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Assessments of epidemic spread 
in aquaculture: comparing 
different scenarios of infectious 
bacteria incursion through 
spatiotemporal hybrid modeling
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The sustainable development of the aquaculture sector is at risk due to the 
significant challenges posed by many emerging infectious diseases. While disease 
prevention and control measures are becoming increasingly critical, there is a 
dearth of studies on the epidemiological aspects of disease transmission in aquatic 
ecosystems. This study aims to forecast the spread of a bacterial disease between 
fish farms in two regions, Romsdalsfjord in Norway and Gujwa in South Korea 
by applying a DTU-DADS-Aqua spatiotemporal hybrid simulation model. The 
simulation model assessed the pattern of disease transmission between fish farms 
under different degrees of transmission power based on the distance between 
farms (ScalingInf), host susceptibility (RelSusceptibility), the origin site of disease, 
and the capacity of culling fish. The distance between fish farms was found to have 
significant associations with disease transmission. In most simulation conditions, 
the disease transmission between different bay management areas (BMAs) was not 
evident in Romsdalsfjord. In the Guwja region, where there are relatively narrow 
distances between fish farms, the spread of infectious disease was greatly affected 
by ScalingInf. The impact of RelSusceptibility on disease transmission patterns 
is a critical factor to consider in simulation modeling. When RelSusceptibility 
ranges from 0.5–1, there is little impact on the likelihood of disease transmission. 
Conversely, lower ranges (0.2 and 0.05) of RelSusceptibility result in a significant 
decrease in the area affected by the spread of disease. Eradication measures could 
control the patterns of infectious disease transmission, but the effectiveness 
of the depopulation strategy can be  dramatically changed depending on the 
geographical environment. In conclusion, through a comparative analysis of the 
disease transmission and management scenarios, this study demonstrates the 
potential use of existing simulation models in predicting the spread of infectious 
diseases under different epidemiological circumstances and quarantine actions.
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1. Introduction

Although the types of bacteria that are problematic for the aquaculture industry may vary 
depending on the region or country, farming system, and candidate host species, there is no 
doubt that many countries are facing the issues of bacterial diseases in aquaculture (1, 2). Despite 
the commercial availability of relatively robust vaccines for several bacterial diseases, efficacy 
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issues persist due to various factors, such as differences in bacterial 
species and serotypes, mutations, and host factors (3). According to a 
Norwegian fish health report in 2021, an increase in the occurrence of 
bacterial diseases such as tenacibaculosis, pasterurellosis, and 
yersiniosis is reported in farmed salmon. Norwegian farmed salmon 
have been vaccinated against Moritella viscosa, the causative agent of 
winter-ulcer disease, but M. viscosa is still ranked as the second or 
third-highest problem in seawater aquaculture (4). This drives the use 
of antibiotics and other alternative methods for treatment, but their 
efficacy is inconsistent.

Bacterial diseases and related treatment issues in aquaculture are 
not confined to a single country. Streptococcus parauberis is a major 
bacterial pathogen causing continuous mortality and economic losses 
in olive flounder (Paralichthys olivaceus), which accounts for one of 
the biggest productions in farmed fish in Korea (5–8). Although 
several methods to treat and prevent Streptococcosis using commercial 
vaccines and antibiotics are available, the mortality has been known 
to be  around ~15.8% in Korea (5, 9). It is hypothesized that 
S. parauberis is transmitted between adjacent fish farms through 
seawater. Indeed, Roh et  al. (10) observed high numbers of 
S. parauberis using qPCR and the direct plating method (1–4 × 107 
copies 100 mL−1 or 2–7 CFU 100 mL−1) in the water off the Gujwa and 
Pyoseon regions of Jeju Island, where olive flounder is cultured the 
most in Korea. Considering that these bacterial pathogens can persist 
in a viable but nonculturable (VBNC) state in seawater and nutrient-
deficient environments for extended periods, there has been a 
significant risk of disease transmission to neighboring fish farms over 
time (11, 12). However, the spread and extent of the disease within the 
local area under dimensional epidemiological factors, such as 
environmental conditions, the proximity of fish farms, the pathogen 
transmission potential, and host susceptibility, remain largely 
unknown. The absence of such information can lead to unfavorable 
outcomes in improving the fish farm environments from an 
epidemiological perspective. To address this knowledge gap, 
simulations considering multiple variables, including varying degrees 
of surveillance and quarantine policies, can predict best- and worst-
case scenarios in the specific region where fish are intensively cultured. 
These simulations can inform appropriate action and management to 
improve the current situation.

