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Feeding of fish oil and
medium-chain triglycerides to
canines impacts circulating
structural and energetic lipids,
endocannabinoids, and non-lipid
metabolite profiles

Matthew I. Jackson1* and Dennis E. Jewell1,2

1Pet Nutrition Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States, 2Department of Grain Science

and Industry, Kansas State University, Manhattan, KS, United States

Introduction: The e�ect of medium-chain fatty acid-containing triglycerides

(MCT), long-chain polyunsaturated fatty acid-containing triglycerides from fish oil

(FO), and their combination (FO+MCT) on the serum metabolome of dogs (Canis

familiaris) was evaluated.

Methods: Dogs (N = 64) were randomized to either a control food, one with

7% MCT, one with FO (0.18% eicosapentaenoate and 1.3% docosahexaenoate),

or one with FO+MCT for 28 days following a 14-day washout period on the

control food. Serum metabolites were analyzed via chromatography followed by

mass spectrometry.

Results: Additive e�ects of serum metabolites were observed for a number of

metabolite classes, including fatty acids, phospholipids, acylated amines including

endocannabinoids, alpha-oxidized fatty acids, andmethyl donors. Some e�ects of

the addition of FO+MCT were di�erent when the oils were combined compared

with when each oil was fed separately, namely for acylcarnitines, omega-oxidized

dicarboxylic acids, and amino acids. Several potentially beneficial e�ects on health

were observed, including decreased circulating triglycerides and total cholesterol

with the addition of FO (with or without MCT) and decreases in N-acyl taurines

with the addition of MCT, FO, or FO+MCT.

Discussion: Overall, the results of this study provide a phenotypic characterization

of the serum lipidomic response to dietary supplementation of long-chain n3-

polyunsaturated and medium-chain saturated fats in canines.
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1. Introduction

The impact of the gut microbiome on host development, health, and metabolism has

been well-studied in the last few decades, with dietary factors affecting the composition and

function of the microbiome in both companion animals (including dogs) and humans (1–3).

Several of these studies have linked the composition of the gut microbiome with circulating

lipids in humans (3, 4). Medium-chain triglycerides (MCTs) and long-chain polyunsaturated

triglycerides (LCPUTs) are dietary fatty acids with demonstrated positive health effects.

While each can provide dietary energy, they can also affect physiology.
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Prior study has shown that MCT can cause changes in the gut

microbiome in a mouse model and in pigs (5, 6). In addition to

the effects on the microbiome, MCT confers positive effects on

the intestine. MCT supplementation appeared to protect rats from

endotoxemia, preventing mortality, and injury to the gut and liver

following lipopolysaccharide administration (7) and improving

chemically induced colitis in rats (8). Supplementation with capric

acid resulted in positive changes in the structure of the ileal mucosal

epithelium (9) and protected against induced intestinal oxidative

stress, inflammation, and barrier function, both studied in pigs (10).

These effects may have implications on circulatory metabolites of

microbial origin.

The n3 long-chain polyunsaturated fatty acids [LCPUFA(n3)]

have frequently been tested in canine foods and have shown

to be effective in changing many relevant biological outcomes.

Both LCPUFA(n6) (11) and LCPUFA(n3) (12) are essential fatty

acids in dogs. Fish oil (FO), which is high in LCPUT, can affect

the composition of the gut microbiome as seen in studies on

obesity (13, 14) and brain aging (15) in mice. Foods high in

docosahexaenoic acid (DHA; C22:6n3) were shown to improve

cognitive learning, immunological, and retinal function in puppies

(16). FO with an eicosapentaenoate (EPA; C20:5n3)/DHA ratio of

approximately 1.5 was effective at reducing urinary 11-dehydro

thromboxane B2 concentration in dogs, supporting its effectiveness

in reducing inflammation (17). EPA and DHA have been shown

to aid in the management of osteoarthritis (18–20), including

reducing the needed medications in managing this disease (21).

EPA and DHA also confer anti-inflammatory effects (22) and

lead to modifications in the gut microbiome in both humans and

animal models (13, 23). Consumption of FO by dogs enriches

the composition of circulating complex lipids with DHA (24).

As with MCT, LCPUFA(n3) appear to exert protective effects on

gut epithelial barrier function in an in vitro model (25). The

LCPUFA(n6) linoleate (18:2n6) is considered essential (26), and its

levels decrease in the skin of dogs with ichthyosis (27). The ratio of

n6/n3 LCPUFA may be a determinant of the degree to which these

LCPUFAs are beneficial (28). In some contexts, LCPUFA(n6) may

be detrimental to gut health, as shown through the modification of

the gut microbiome in a mouse model (29). Whereas FO has been

used therapeutically to manage canine disease related to immune

status and inflammation, MCTs have been employed in companion

animal dogs as a therapeutic intervention to aid in the management

of seizures (30, 31) and cognitive decline (32). MCT combined

with FO appears to decrease inflammation (33, 34) in mice, may

modulate risk factors of cardiovascular disease (35) in a rat model,

and may abate age-related changes in circulating concentrations of

fatty acids and carnitine metabolites in dogs (36). The combination

of MCT and FO has also been used to manage myxomatous mitral

valve heart disease in dogs (37). However, in that study, FO was

predominantly composed of EPA with relatively little DHA. A

previous study in cats tested the effects of foods includingMCT, FO,

or both on the plasma metabolome and found a combined effect

on several lipid classes, including those derived from gut microbial

metabolism (38).

Canine physiological states share commonality with human

counterparts; for example, there are parallels between the

physiology of human and canine aging (39) and obesity (40, 41). As

well, dogs are a model for human gestational diabetes (42), insulin-

dependent diabetes mellitus (type 1) (43), and glucocorticoid

therapy (44). Dogs are also prone to endocrine diseases that afflict

humans, including non-insulin-dependent diabetes mellitus (type

2) (40), Cushing disease (45), and hypothyroidism (46). Dogs

in these life stages, disease states, and conditions present with

altered lipid profiles and dyslipidemia similar to humans. Aging

and obesity elevate triglycerides in both humans (47, 48) and dogs

(49, 50). Progression and outcome of human type 2 diabetes are

influenced by diet and are associated with hypercholesterolemia

(51); canine type 2 diabetes is also impacted by diet type (52),

and experimental canine diabetes manifests hypercholesterolemia

(43), although the organ-specific contributions to cholesterol

accretion differ between species. Excess levels of glucocorticoids

promote dyslipidemia (53) and changes in the circulating complex

lipids (en toto, the “lipidome”) that accompany acute and

chronic glucocorticoid or adrenocorticotropin hormone provision

have recently been described in dogs (54). Changes in the

circulating canine lipidome accompanying Cushing disease and

hypothyroidism have also recently been investigated in dogs

(55). In contrast with humans, dogs are normally resistant to

atherosclerosis even in the presence of obesity and dyslipidemia

(56). Intriguingly, dogs with atherosclerosis were more likely

to have concurrent diabetes or hypothyroidism (57), similar

to observations for humans with hypothyroidism (58) and

diabetes (59).

Representative lipidomes are similar between dogs and

humans in ocular (60) and synovial (61) matrices. Despite

these commonalities, variations in the circulating lipidome can

differentiate breed types (62). Examinations of the lipidome have

shown utility in studying genetic (63) and pharmacologic (54)

canine models of disease. The canine lipidome has also been

assessed in naturally occurring inflammatory diseases, including

atopic dermatitis (64), chronic gastroenteritis (65), and the

aforementioned endocrine diseases (55). The impact of dietary

LCPUFA(n3), including DHA and EPA, on classes of metabolites

within the canine lipidome has been reported (66), including a

study that monitored the canine lipidome during a dietary feeding

study with increased n6- and n3-PUFA in dogs with enteritis (67).

In the present study, healthy dogs were chosen as test subjects

as they have been previously assessed for response to intake of

dietary lipids (36, 66, 68, 69). While these studies showed that food

can modify some metabolomic parameters, the global lipidome

response was not reported (36, 68, 69), control and test foods were

not matched for ingredients and nutrition (66), and/or the effects of

MCT with FO both alone and in combination were not compared

(36, 66, 68, 69).

