiments. ***p < 0.001.

PRRSV induces IFN-γ/λs antiviral responses
in PAMs

Several key innate immune cytokines (IFN-γ, IFN-λ1, IFN-

λ3, IFN-λ4, and TGF-β1) and downstream antiviral protein genes

(ISG15, ISG56, and OAS2) closely associated with viral replication

were selected for post-PRRSV infection investigation to determine

the effect of the virus on innate antiviral response in PAMs. In

the case of PRRSV infection alone, the transcripts of IFN-γ, IFN-

λ1, IFN-λ3, and IFN-λ4 in the infected PAM cells increased

remarkably at 12–24 h postinfection and decreased slightly at

36–72 h postinfection (Figures 2A–D). Additionally, the protein

concentrations of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 in the

infected cell culture supernatants were significantly enhanced by

PRRSV at 12–48 h postinfection, displaying rapid decline with

the duration of virus infection (Figures 3A–D). Nevertheless,

the data in Figures 2E, 3E show that the mRNA and protein

concentration of TGF-β1 in the PAM cells increased observably

in the case of infection with PRRSV for 12–72 h. Furthermore,

relative quantitative analysis shows that the transcriptional levels

of ISG15, ISG56, and OAS2 in cells infected with PRRSV for

12–60 h were signally heightened compared with the untreated

mock control group cells (Figures 2F–H). These results suggest that

PRRSV infection induces IFN-γ/λs antiviral responses in PAMs.

PRRSV-ADE represses IFN-γ/λs antiviral
responses in PAMs

We demonstrated that PRRSV could activate the IFN-γ/λs

antiviral responses of host cells. We further examined whether the

ADE of PRRSV infection also affected the innate antiviral response

by comparing the mRNA or protein levels of IFN-γ, IFN-λ1,

IFN-λ3, IFN-λ4, TGF-β1, ISG15, ISG56, and OAS2 in PAMs cells

treated with PRRSV+PNI or PRRSV+PPI for the indicated time

points. The results obtained from the relative quantitative RT-

PCR and ELISA assay show that the expression profiles of IFN-γ,

IFN-λ1, IFN-λ3, IFN-λ4, TGF-β1, ISG15, ISG56, and OAS2 in

PRRSV+PNI- and PRRSV+PPI-treated macrophages are similar

(Figures 2, 3). However, there is a significant downregulation of

the transcriptional levels and protein production of IFN-γ, IFN-

λ1, IFN-λ3, and IFN-λ4 in PRRSV+PPI-infected macrophages

at 12–72 h postinfection compared with PRRSV+PNI cultures

(Figures 2A–D, 3A–D). By contrast, the TGF-β1 mRNA and its

protein levels were significantly upregulated in the macrophages

following the PRRSV+PPI infection (Figures 2E, 3E). Moreover,

as summarized in Figures 2F–H, the quantitative analysis shows

that the amounts of ISG15, ISG56, and OAS2 mRNA are reduced

significantly in the PAM cells infected with PRRSV+PPI for any

time point compared with the PRRSV+PNI-infected PAM cells.

These results suggest that PRRSV-ADE infection represses IFN-

γ/λs antiviral responses in PAMs.

Discussion

IFNs have become essential to the natural immune system

against viruses by evoking potent early antiviral responses and

regulating subsequent adaptive immunity (30). Three types of IFNs

have been described in the IFN family, namely types I–III. Type

II IFN only contains a single IFN-γ. Conversely, both type I and

III IFNs are composed of multiple subtypes. For example, the

groups of type I IFNs include IFN-α, IFN-β, IFN-ω, IFN-ε, and

IFN-κ. The recently discovered type III IFNs, also called IFN-λs,

consist of three members in pigs (IFN-λ1, IFN-λ3, and IFN-λ4),

two in mice (IFN-λ2 and IFN-λ3), and four in humans (IFN-

λ1, IFN-λ2, IFN-λ3, and IFN-λ4) (31, 32). The binding of IFNs
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FIGURE 2

The e�ect of PRRSV or PRRSV-ADE on mRNAs of the innate immune cytokines and antiviral protein genes in PAMs. The mRNAs of the innate immune
cytokines and antiviral protein genes in treated PAM cells were evaluated using relative quantitative RT-PCR. (A) IFN-γ mRNA, (B) IFN-λ1 mRNA, (C)
IFN-λ3 mRNA, (D) IFN-λ4 mRNA, (E) TGF-β1 mRNA, (F) ISG15 mRNA, (G) ISG56 mRNA, and (H) OSA2 mRNA. The bars indicate the relative expression
levels of mRNAs of the innate immune cytokines or antiviral protein genes. The error bars indicate the SEM from three independent experiments.
***p < 0.001, **p < 0.01, *p < 0.05, and ns, no significance.