In general, the calculation of basic reproduction number (R0 or R 
naught) and compartment models are widely used for epidemiological 
analysis to forecast infectious disease transmission in a specific closed 
population or herd (13–15). The basic reproduction number, defined 
as “the number of secondary cases which one case would produce in 
a completely susceptible population” by Dietz (13), is one of the 
simplest ways to predict whether a specific infectious disease in a 
population will be more prevalent (pandemic R0 > 1), have a minor 
change in transmission (endemic R0 ≈  1), or diminish over time 
(R < 1) (16). However, R0 has limitations in simulating the disease 
prevalence in a specific population in real time because many 
epidemiologically important variances, such as host susceptibility to 
disease and the appearance of an individual obtaining immunity over 
time, have not been considered (17). On the other hand, 
compartmental models provide a range of options for categorizing 
individuals into stages such as susceptible (S), infectious (I), recovered/
removed (R), and exposed (E). These models incorporate the 
progression of infection over time and include several optimized 
variants like SIS, SIR, SEIR, and SIRS, which can be adapted to align 

with the attributes of both the pathogen and the host (15, 18). 
Nevertheless, the compartment model faces significant challenges in 
simulating the disease spread across multiple herds concerning 
geographic characteristics. In order to overcome these limitations, 
several frameworks have been developed for predicting disease 
outbreaks and transmission. However, these frameworks differ in their 
underlying principles and the contextual factors that they emphasize 
[e.g. (19–24)]. In addition, most simulation models have been 
developed for terrestrial rather than aquatic animals, which can 
be problematic when they are directly used in aquaculture sites due to 
the big environmental differences. Recently, Romero et al. (23, 24) 
developed a stochastic, spatiotemporal hybrid simulation model 
(DTU-DADS-Aqua) modified from DTU-DADS-ASF. Its framework 
can trace the waterborne spread of infectious pathogens between fish 
farms or even net pens, to which the compartmental model and agent-
based model are applied by considering farm-site hyperconnectivity 
based on the distance. The DTU-DADS-Aqua model is based on 
assumptions that the infectious pathogens are horizontally transmitted 
through the connectivity of seaway distance in the sea, fiords, rivers, 
and lakes under dozens of parameters relevant to pathogen factors, 
host factors, and the anthropogenic disease control actions (e.g., 
disease surveillance, detection, and depopulation) (23, 24). This study 
utilizes the DTU-DADS-Aqua tool to investigate the spread of 
potential bacterial diseases under a lower transmission power range 
following the distance between fish farms than viral diseases. The 
primary objective is to predict and simulate disease spread considering 
variables such as host susceptibility, site of the first outbreak, and 
intensity of quarantine actions in two distinct fish farming locations: 
Romsdalsfjord in Norway and Gujwa in South Korea. Different 
transmission scenarios were employed to simulate disease 
transmission, and the spatiotemporal hybrid simulation model was 
used to assess the impact of different proportions of immunized fish 
(0, 50, 80, and 95%) on the severity of emerging diseases in each 
closed fish farm.

2. Materials and methods

2.1. Fish farm and simulation area

Romsdalsfjord, a semi-closed fjord in Norway, is a famous fish 
farm area (production zone 5) important for fish production; it 
includes ~30 fish farms selected for the simulation in this study (25). 
Likewise, Gujwa, located on Jeju Island, where many olive flounder 
are cultured, was chosen in this study. Regardless of facilities and 
systems in fish farms, all simulations in this study assume one single 
epidemiological pen if they are on the same fish farm. It is also 
assumed that each fish farm has cultured around 135,000 fish, given 
the mean value of the average number of flounder annually produced 
on Jeju Island divided by the total number of fish farms. The 
geographical data, including the fish farms, fish species, address, and 
GPS information on Jeju Island, was attained from a previous study 
(25) and the Korean public data portal (DATA.go.kr),1 Geocode, and 
Google maps (Google, CA, USA). The fish farms in the region of 

1 https://www.data.go.kr/data/15056439/fileData.do; as of 2020.02.24.
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Romsdalsfjord and Gujwa, the sites of the most intensive farming, 
were used for simulations by different pathogen transmission powers 
(Figure 1). The bay management area (BMA) was arbitrarily divided 
for the simulations in this study based on the location of fish farms 
in Romsdalsfjord and Gujwa. Five (A – E) and seven BMAs (A – G) 
were allocated to the Romsdalsfjord and Gujwa regions. The beeline 
distance between fish farms and the site where the disease emerged 
is calculated using the following formula.
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In the case of different fish farms sharing the same GPS information, 
it was assumed that the distance between farms was around 40 – 400 m. 
In this study, a total of 460 (29C2) and 2,145 (66C2) pairwise beeline 
distances were obtained for fish farms in Romsdalsfjord (29 fish farms) 
and Gujwa (66 fish farms), respectively. The transmission of a bacterial 
pathogen, M. viscosa, in Romsdalfjord, Norway, and S. parauberis in the 
Gujwa region, South Korea, among different farms, was simulated with 
different scenarios of transmission.