Here, dog food was supplemented with FO, MCT, or both as

part of a complete maintenance food balanced for total dietary

fat, protein, and carbohydrates in order to determine the impact

of these dietary oils on the canine serum lipidome. This is the

first study to report levels of several classes of lipid metabolites

examined, including non-esterified fatty acids as well as their

glycerides, acylcarnitines, amide endocannabinoids, and structural

phospholipids. The fatty acid oxidation products canonically

produced by the mitochondria (beta-hydroxy), endoplasmic

reticulum (alpha-hydroxy), peroxisome (dioate), and membrane
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(e.g., hydroxyeicosatetraenoate [HETE]) are also reported. Changes

in circulating proxies of central metabolites including those of the

tricarboxylic acid cycle (TCA) and amino acids were analyzed to

gain insight into the degree to which the dietary fats were impacting

associated energetic pathways. Circulating putrefactive postbiotics

and their host-conjugated sulfates were also evaluated, particularly

as our previous study showed that co-consumption of FO+MCT in

domestic cats results in a decrease in circulating postbiotics of the

indole and phenol classes (38).

2. Materials and methods

2.1. Ethics statement

The Institutional Animal Care and Use Committee, Hill’s Pet

Nutrition, Topeka, KS, USA (Protocol Number: FP578.1.2.0-A-C-

D-ADH) reviewed and approved the study protocol. The study

also complied with the National Institutes of Health guide for

the care and use of laboratory animals and the guides from the

US National Research Council and the US Public Health Service

(70). Healthy dogs were included in the study, defined as those

without chronic systemic disease based on physical examination,

complete blood count, serum biochemical analyses, urinalysis, and

fecal examination for parasites. No invasive procedures were used

in this study.

2.2. Food formulation and production

The four dry extruded test foods used in the study were

composed of the same base formula primarily of poultry byproduct

meal, wet chicken meat, pork fat, barley, corn gluten meal, whole

corn, wheat, and sorghum, as well as liver hydrolysate, fiber,

vitamins, and minerals (Supplementary Table 1). MCT, FO, or both

replaced pork fat levels in the test foods. As previously (38),

CAPTEX-355 (ViaChem Inc, Plano, TX, USA) was the source of

MCT, which is enriched for caprylate (C8:0) over caprate (C10:0),

and caproate (C6:0) with negligible amounts of laurate (C12:0) and

myristate (C14:0). Third-party testing (Eurofins Nutrition Analysis

Center, Des Moines, IA, USA) showed the composition to be 51.4%

caprylate (C8:0), 39.1% caprate (C10:0), <0.1% laurate (C12:0),

and <0.01% each of all other fatty acids. Caproate (C6:0) was

not reported but is projected to be approximately 8%. MEG-3TM

0355TG Oil (DSM Inc., Parsippany, NJ, USA) was used as the FO

source of LCPUT(n3) as it is enriched for DHA (C22:6n3; 36.5%)

over EPA (C20:5n3; 5%). All four foods used in this study met the

canine maintenance nutrition requirements of the Association of

American Feed Control Officials and National Research Council.

The test oils, MCT and FO, were added to the foods on

a dry matter basis to be 7 and 2.85%, respectively. The MCT

level was chosen to provide >20% of total dietary fat as MCT,

similar to levels in prior publications that tested dietary MCT

supplementation in dogs (71, 72). FO was fed at a dietary inclusion

level previously found to be safe, as demonstrated in canine feeding

trials that employed approximately 100mg/kg body weight (73, 74).

Based on certified analysis of ingredients and formulation levels,

the MCT-containing foods had 3.7% caprylate (C8:0) and 4.3%

caprate (C10:0), while the FO-containing foods had 0.18% EPA

(C20:5n3) and 1.3% DHA (C22:6n3), all on a dry matter basis

(Supplementary Table 2).

2.3. Study design and measurements

Animal care research technicians and sample analysts were

blinded to the foods provided and to the group identity of dogs

for purposes of sample collection and analysis. Dogs were beagles

or mixed breeds (Supplementary Table 3), owned by the funders

of this research, and acquired from on-site husbandry or licensed

breeders. The sample size (N = 64) was based on effect sizes from

a previous study (36). It was designed for 80% power to detect a

20% difference between groups for selected lipids while allowing

for a potential dropout rate of 5% and a need for correction for

multiple between-group testing. The study had a 2 × 2 factorial

design. During the washout period, all dogs were fed the control

(CON) food for 14 days. Dogs were then randomized into one

of four foods (n = 16 each; CON, MCT, FO, FO+MCT) for 28

days by distributing the dogs into groups based on breed, sex,

weight, and age; there were no significant differences in these

parameters across groups (P > 0.7 for all). All pets had the

opportunity for exercise and interaction together in large groups

(∼20 dogs) but were pair-housed for sleeping arrangements. Dogs

remained in their preferred housing arrangement during the trial

as previously determined by the colony veterinarian’s assessment

of temperament and social interactions. Dogs were fed daily at

electronic feeders where each pet (through a radio frequency

identification chip reader) was individually given access to food

for 1 h of a controlled amount. These electronic feeders recorded

food intake (g/day) for each dog. Dogs were fed to maintain body

weights from the start of the study, which was a mean ± SD

metabolizable energy of 1.69 ± 0.40 × 70 kcal × (kg body weight

[BW])0.75; water was available ad libitum.

Serum was collected prior to consumption of test foods at the

end of the washout period to serve as a D0 baseline (D0) and

again at day 28 (D28) at the end of the feeding period. Dogs were

fasted for 23 h prior to serum collection, in which the total amount

of blood drawn was 14mL. Clinical blood chemistry was carried

out on a COBAS c501 module (Roche Diagnostics Corporation,

Indianapolis, IN, USA), and analysis of serum metabolomics was

performed by Metabolon (Morrisville, NC, USA) as in previous

studies (38, 75, 76).

2.4. Statistical analysis

As described previously (38), metabolite values were natural

log (LN)-transformed, and LN(D0) baseline values were subtracted

from LN(D28) end-of-feeding period values to create the difference

of logs [LN(D28)–LN(D0)]. This difference of the log values is

mathematically equivalent to, and is presented here, as the LN fold

change [LN(D28)–LN(D0)] (77). This data normalization approach

also conveniently results in positive values when the D28 value for a

metabolite is greater than at the D0 baseline, while negative values

on the y-axis indicate that a given metabolite has decreased from
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the D0 baseline. As each dog had values for both D0 baseline and

D28 end of feeding period, each dog served as its own control,

which controlled for inter-animal variability and allowed for the

reporting of the food effect on a given metabolite.

Changes from the D0 baseline across foods for the global serum

metabolome were evaluated with the Metaboanalyst platform v4.0

(78). Sparse partial least squares analysis (SPLS) distinguished

among test food groups (number of components = 2, validation

method = 5-fold cross-validation, number of predictors = 20).

Random Forest detected metabolite predictors of food group

identity (number of trees = 2,000, number of predictors = 20,

Randomness= On).

Multivariate analysis of variance (MANOVA)was used to assess

the degree to which a discrete class of metabolites was altered by

food type. Initially, an interaction term (FO ×MCT) was included

in a two-way ANOVAmodel, but the results indicated that none of

the FO × MCT interactions reached significance when corrected

for false discovery rate (q > 0.1). Thereafter, the interaction

term was omitted and a one-way ANOVA was used to determine

a univariate group effect. Dependent sample (paired) t-tests on

the D0 baseline vs. D28 end-of-feeding natural log-transformed

values were used to determine whether the change from the D0

baseline for a particular group was different than zero for a given

metabolite. Tukey’s post hoc test determined which changes from

the D0 baseline were different among the groups. All of these

analyses were carried out in JMP (Version 14.2-15.0. SAS Institute

Inc., Cary, NC, 1989–2019). Whether the change from the D0

baseline of a class of metabolites differed across the test food groups

was determined by MANOVA using the identity function, which

individually fits a model for each metabolite and subsequently

tests the models together. Supplementary Table 4 shows MANOVA

p-values for Wilks’ lambda, Pillai’s trace, Hotelling-Lawley, and

Roy’s Max Root. The metabolite class was considered impacted

by food type only when p-values for all of these metrics were

<0.05. Two-way ANOVA in the Response Screening Platform with

Cauchy robust fit in the JMP software package examined changes

in individual metabolites within a class resulting from a dietary oil

feeding study. In order to correct for multiple testing in the high-

dimensional metabolomics data, ANOVA p-values were applied as

an input, and q-values were generated for all metabolites (79) using

the “qvalue” function in the R package qvalue v2.14.1 (80). Change

in a metabolite was considered to be statistically significant when p

≤ 0.05 and q ≤ 0.1.