FIGURE 3

The e�ect of PRRSV or PRRSV-ADE on proteins of the innate immune cytokines in PAMs. The proteins of the innate immune cytokines in the culture
supernatants of the PAM cells treated with the indicated methods were quantified using commercial ELISA Kits. (A) IFN-γ protein, (B) IFN-λ1 protein,
(C) IFN-λ3 protein, (D) IFN-λ4 protein, and (E) TGF-β1 protein. The bars indicate the protein concentrations of the innate immune cytokines. The
error bars indicate the SEM from three independent experiments. ***p < 0.001, **p < 0.01, *p < 0.05, and ns, no significance.

to their corresponding receptors, with ensuing downstream signal

transduction, triggers the expression of a series of ISGs, such as

ISG15, ISG56, and OAS2. These ISGs mediate the antiviral effects

of IFNs (33). There is conflicting evidence regarding the ability

of PRRSV to induce IFN responses both in vivo and in vitro

(27, 34, 35). Further research has shown that different PRRSV
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strains differ in their capability to induce IFNs (36, 37). We

found that after infection with the PRRSV HeN-3 strain, PAMs

secreted appreciable levels of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4

in the early stage of infection. Furthermore, a significant increase

was observed in the mRNA of antiviral genes ISG15, ISG56, and

OAS2 in the PRRSV-infected PAMs compared with the mock-

treated PAMs. However, due to the lack of available antibodies, we

could not quantify the protein levels of these antiviral genes. Our

current results collectively demonstrate that PRRSV can induce

IFN-γ/λs antiviral responses in its host cells. IFN regulatory factor-

3 (IRF-3), IRF-7, and nuclear factor kappa-B (NF-κB) are critical

transcription factors of IFN production (32, 38). The results in

Supplementary Figures 1A, B show that the mRNA levels of IRF-3,

IRF-7, and NF-κB in PAMs are considerably upregulated by PRRSV

at 12–24 h postinfection. PRRSVmay activate IFN-γ/λs production

by upregulating the levels of these transcription factors. IFNs are

not the only cytokines affected by PRRSV. TGF-β1 is a negative

immune regulator that may influence virus replication (39). We

found that PRRSV enhanced the transcription and protein levels

of TGF-β1 in PAMs, consistent with previous reports (40, 41).

Halstead and O’Rourke first suggested the FcγR-mediated

ADE mechanism of virus infection in 1977 (42). Macrophages

are immune cells and important host cells of various respiratory

pathogens. ADE may promote the viral entry into macrophages

through Fc receptor-mediated endocytosis and alter the

endocellular signaling pathways, leading to their switching from

an antiviral mode to a viral susceptibility mode (25, 43, 44). Data

from several early studies show that there was a downregulation

of type I (IFN-α/β) and II (IFN-γ) IFNs during ADE infection of

the dengue virus or Ross river virus (45–47). A strong suppression

of type I IFNs, including IFN-α and –β, was also reported in the

ADE of PRRSV infection (29, 48). Whether PRRSV-ADE infection

affects the expression of type II and III IFNs is still unknown. The

results of the current study show a suppressive effect of IFN-γ,

IFN-λ1, IFN-λ3, and IFN-λ4 by PRRSV-ADE infection in PAMs.

By contrast, the production of TGF-β1 in PAMs increased after

PRRSV infection via the ADE pathway. Moreover, compared with

PRRSV+PNI-infected PAMs, a notable transcription decrease in

ISG15, ISG56, and OAS2 is seen in PRRSV+PPI-infected PAMs.

These results suggest the inhibition of IFN-γ/λs antiviral responses

of host cells through the ADE of PRRSV infection. Early studies

demonstrated that type I-III IFNs show powerful anti-PRRSV

effects (49, 50). Thus, it is not surprising that PRRSV may take

advantage of the ADE mechanism to antagonize the activation

of these IFNs in target cells for survival. We also observed that

PRRSV-ADE infection visibly cut down the transcripts of IRF-3,

IRF-7, and NF-κB in PAMs in the early stage of infection (after

12–24 h infection) (Supplementary Figures 1A, B), implying that

disruption of these three transcription factors may play a crucial

part in PRRSV-ADE infection. In summary, our findings indicate

that the ADE pathway of PRRSV infection represses innate antiviral

immunity by downregulating the levels of type II and III IFNs,

thereby enhancing viral replication. The detailed signaling pathway

through which ADE inhibits the production of IFNs remains

to be further elucidated in future studies, which will be critical

for an in-depth understanding of the molecular mechanisms of

ADE-mediated innate antiviral immunosuppression.

Conclusions

PRRSV alone could induce an antiviral response by

upregulating the secretion of type II and III IFNs in PAMs in early

infection. Moreover, via the ADE pathway, PRRSV suppressed

antiviral immunity by downregulating the synthesis of type II

and III IFNs in PAMs at any time point postinfection, thereby

enhancing viral replication. The ADE mechanism described in

this study facilitated our understanding of the pathogenesis of

PRRSV-persistent infection.
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