3. Results

3.1. Characteristics of dogs in the study

Sixty-four dogs (60 beagles and 4 mixed-breed) were

randomized to one of four foods: CON, MCT, FO, or FO+MCT.

The mean ± SE age was 5.9 ± 0.5 years, and the mean weight

was 11.7 ± 0.4 kg; 41% were spayed females and 30% neutered

males, while the rest were intact females (12%) and males (17%)

(Supplementary Table 3). Following the study, all dogs were

healthy and returned to the colony. There was no effect of food

type on intake as quantified as kcal/kg BW0.75 and analyzed by a

mixed model with an animal as a random factor for repeated intake

measurements (p= 0.34).

3.2. Impact of dietary oils on clinical blood
chemistry

Clinical blood chemistry values remained in normal ranges for

healthy canines (Supplementary Table 4). FO consumption resulted

in decreased total triglycerides from the D0 baseline (−8.31 mg/dL;

p= 0.0453). FO+MCT also decreased triglycerides (−13.44mg/dL;

p< 0.0001), while MCT alone had no effect. Circulating cholesterol

decreased from the D0 baseline in the FO group (−33.06 mg/dL;

p = 0.0002) but increased in the MCT group (20.13 mg/dL;

p = 0.0075). There was an overall decrease in cholesterol with

FO+MCT feeding (−20.13 mg/dL; p= 0.0055).

3.3. Impact of dietary oils on the global
serum metabolome

3.3.1. Overview of metabolome
Metabolomic analysis performed on serum samples taken from

dogs at the D0 baseline and week 4 identified 701 metabolites. Of

these, one-way ANOVA showed that 354/701 metabolites (51%)

were different across the four dietary groups (q-value FDR p ≤

0.05, q ≤ 0.1). Individual dependent samples paired t-tests by

food type to assess change relative to an individual’s baseline

indicated that 55/701 metabolites (8%) changed in the CON group

from the D0 baseline values (31 increased, 24 decreased), 184/701

metabolites (26%) changed in the MCT group (59 increased, 125

decreased), 267/701 metabolites (38%) changed in the FO group

(103 increased, 164 decreased), and 329/701 metabolites (47%)

changed in the FO/MCT group (136 increased, 193 decreased)

(Supplementary Table 4).

SPLS indicated differences among the groups’ changes from

the D0 baseline (Figure 1), with no overlap of the 95% confidence

regions among the foods; however, little of the variation

was explained by the first two components (component 1,

11.3%; component 2, 3.6%). SPLS loadings for components 1

and 2 are in Supplementary Table 4. Random Forest analysis

(Supplementary Figure 1) provided discrimination between the

dietary groups with an overall out-of-bounds class error of 4.7%,

where 16/16 dogs were correctly assigned to the control group

(class error 0%), 14/16 dogs were correctly assigned to the MCT

group (class error 12.5%), 15/16 dogs were correctly assigned to

the FO group (class error 6.3%), and 16/16 dogs were correctly

assigned to the FO+MCT group (class error 0%). As expected, the

top 20 ranked Random Forest predictors were lipid species. Among

both SPLS and Random Forest, the lipid species fed in the foods

were predominant predictors of a food group membership. The

first component of the SPLS was composed of FO-derived DHA-

and EPA-containing complex lipids along with arachidonoyl-

containing lipids and was indicative of dogs that had been fed

FO (or FO+MCT). Accordingly, higher values on the second

component indicated increased MCT-derived caproate (C6:0) and
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FIGURE 1

SPLS analysis of the test foods. Component 1 segregated groups by

the presence of FO, and component 2 segregated groups by the

presence of MCT in the food. Number of components = 2,

validation method = 5-fold cross-validation, number of predictors

= 20. Black, control group; green, MCT group; blue, FO group; red,

FO+MCT group. Comp, component; FO, fish oil; MCTs,

medium-chain fatty acid-containing triglycerides; SPLS, sparse

partial least squares analysis.

caprate (C10:0) and were indicative of MCT (or FO+MCT)-

fed dogs.

Major lipid classes were chosen for further analysis:

catabolic-type lipids [non-esterified fatty acids (NEFAs),

mono- and diglycerides (MDAGs), acylcarnitines, alpha-

oxidized fatty acids, omega-oxidized fatty acids (dioates)],

signaling-type N-acyl amino acids/neurotransmitters (NAAN),

structural-type complex lipids [glycerophosphatidylcholines

(GPCs), glycerophosphatidylethanolamines (GPEs),

glycerophosphatidylinositols (GPIs), and sphingolipids/ceramides

(SPHING)], metabolites involved in central energy metabolism

(amino acids, TCA cycle, methylation), and gut microbial

postbiotics (indoles, phenols).

3.3.2. Impact of MCT and FO on NEFAs
The metabolite class of NEFAs was different across

groups in a multivariate manner (MANOVA p < 0.001;

Supplementary Table 4), and 30/38 (79%) of the observed

NEFA changes from the D0 baseline were different across foods

by univariate ANOVA (median p = 0.0035). The CON group

remained largely unchanged from the D0 baseline while the

MCT group exhibited decreases in several NEFAs, and the FO

group showed increases in LCPUFA(n3) including DHA (22:6n3)

(Figure 2). Feeding of FO+MCT gave largely the same as seen

with MCT alone. Together, the MCT and FO+MCT groups

showed reduced levels of most NEFA of carbon chain length of 14

through 20.

The medium-chain fatty acid (MCFA) caprate (C10:0) was

different across groups by ANOVA (p ≤ 0.0001), and both the

MCT and FO+MCT groups exhibited increased levels of caprate

(C10:0) from the D0 baseline that were also different than changes

seen in other groups. Another MCFA, caproate (C6:0), differed

by food and increased from the D0 baseline in the MCT group,

a change largely reproduced as a trend (p = 0.1002) in the

combination of FO+MCT. The remainingMCFA, caprylate (C8:0),

was different across the foods, driven largely by an increase solely

in the FO+MCT group. The changes from the D0 baseline for the

transition fat myristate (C14:0) were not different across the food

groups. However, there was a decrease from the D0 baseline in this

fatty acid in the MCT and FO+MCT groups.

Food type strongly altered the following LCPUFA(n3):

stearidonate (18:4n3), EPA (20:5n3), heneicosapentaenoate

(21:5n3), docosapentaenoate (DPA, 22:5n3), and DHA (22:6n3).

These increased from the D0 baseline in the FO group; EPA

(20:5n3), heneicosapentaenoate (21:5n3), and DHA (22:6n3) also

increased in the FO+MCT group.

ARA (C20:4n6), a precursor to lipid signaling mediators

including prostaglandins, thromboxanes, and leukotrienes, was

decreased by the LCPUFA(n3)-containing foods (FO, FO+MCT).

Adrenate (22:4n6), the elongation product of ARA (C20:4n6), was

also decreased in the FO and FO+MCT groups. In contrast, both

docosadienoate (22:2n6) and docosapentaenoate (n6 DPA; 22:5n6)

were increased in the FO group but not in the FO+MCT group.

TheMCT group showed decreased levels of the n6NEFA, including

hexadecadienoate (16:2n6), linoleate (18:2n6), dihomolinoleate

(20:2n6), and docosadienoate (22:2n6).

3.3.3. Impact of MCT and FO on fatty acid
glycerides, carnitines, endocannabinoid amides,
and oxidation products

Multivariate analysis indicated that the MDAG class as a

whole was changed by food type (MANOVA p < 0.0001;

Supplementary Table 4). There were 21 metabolites detected in the

data set, and of these, 16/21 (76%) were altered by food according

to ANOVA (median p = 0.0002; Figure 3). The greatest effect

was in the dogs consuming FO-containing foods; 19/21 (90%) of

the MDAG were changed, and nearly all of these changes were

decreases (1 up, 18 down). The FO+MCT group also had several

changes in MDAG: 17/21 (81%) changed (1 up, 16 down). There

was only 1/21 (5%) MDAG changed from the D0 baseline in the

MCT group and 2/21 (10%) in the CON group.

Acylcarnitines, including carnitine and deoxycarnitine as a

multivariate class, were different by food group (MANOVA

p < 0.0001; Supplementary Table 4). ANOVA detected 20/30

(67%) individual carnitines (median p = 0.0062; Figure 4 MCT

alone decreased several acylcarnitines (Figure 4), with 21/30

(70%) changed (20 acylcarnitines decreased and deoxycarnitine

increased). FO had a more moderate effect on acylcarnitines, with a

similar mixture of up (5) and down (4) shifts from the D0 baseline

(9/30 changed; 30%). The FO+MCT group manifested 5 increased

and 10 decreased (15/30 changed; 50%). Arachidonoylcarnitine

was not affected by food, and neither FO nor FO+MCT showed

changes from the D0 baseline in this ARA (C20:4n6) metabolite.

Deoxycarnitine, precursor to carnitine and acylcarnitines, was

increased in all three experimental groups: MCT, FO, and

FO+MCT. Furthermore, carnitine itself was increased from the D0
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FIGURE 2

Change from the D0 baseline to D28 end of feeding period (LN fold change) in serum levels of non-esterified fatty acids. Dogs were fed (A) control

food, (B) food with MCT, (C) food with FO, or (D) food with FO+MCT. Lipid metabolites are presented in order of increasing chain length and, within

a chain length, by increasing unsaturation. Green bars indicate fatty acids found in the MCT ingredient; blue bars indicate fatty acids in the FO

ingredient. FO, fish oil; MCTs, medium-chain fatty acid-containing triglycerides. *p < 0.05 compared with the D0 baseline.

baseline in only the FO+MCT group, while it was unchanged in the

MCT and FO groups.

The serum metabolomics dataset yielded acylated amides from

ethanolamide (n = 2), taurine (n = 3), and choline (n = 7),

together the NAAN class. As a class, NAAN was different by

MANOVA (p < 0.0001) and 7/12 (58%) individual NAAN were

different by ANOVA (median p = 0.0129; Supplementary Table 4).

The most changes to members of the NAAN class were observed

in the FO+MCT group (10/12, 83%) compared with MCT (5/12,

42%) or FO (4/12, 33%) alone (Figure 5). All changes to NAAN

not containing either DHA (C22:6n3) or EPA (C20:5n3) were

decreases. Only NAAN containing either DHA (C22:6n3) or EPA

(C20:5n3) were increased with FO or MCT.

Alpha-oxidized products of monocarboxylic fatty acids

(AHFA) are considered to be generated in the endoplasmic

reticulum and are precursors of sphingolipids/ceramides. The

class of AHFA was different by food type (MANOVA p <

0.0004), and 8/11 (73%) of the individual AHFA were different

by ANOVA (median p < 0.0001; Supplementary Table 4). Both

MCT and FO+MCT feeding led to a multifold increase in

2-hydroxylignocerate (C24:0) and a concurrent decline in its

unsaturation product 2-hydroxynervonate (C24:1) as well as its

chain-shortened congener 2-hydroxybehenate (C22:0).

Dicarboxylate fatty acids (dioates) are produced by omega

oxidation of the terminal carbon of monocarboxylic fatty acids

in peroxisomes; this metabolite class was different by food type

(MANOVA p < 0.0001) with 9/15 (60%) of the individual dioates

driving this effect by ANOVA (median p= 0.0250; Figure 5). When

FO and MCT were fed together, there were changes to 11/15 (73%)

of dioates, with several changes to dioates of 12 or fewer carbons.

Feeding with MCT and FO individually each produced changes in

7/15 (47%) of dioates, with the effect less evident in the dioates of

12 or fewer carbons.

Alternate forms of oxidized fatty acids were assessed as

well. The products of fatty acid beta oxidation (3-hydroxy

fatty acids) formed in mitochondria and the products of

membrane oxidation (9- and 13-hydroxyoctadecadienoate

[9-HODE and 13-HODE], 9,10-dihydroxy-12Z-octadecenoate

[9,10-DiHOME], 12,13-dihydroxy-9Z-octadecenoate [12,13-

DiHOME], 12-hydroxyeicosatetraenoate [12-HETE], 12-

hydroxyheptadecatrienoate [12-HHTrE]) were not different as

classes by food type, and there were no significant between-group

differences (Supplementary Table 4).

3.3.4. Impact of MCT and FO on phospholipids
The metabolite class of GPCs was different across food

groups in a multivariate manner (MANOVA p < 0.0001;

Supplementary Table 4). Generally, GPCs were broadly affected by

FO and/or MCT in that 29/36 (81%) of observed GPC changes
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FIGURE 3

Change from the D0 baseline to D28 end of feeding period (LN fold change) in serum levels of mono- and diglycerides. Dogs were fed (A) control

food, (B) food with MCT, (C) food with FO, or (D) food with FO+MCT. Blue bars indicate fatty acids in the FO ingredient. FO, fish oil; MCTs,

medium-chain fatty acid-containing triglycerides. *p < 0.05 compared with the D0 baseline.

from the D0 baseline were different across the groups (ANOVA

median p < 0.0001; Figure 6). Choline differed by food group,

and the MCT and FO+MCT groups had increased choline levels

relative to the D0 baseline. Trimethylglycine was increased from

the D0 baseline in the MCT group and decreased in the FO

group (Supplementary Table 4). There was a decrease from the

D0 baseline of glycerophosphorylcholine in only the FO+MCT

group. FO alone, and to a lesser extent MCT, decreased GPCs; with

FO feeding, 27/36 (75%) GPC changed (21/36 [58%] decreased)

while with MCT feeding, 20/36 (56%) GPC changed (15/36 [42%]

decreased). With the FO+MCT group, 29/36 (81%) GPC changed,

with 21/36 (58%) decreased in the dogs receiving the combined oils.

In all instances, GPCs with ARA (C20:4n6) inclusion at the sn-

2 position were decreased by FO feeding. Furthermore, all except

1-myristoyl-2-arachidonoyl-GPC (14:0/20:4) were decreased in

the FO+MCT group as well, indicating that the effect of FO

to decrease ARA-GPC was preserved in the presence of MCT.

FO feeding also led to increased DHA (C22:6n3) at the sn-

2 position.

The GPE phospholipids as a class were also impacted by food

type (MANOVA p < 0.0001), and 18/23 univariate changes among

these GPE appeared to be the drivers (ANOVAmedian p < 0.0001;

Figure 7; Supplementary Table 4). As with GPC, the predominant

effect was for both FO and MCT individually to decrease GPE

with the effect of FO being greater (18/23 [78%] changed

with FO; 12/23 [52%] changed with MCT). Regarding ARA

(C20:4n6)-containing GPE, both FO and FO+MCT decreased all

five of these species observed in the dataset. As well, FO and

FO+MCT increased both observed DHA (C22:6n3)-containing

GPE lipids.

The GPI class of phospholipids was also different according

to food group (MANOVA p < 0.0001), with 9/11 (82%)

of these changed according to individual ANOVA (median

p < 0.0001; Figure 7; Supplementary Table 4). The results

observed for GPI were largely similar to those observed

for GPC and GPE. FO had a greater effect to decrease a

number of GPI than did MCT (FO changed 7/11 [64%] while

MCT changed 2/11 [18%]), while FO+MCT presented the

same pattern of changes as FO (9/11 changed; 82%). The

phospholipid 1-palmitoyl-GPI (16:0) was not changed from

the D0 baseline in either the FO or MCT groups (MCT, p =

0.0587; FO, p = 0.260) but was decreased in the FO+MCT

group (p = 0.0096). GPI substituted at the sn-2 position with

ARA (C20:4n6) were decreased in the FO and FO+MCT

foods. No DHA (C22:6n3)- or EPA (C20:5n3)-containing GPI

were detected.
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FIGURE 4

Change from the D0 baseline to D28 end of feeding period (LN fold change) in serum levels of carnitines and alpha-hydroxy fatty acids. Dogs were

fed (A) control food, (B) food with MCT, (C) food with FO, or (D) food with FO+MCT. FO, fish oil; MCTs, medium-chain fatty acid-containing

triglycerides. *p < 0.05 compared with the D0 baseline.

As a class, SPHING was different by group (MANOVA

p = 0.0001); 39/50 (78%) SPHING were individually different

by ANOVA across the food types (median p < 0.0001). While

FO produced changes in 37/50 (74%) SPHING, MCT only

generated changes from the D0 baseline for 15/50 (30%) and

FO+MCT feeding resulted in 41/50 (82%) changes (Figure 8;

Supplementary Table 4). For the N-palmitoyl and N-stearoyl series,

an increasing degree of unsaturation of the SPHING moiety

(sphinganine → sphingosine → sphingadienine) resulted in

more strongly reduced levels with FO and FO+MCT treatments.

Thus, unsaturated N-palmitoyl and N-stearoyl sphingosine and

sphingadienine were decreased by FO consumption, while

saturated sphinganine was not. Sphingosine-1-phosphate was

increased by FO and FO+MCT foods but not by MCT treatment.

3.3.5. Impact of MCT and FO on products of
central metabolism

TCA cycle intermediates were found to be different as a class

of metabolites by group (MANOVA p= 0.0003), with 4/8 (50%) of

the TCA metabolites individually different by food type (ANOVA

median p= 0.0533; Figure 5). While there was only one change in a

TCAmetabolite in theMCT group (decreased isocitrate), 6/8 (75%)

TCA metabolites were changed in both the FO and FO+MCT

group; all were decreased.

Given that amino acids traffic nitrogen as well as carbon

for energy, the levels of amino acids in response to feeding

experimental foods were assessed. Proteogenic amino acids (plus

taurine) as a class were different by group (MANOVA p < 0.0001),

with 9/22 (41%) amino acids changed by food type according to

ANOVA (median p = 0.0890; Figure 9; Supplementary Table 4).

Most of the changes were present in the FO group (10/22; 45%),

with fewer in the MCT group (6/22; 27%); these individual effects

were compounded such that 14/22 (64%) amino acids were changed

in the combination food FO+MCT. Most of these changes were

increases, with only two amino acids decreased in each of the three

experimental groups and the rest being increased circulating levels

of amino acids.

3.3.6. Impact of MCT and FO on microbial
postbiotics

Themetabolite class of indoles and indolic sulfates was different

across groups in a multivariate manner with 16 total metabolites

detected (MANOVA p < 0.0050; Supplementary Table 4), 5/16

(31%) of which were altered by food type (ANOVA). The

MCT group exhibited changes in 2 indoles, with 3-indoxyl

sulfate decreased but 7-hydroxyindole sulfate increased. Similarly,

the FO group decreased 5-hydroxyindole sulfate but increased

indolepropionate. The FO+MCT group showed changes in two
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FIGURE 5

Change from the D0 baseline to D28 end of feeding period (LN fold change) in serum levels of dioates, NAAN, and TCA cycle intermediates. Dogs

were fed (A) control food, (B) food with MCT, (C) food with FO, or (D) food with FO+MCT. Blue bars indicate fatty acids derived from the FO

ingredient. FO, fish oil; MCTs, medium-chain fatty acid-containing triglycerides. NAAN, N-acyl amino acids/neurotransmitters; TCA, tricarboxylic

acid. *p < 0.05 compared with the D0 baseline.

indoles as well, both of which were decreased (5-, and 6-

hydroxyindole sulfates).

The class of phenols and phenolic sulfates was different

across groups by multivariate analysis (MANOVA p < 0.0005;

Supplementary Table 4), with 25 total metabolites detected and

8/25 (32%) altered by food (ANOVA). Two additional phenol

postbiotic metabolites showed food effect p-values ≤ 0.0800

and q-values ≤ 0.100. The control group presented with two

phenols decreased from the D0 baseline: 3-acetylphenol sulfate

and 4-vinylphenol sulfate. The MCT group exhibited only a

single changed phenol, with 2-aminophenol sulfate increased.

The FO group manifested six decreased phenols, including

4-allylphenol sulfate, 4-aminophenol sulfate, 4-ethylphenyl

sulfate, 4-hydroxyphenylpyruvate, 4-vinylphenol sulfate, and

phenylacetylalanine. The FO+MCT group showed the same

changes as the FO alone group, with the exception that neither

4-hydroxyphenylpyruvate nor phenylacetylalanine changed in the

FO+MCT group.

4. Discussion

This trial evaluated the effects of the addition of MCT and

FO to food via global metabolomics to characterize the serum

levels of several classes of energetic, structural, and signaling lipid

metabolites. Changes in central metabolites, including those from

the TCA cycle and amino acids, were analyzed to gain insight into

the degree to which the dietary fats impact associated energetic

pathways. Serum samples were drawn from 23-h fasted dogs. With

regard to the metabolism of dietary fat, protein, and starch/sugar,

available reports document that 23 h is sufficient time to become

post-absorptive for dogs. The half-life of circulating triglycerides in

dogs is 22min, so dietary fat-derived fatty acids from a meal would

no longer be circulating 23 h later but would instead be mobilized

and trafficked from adipose stores or generated by hepatic de novo

lipogenesis (81). In addition, blood urea nitrogen derived from

postprandial amino acid catabolism returns to baseline between

16 and 24 h after a meal in dogs (82). For dietary carbohydrates,

consumption of glucose leads to a return to baseline blood

glucose levels approximately 90min in dogs, while consumption

of various starches leads to blood glucose returning to baseline

by 3 h after a meal (83). Taken together, there is evidence that

23 h post-feeding can be considered a post-absorptive state in

the dog.

In the current trial, dietary oil feeding in dogs led to reduced

triglycerides. Consistent with trials in both dogs (66, 84) and

humans (85), there was a decrease in circulating triglycerides with

FO feeding. This decrease was also apparent in the FO+MCT

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2023.1168703
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Jackson and Jewell 10.3389/fvets.2023.1168703

FIGURE 6

Change from the D0 baseline to D28 end of feeding period (LN fold change) in serum levels of GPCs. Dogs were fed (A) control food, (B) food with

MCT, (C) food with FO, or (D) food with FO+MCT. Blue bars indicate fatty acids derived from the FO ingredient. FO, fish oil; GPC,

glycerophosphatidylcholine; MCTs, medium-chain fatty acid-containing triglycerides. *p < 0.05 compared with the D0 baseline.

group but not in the MCT group. The level of FO included was

nearly 3% of the food dry matter in the FO and FO+MCT groups

and replaced pork fat that was composed of ∼35% saturated fat.

Thus, the inclusion of FO led to an approximately 1% decrease in

saturated fat in the FO and FO+MCT foods. Although decreasing

dietary saturated fat is known to reduce circulating triglycerides in

other species (86), it has been proposed that n3 fatty acid inclusion

in the food can independently decrease triglycerides as well (86, 87).

However, in contrast to the reports that indicate that FO can reduce

triglycerides in dogs (66, 84), three FO feeding trials in dogs showed

no effect of FO on triglycerides (36, 88, 89). The levels of total FO

(or EPA + DHA) offered to dogs as well as the DHA-to-EPA ratio

were lower in all of those trials than in the current trial. In the three

trials that showed no effect of FO on triglycerides, one tested FO

as a supplement in client-owned, mixed-breed dogs with an intake

of 0.03–0.04 g FO/kg BW (88), while the other two studies used

FO in food form at 0.11 g EPA+DHA/kg BW in Belgian Shepherd

working dogs (89) and 0.06 g FO/kg BW in beagles (36). In the

two trials that showed a reduction in triglycerides with FO, one

tested FO as a supplement in miniature Schnauzers with primary

hyperlipidemia (intake of 0.10 g EPA+DHA/kg BW, though it is

unclear how this amount was present in one FO capsule) (84) and

the other tested a food form of FO (0.10 g EPA+DHA/kg BW) in

beagles (66). In the current study, the offering of FO to dogs was

much higher (0.45 g FO/kg BW), and 0.19 g of EPA+DHA/kg BW

was fed. As well, the ratio of DHA to EPA in the studies was 0.59

(88), 1.2 (89), 0.77 (84), 1.42 (66), 0.7 (36), and 7.3 in the currently

reported trial. There is some evidence in humans that DHA more

potently reduces triglycerides compared with EPA (90), although

data on the effects of EPA vs. DHA on triglycerides in dogs are

lacking. It may be that both the increased level of FO fatty acids

and the increased ratio of DHA to EPA in the current report led

to the observations that FO decreases triglycerides. The reason for

the discordancy of results among previous reports, however, is not

clear. It may be that breed or activity level was a determinant in

those studies, although estimations of caloric intake and weight

maintenance from these trials (where possible) indicate an activity

factor of ∼1.4–1.6 for all dogs. Another factor may be that when

controlling for total fat level in the food (as was done in the current

study), the inclusion of n3-rich FOwill necessarily change fatty acid

composition (68), a variable that cannot be deconvoluted in our

study design. Thus, the ratio of FO-derived EPA and/or DHA to

total fatty acids may be a determinant of the degree to which FO

reduces triglycerides in dogs as well. In our previously published

study in cats (38), the FO group also showed decreased triglyceride

levels, although in that study the combination of FO+MCT did not

decrease triglycerides, whereas it did in the present canine study.

In the current study, consumption of MCT alone increased total
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FIGURE 7

Change from the D0 baseline to D28 end of feeding period (LN fold change) in serum levels of GPEs and GPIs. Dogs were fed (A) control food, (B)

food with MCT, (C) food with FO, or (D) food with FO+MCT. Blue bars indicate fatty acids derived from the FO ingredient. FO, fish oil; GPE,

glycerophosphatidylethanolamine; GPI, glycerophosphatidylinositols; MCTs, medium-chain fatty acid-containing triglycerides. *p < 0.05 compared

with the D0 baseline.

cholesterol; in contrast, this lipid was decreased by FO feeding

alone and FO+MCT. Indicative of the interaction of FO withMCT,

the FO+MCT feeding was less potent in decreasing cholesterol

than was FO alone, perhaps offset by the inclusion of MCT. Given

that elevated triglycerides are associated with aging in dogs (49,

91), the current data add context to considerations that diets of

older dogs are supplemented with sources of DHA and EPA such

as FO.

There are few comparisons available for the canine circulating

lipidome. Some publications examine non-serum matrices such

as ocular fluids (60) or red blood cell membrane (65) and thus

may not reflect circulating levels or include both structural and

energetic lipids. Other publications have examined the impact of

dietary oils on the circulating lipidome in dogs with inflammatory

dermatological (64) or gastrointestinal (67) disease, and these

disease states may perturb lipid metabolism relative to healthy

canines of the sort enrolled in the current study. Some prior

reports in this area of investigation have examined the changes in

circulating lipid metabolites with LCPUFA and MCT feeding, but

some of these studies did not include control foods (lacking both

types of fats) or lacked a food that combined both fats (92–94).

Previous publications have documented that feeding LCPUFA(n3)

and MCFA-containing foods can increase the fatty acid, carnitine,

and phospholipid fractions with these fats (17, 36, 38, 69). In the

current trial, it was observed that consumption of LCPUFA(n3) and

MCFA also enriched levels of these fats in the broader circulating

lipidome. These phenomena included catabolic intermediates of

MCT-derived fatty acids (e.g., the dioate sebacate [C10:0, MCT])

and signaling-type lipids derived from FO LCPUFA(n3) (e.g.,

docosahexenoylcholine [C22:6n3, FO]). This current report is

novel in the factorial design of the oil feedings (alone or in

combination) and the extensive reporting of the canine lipidome

including structural, energetic, and signaling lipids.

When dietary levels of LCPUFA(n3) are increased, these

fats increase at the sn-2 position of structural-type lipid classes

including phospholipids, while LCPUFA(n6) fatty acids decrease

at this position (24, 95). That phenomenon was particularly

evident here with FO, which decreased phospholipids with an

ARA (C20:4n6) at the sn-2 position. FO also decreased ARA

(C20:4n6) as a free fatty acid (NEFA), ARA-containing MDAG,

and NAAN arachidonoylcholine. Concurrently, FO also increased

levels of DHA in phospholipids at the sn-2 position. A recent

publication documented the impact of FO on circulating lipids

in the plasma and erythrocytes from active dogs and noted that

provision of the LCPUFA(n3) increased the incorporation of these

lipids into phospholipids from both matrices at the expense of
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LCPUFA(n6) incorporation (89). When the total fatty acid makeup

of serum was examined in healthy dogs after consumption of

diets high in C18:2n6 or C18:1n9, the fatty acid contingent of

the circulating lipidome was enriched in these respective fats (96).

In a separate study, dogs consuming sources of two types of

n3 fatty acids, linoleate (C18:3n3) from flaxseed oil, and EPA +

DHA (C20:5n3 + C22:6n3) from FO, had increased n3 fatty acid

content in the phospholipid fraction of the circulating lipidome

(66). In the current study, the acylcarnitine derivative of ARA

was not changed by FO or FO+MCT, indicating that increased

beta oxidation of ARA to energy did not lead to the observed

decreases in ARA and ARA-containing lipids. The levels of dietary

ARA were not meaningfully different between the FO and CON

groups, so differences did not arise from ARA intake variations.

It appears then that the current study is consistent with a model

of competitive interaction between n3-type and n6-type LCPUFA

for incorporation into complex lipids. The fate of the decreased

ARA is still lacking clarity; although circulating complex structural-

type lipids manifested a decrease in ARA content, the energetic-

type catabolic intermediate ARA-carnitine was not changed in

compensation. ARA may be sequestered into a lipid fraction that

is not in equilibrium with circulating lipids.

Considering energetic-type lipids in the post-absorptive canine

subjects at the time of collection, the NEFA observed here

were likely derived from lipolysis in adipose stores rather than

from remnant circulating dietary fat. Although the dogs were

increasingly reliant on fat for metabolism as glycogen stores

are reduced over time without food, it is clear that they

were not yet in ketosis. Circulating NEFA can be fated for

energetic catabolism (direct beta oxidation in peripheral tissues

or ketogenesis in the liver) or anabolic esterification processes

that lead to phospholipids and triglycerides. Increased levels of

NEFA (97) or acylcarnitines (98) are indicative of reduced capacity

for central lipid metabolism. In the current study, MCT feeding

produced greater decreases than did FO on energetic-type fatty

acid metabolites. MCT led to changes in more end-stage catabolic

products (e.g., NEFA and acylcarnitines) while FO impacted

upstream intermediates of triglyceride catabolism (MDAG). It

is unlikely that carnitine availability limited acylcarnitine levels

in the MCT-fed dogs as carnitine was not changed by this oil.

Interestingly, beta-oxidized fatty acids were not different as a

class and there were few differences by diet. It may be that

there was a decrease in NEFA and acylcarnitines without a

concurrent increase in beta oxidation or that there was increased

FIGURE 8 (Continued)
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FIGURE 8 (Continued)

Change from the D0 baseline to D28 end of feeding period (LN fold change) in serum levels of sphingolipids and ceramides. Dogs were fed (A)

control food, (B) food with MCT, (C) food with FO, or (D) food with FO+MCT. FO, fish oil; MCTs, medium-chain fatty acid-containing triglycerides. *p

< 0.05 compared with the D0 baseline.
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FIGURE 9

Change from the D0 baseline to D28 end of feeding period (LN fold change) in serum levels of amino acids. Dogs were fed (A) control food, (B) food

with MCT, (C) food with FO, or (D) food with FO+MCT. FO, fish oil; MCTs, medium-chain fatty acid-containing triglycerides. *p < 0.05 compared with

the D0 baseline.

flux through beta oxidation without changes in levels of the

members of this metabolite class. For non-lipid energetic and

central metabolites, FO (with or without added MCT) showed

broad changes to members of the TCA cycle class. In contrast,

both FO and MCT individually and in combination impacted

circulating amino acids. Omega oxidation is mostly carried out

in the endoplasmic reticulum and produces dicarboxylic acids

(dioates). It can occur when fatty acid beta oxidation is unable

to keep pace with fatty acid flux (99). In the current trial, both

FO and MCT feeding decreased all omega-oxidized C16 and

C18 dioates. The MCFA (C6:0, C8:0, C10:0) are metabolized by

microsomal cytochrome P45 enzymes to medium-chain dioates

of the same chain length (100) and are reported to increase

with MCT feeding in a manner distinct from that observed

with fasting or abnormal fatty acid oxidation (101). The current

results show that with MCT feeding sebacate dioate (C10:0)

increased while suberate (C8:0) did not. Alpha-oxidized fatty

acids can arise from peroxisomal oxidation of lipids involved

in sphingolipid synthesis. In the current study, MCT feeding

led to large increases in a single alpha-hydroxy fatty acid (2-

hydroxylignocerate), which is incorporated into sphingomyelin

that accumulates in the liver (102). The impact of FO and MCT

feeding appeared to be minimal on HETE, HODE, HOME, and

HHTrE-type lipid oxidation products, indicating some specificity

of the actions of FO and MCT to impact structural, energetic, and

some classes of signaling lipids. Taken together, it would appear

that combined FO+MCT oil feeding may benefit metabolic status

as indicated by improved lipid levels of NEFA, acylcarnitines,

MDAG, omega and alpha-oxidized fatty acids, and non-lipid

energetic intermediates.

Postbiotics are metabolites generated by gut microbial

catabolism of food that bypassed small intestinal absorption. These

metabolites can be absorbed by the host and appear in circulation

to impact host physiology (103). Microbial putrefaction of tyrosine

or tryptophan and phenylalanine produces the postbiotic phenols

and indoles, respectively (104), and these can have negative effects

on host health, including on renal function and inflammation

(105). In the current study, no endpoints were measured from

feces, and thus, the origin of the molecules observed in the

circulating metabolomics dataset that are canonically considered

postbiotics cannot unambiguously be known. However, some of

the putative postbiotic molecules have been observed to change in

blood in previous studies and assessment of their response to FO

and/or MCT in dogs helps to inform design and criteria for future

studies. It was recently published that food can decrease levels of

potentially detrimental postbiotics in dogs (106), and the current

findings indicate that the spectrum of foods that might decrease

these postbiotics is broader than previously understood. In the

previously published feline study (38), microbial putrefaction

products of aromatic amino acids were decreased with combined

FO+MCT feeding, although this was not evident to the same

degree in the current study with canine subjects. In the current

study, the foods produced changes in 32% of observed microbiome

putrefactive postbiotics of both the indole and phenol classes.

This is a less pervasive effect for canines than that observed

in the feeding of these oils to felines, where 73% of observed
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indoles and 83% of observed phenols were altered by food type

(38). Furthermore, whereas the FO+MCT condition provided a

starkly evident effect for the FO+MCT combination to decrease

postbiotics in cats, in the current study with dogs no such effect

was apparent.

In most instances, the qualitative effects of FO or MCT

alone appeared to be additive such that lipids appearing upon

consumption of one oil would still be present at similar levels

when the oils were fed together. For example, the signaling-type

lipid sphingosine-1-phosphate (107) was increased by the FO-

containing foods with no impact byMCT. Similarly,MCT appeared

to not impact the effect of FO on TCA metabolites as both FO and

FO+MCT groups responded similarly. This additive nature of the

effects of FO and MCT was evident for some phospholipids. The

lysophospholipid 1-(1-enyl-palmitoyl)-GPE (P-16:0) was decreased

by MCT but increased by FO with the overall effect in the

FO+MCT group being no change. The same was true for 1-

palmitoyl-GPE (16:0); MCT decreased while FO increased levels

and FO+MCT showed no change. In some cases, the combination

of FO+MCT feeding produced more marked changes for energetic

and signaling lipids than when either oil was fed alone, including

alpha- and omega-oxidized fatty acids (AHFA and dioates) and the

endocannabinoid NAAN class. On balance, though, there was little

statistical interaction apparent for lipid metabolites.

We previously published the results of a similar feeding trial

in cats noting the effects of FO and/or MCT on the same

classes of lipids (38). This provides an opportunity to assess

species differences in canine and feline responses to the same

dietary levels of the same bioactive fats. As examples of species

differences in responses, in dogs MCT had a broad effect to

decrease several NEFA even when FO was fed at the same time

(FO+MCT). In cats, however, while MCT feeding also broadly

decreased NEFA, the combination of FO+MCT increased NEFA

(38). Another dissimilarity in response was that in dogs MCT

decreased acylcarnitines regardless of the presence of FO, while in

cats this lipid class was largely not impacted by MCT feeding and

was increased by FO+MCT (38). There was also some concordance

in response of some lipid types in cats and dogs. Both the cat

and dog studies showed that FO+MCT led to decreases in N-acyl

taurines, the accumulation of which (along with acylcarnitines)

appears to lead to beta-cell dysfunction and type 2 diabetes (108).

There was extensive agreement in cat and dog responses for

phospholipids (GPC, GPE) and sphingolipids; in both species,

the patterns observed for these lipid classes with FO+MCT were

remarkably similar to the pattern with FO alone. Also seemingly

concordant between the cat and dog findings was the decrease

in several members of the NAAN class of endocannabinoid

signaling lipids with combination FO+MCT oil feeding that was

less responsive to either individual oil alone.

A strength of this study was the longitudinal design, which

allowed a comparison of the changes induced by oil feeding rather

than only providing a cross-sectional post-feeding assessment.

Furthermore, the 2 × 2 study design allowed for the assessment of

the interaction between the feeding of MCT and FO. A limitation

of this design, however, was that the study was not performed in a

crossover or Latin square design due to the constraints perceived

around the long-term carryover effects of oil feeding. Thus, as

each dog only consumed one of the oil formulations throughout

the study, a comparison of different oil formulations within each

subject was not possible. A further limitation of this study was that

feces were not collected, and thus, analysis of the source of putative

circulating postbiotics is not possible; the current data are thus

only minimally useful in drawing firm conclusions on the source

of putative postbiotics and their response to the dietary oil feeding.

In summary, feeding dogs MCT, FO, or FO+MCT

demonstrated responsiveness of several simple and complex

lipid classes and characterized the patterns of metabolites that

drove these class-wise changes. The current study provides valuable

insights into canine physiology in response to feeding dietary oils

that can be employed therapeutically (FO for mobility and MCT

for seizures). In this trial, dogs responded to FO consumption

with a reduction in triglycerides. Consumption of MCT largely

led to changes in lipids associated with energy metabolism, while

FO consumption produced changes dominated by structural-

type lipids. Both of these observations are consistent with the

known biology of these lipids, where MCT are employed for

metabolic disease and FO can be employed to alter membrane

fluidity and triglycerides. These data confirm previous reports

that consumption of LCPUFA(n3) decreases the incorporation

of LCPUFA(n6) into circulating phospholipid fractions. Taken

together, it can be concluded that lipidomic signatures relevant

to the clinical efficacy of FO or MCT are maintained when these

oils are fed in combination, and this report provides insights into

which classes of lipids are most responsive to either dietary oil.
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et al. The effect of fish oil-based foods on lipid and oxidative status parameters in police
dogs. Biomolecules. (2022) 12:1092. doi: 10.3390/biom12081092

90. Allaire J, Couture P, Leclerc M, Charest A, Marin J, Lépine MC, et al.
A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and
docosahexaenoic acid supplementation to reduce inflammation markers in men and
women: the Comparing EPA to DHA (ComparED) Study. Am J Clin Nutr. (2016)
104:280–7. doi: 10.3945/ajcn.116.131896

91. Xenoulis PG, Suchodolski JS, Levinski MD, Steiner JM. Investigation of
hypertriglyceridemia in healthy Miniature Schnauzers. J Vet Intern Med. (2007)
21:1224–30. doi: 10.1111/j.1939-1676.2007.tb01942.x

92. Simoens CM, Deckelbaum RJ, Massaut JJ, Carpentier YA. Inclusion of 10%
fish oil in mixed medium-chain triacylglycerol-long-chain triacylglycerol emulsions
increases plasma triacylglycerol clearance and induces rapid eicosapentaenoic acid
(20:5n-3) incorporation into blood cell phospholipids. Am J Clin Nutr. (2008) 88:282–
8. doi: 10.1093/ajcn/88.2.282

93. Rouis M, Dugi KA, Previato L, Patterson AP, Brunzell JD, Brewer HB, et al.
Therapeutic response to medium-chain triglycerides and omega-3 fatty acids in a
patient with the familial chylomicronemia syndrome. Arterioscler Thromb Vasc Biol.
(1997) 17:1400–6. doi: 10.1161/01.ATV.17.7.1400

94. You YQ, Ling PR, Qu JZ, Bistrian BR. Effects of medium-chain triglycerides,
long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal
vein, intestinal lymph, and systemic circulation in rats. JPEN J Parenter Enteral Nutr.
(2008) 32:169–75. doi: 10.1177/0148607108314758

95. Bibus D, Lands B. Balancing proportions of competing omega-3 and omega-6
highly unsaturated fatty acids (HUFA) in tissue lipids. Prostaglandins Leukot Essent
Fatty Acids. (2015) 99:19–23. doi: 10.1016/j.plefa.2015.04.005

96. Campbell KL, Dorn GP. Effects of oral sunflower oil and olive oil on serum
and cutaneous fatty acid concentrations in dogs. Res Vet Sci. (1992) 53:172–
8. doi: 10.1016/0034-5288(92)90106-C

97. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks
EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in
patients with nonalcoholic fatty liver disease. J Clin Invest. (2005) 115:1343–
51. doi: 10.1172/JCI23621

98. Enooku K, Nakagawa H, Fujiwara N, Kondo M, Minami T, Hoshida Y, et al.
Altered serum acylcarnitine profile is associated with the status of nonalcoholic fatty
liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma. Sci Rep. (2019)
9:10663. doi: 10.1038/s41598-019-47216-2

99. Bharathi SS, Zhang Y, Gong Z, Muzumdar R, Goetzman ES. Role of
mitochondrial acyl-CoA dehydrogenases in the metabolism of dicarboxylic fatty acids.
Biochem Biophys Res Commun. (2020) 527:162–6. doi: 10.1016/j.bbrc.2020.04.105

100. Gregersen N, Mortensen PB, Kolvraa S. On the biologic origin of C6-C10-
dicarboxylic and C6-C10-omega-1-hydroxy monocarboxylic acids in human and rat
with acyl-CoA dehydrogenation deficiencies: in vitro studies on the omega- and
omega-1-oxidation of medium-chain (C6-C12) fatty acids in human and rat liver.
Pediatr Res. (1983) 17:828–34. doi: 10.1203/00006450-198310000-00013

101. Tserng KY, Griffin RL, Kerr DS. Distinction of dicarboxylic aciduria due to
medium-chain triglyceride feeding from that due to abnormal fatty acid oxidation and
fasting in children.Metabolism. (1996) 45:162–7. doi: 10.1016/S0026-0495(96)90047-5

102. BentejacM, BugautM, DelachambreMC, Lecerf J. Time-course of utilization of
[stearic or lignoceric acid] sphingomyelin from high-density lipoprotein by rat tissues.
Biochim Biophys Acta. (1990) 1043:134–42. doi: 10.1016/0005-2760(90)90286-7

103. Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems.
Nephron Clin Pract. (2014) 128:303–11. doi: 10.1159/000369817

104. Diether NE, Willing BP. Microbial fermentation of dietary protein:
an important factor in diet-microbe-host interaction. Microorganisms. (2019)
7:19. doi: 10.3390/microorganisms7010019

105. Yang CY, Tarng DC. Diet, gut microbiome and indoxyl sulphate in chronic
kidney disease patients.Nephrology (Carlton). (2018) 23:16–20. doi: 10.1111/nep.13452

106. Ephraim E, Brockman JA, Jewell DE. A diet supplemented with polyphenols,
prebiotics and omega-3 fatty acids modulates the intestinal microbiota and
improves the profile of metabolites linked with anxiety in dogs. Biology. (2022)
11:976. doi: 10.3390/biology11070976

107. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease.
Nature. (2014) 510:58–67. doi: 10.1038/nature13475

108. Aichler M, Borgmann D, Krumsiek J, Buck A, MacDonald PE, Fox JEM,
et al. N-acyl taurines and acylcarnitines cause an imbalance in insulin synthesis
and secretion provoking beta cell dysfunction in type 2 diabetes. Cell Metab. (2017)
25:1334–47.e4. doi: 10.1016/j.cmet.2017.04.012

Frontiers in Veterinary Science 18 frontiersin.org

https://doi.org/10.3389/fvets.2023.1168703
https://doi.org/10.1093/nar/gky310
http://www.R-project.org/
http://www.R-project.org/
https://github.com/StoreyLab/qvalue
https://github.com/StoreyLab/qvalue
https://doi.org/10.1152/ajplegacy.1958.194.3.446
https://doi.org/10.1016/j.cbpa.2021.110973
https://doi.org/10.1371/journal.pone.0258058
https://doi.org/10.1371/journal.pone.0133496
https://doi.org/10.1007/s11883-010-0131-6
https://doi.org/10.1016/j.mehy.2013.11.036
https://doi.org/10.1002/vro2.12
https://doi.org/10.3390/biom12081092
https://doi.org/10.3945/ajcn.116.131896
https://doi.org/10.1111/j.1939-1676.2007.tb01942.x
https://doi.org/10.1093/ajcn/88.2.282
https://doi.org/10.1161/01.ATV.17.7.1400
https://doi.org/10.1177/0148607108314758
https://doi.org/10.1016/j.plefa.2015.04.005
https://doi.org/10.1016/0034-5288(92)90106-C
https://doi.org/10.1172/JCI23621
https://doi.org/10.1038/s41598-019-47216-2
https://doi.org/10.1016/j.bbrc.2020.04.105
https://doi.org/10.1203/00006450-198310000-00013
https://doi.org/10.1016/S0026-0495(96)90047-5
https://doi.org/10.1016/0005-2760(90)90286-7
https://doi.org/10.1159/000369817
https://doi.org/10.3390/microorganisms7010019
https://doi.org/10.1111/nep.13452
https://doi.org/10.3390/biology11070976
https://doi.org/10.1038/nature13475
https://doi.org/10.1016/j.cmet.2017.04.012
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

	Feeding of fish oil and medium-chain triglycerides to canines impacts circulating structural and energetic lipids, endocannabinoids, and non-lipid metabolite profiles
	1. Introduction
	2. Materials and methods
	2.1. Ethics statement
	2.2. Food formulation and production
	2.3. Study design and measurements
	2.4. Statistical analysis

	3. Results
	3.1. Characteristics of dogs in the study
	3.2. Impact of dietary oils on clinical blood chemistry
	3.3. Impact of dietary oils on the global serum metabolome
	3.3.1. Overview of metabolome
	3.3.2. Impact of MCT and FO on NEFAs
	3.3.3. Impact of MCT and FO on fatty acid glycerides, carnitines, endocannabinoid amides, and oxidation products
	3.3.4. Impact of MCT and FO on phospholipids
	3.3.5. Impact of MCT and FO on products of central metabolism
	3.3.6. Impact of MCT and FO on microbial postbiotics


	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