FIGURE 1

The location of fish farms in Romsdalsfjord (A) and Gujwa (B). The white circle indicates the bay management area (BMA) applied in this study. The 
turquoise dot means the site’s first disease outbreak simulated in this study.
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2.2. First scenario of transmission by 
different ScalingInf

Transmission of M. viscosa between different farms in Romsdalfjord, 
Norway, and S. parauberis between different farms in the Gujwa region, 
South Korea, were simulated with the first scenario of transmission by 
different ScalingInf. All simulations and adjusting parameters were 
carried out based on a spatiotemporal hybrid simulation model that 
incorporates both an agent-based and a susceptible-latent-subclinical-
clinical-removed model using DTU-DADS-Aqua modified from 
DTU-DADS-ASF in R version 4.2.1 (21–24, 26). Since the study of how 
far a bacterial pathogen (M. viscosa or S. parauberis) can be transmitted 
through seawater has not been well documented and might be different 
depending on strains and environments, three different values for 
ScalingInf, a parameter of pathogen transmission with distances between 
farms (−1, −1.8, and − 2.6; as the high, moderate, and lower 
transmission power following the distance between fish farms for 
bacterial disease), were used for each simulation and compared 
(Simulation A, B, and C) (Supplementary Table S1). In the region of 
Romsdalsfjord, the disease transmission was additionally simulated 
using the default value −0.42 ScalingInf of condition that can spread to 
other BMA for the reference (Simulation_Null). This study simulates 
cases of disease outbreak originating in BMA – E in both Romsdalsfjord, 
Norway, and the Gujwa region, South Korea, as shown in Figure 1 at the 
time = 0 (0 days). The value of host susceptibility to bacterial disease 
(RelSusceptibility) and percentage of dead fish (or those that recovered 
and were no longer infected without shedding pathogens) was set to 1 
(100%). For the surveillance and depopulation option, the values for the 
time between two surveillance visits for herds in a surveillance zone 
(ZSurVisit), the number of surveyed farms every day (CapSurvay), and 
culling capacity per day were set to 30, 5, and 20,000, respectively. All 
simulations were run for 100 iterations for 365 days. The time of 
spreading bacterial pathogens was estimated for every iteration and day 
to predict the possibility of infection in each farm from 1 to 365-day(s) 
post emerging disease (dpe) throughout 100 iterations.

2.3. Second scenario of transmission by 
RelSusceptibility

Although the first scenario assumed a RelSusceptibility 1.0 for 
bacterial infection, the host health conditions, including vaccine and 
resistant breeds, may increase host resistance against specific 
pathogens. In order to check the effect of the level of host susceptibility 
that can affect disease transmission, the disease spread simulations 
were carried out under different RelSusceptibility (1.0, 0.5, 0.2, and 
0.05) with the same ScalingInf (−1.0) (simulation A, D, E, and F). 
Except for RelSusceptibility, values for all parameters and the origin 
site of emerging disease were the same as in the first scenario 
(Supplementary Table S2).

2.4. SEIR modeling in a single farm under 
the application of different host 
susceptibility

In order to estimate the impact of a disease outbreak on each farm 
post-disease outbreak, Susceptible-Exposed-Infectious-Recovered/

Removed (SEIR) was carried out with varying levels of immunized 
fish. The disease outbreak was assumed to have started from 1% of the 
total number of fish exposed to the pathogens in the same fish farm. 
In detail, the transmission coefficient, latent, recovered period, and 
daily mortality were assumed to be 0.4, 5 days, 10 days, and 5% for the 
groups of different numbers of immunized fish (0, 50, 80, and 95%). 
For fish that were initially immune or had recovered after infection, it 
was assumed that they would not be  infected during the 
simulation period.

2.5. Third scenario of transmission by the 
different sites of disease outbreak

Depending on the disease transmission control strategy and the 
location of the fish farm where the disease first breaks out, the 
prognosis and pattern of disease transmission among all fish farms 
in the Romsdalsfjord and Gujwa regions can be different. One fish 
farm in each BMA (A – E) was randomly selected as the first disease 
outbreak site for each simulation to evaluate the impact of disease 
transmission by the initial site to start disease transmission. The 
susceptibility and percentage of fish killed by the disease after 
infection (PerDeadAnim) were assumed as 0.8 (80%) at all 
simulations for the third scenario, but the same ScalingInf was 
applied as in the second scenario (Supplementary Table S3). For 
minimizing the influence of disease transmission control, the culling 
capacity (depopulation) for simulations G, H, I, J, K, L, and M that 
assumed disease outbreak in Romsdalsfjord (BMA A, B, C, D, E) and 
Gujwa (BMA A, B, C, D, E, F, and G) was set to none (FALSE), 
whereas simulations N, O, P, Q, R, S, and T were set to the total 
number of fish in a single fish farm with the same number of fish 
(135,000 fish) that can be culled every day if the disease is detected 
under the following conditions of surveillance control shown in 
Supplementary Table S3. The possibility of infection day by day post 
emerging disease from BMA A – G was calculated in each farm 
under or without control of the severe disease transmission (culling 
capacity: 135,000 fish day−1). Also, the elapsed days of the first 
infection and detection time in each farm were simulated and 
compared from 100 iterations in simulation N – T. From the result 
of post-simulation, the number of infection counts out of 100 
iterations in each farm under and without the use of culling strategy 
were statistically compared based on Chi-square analysis using a 
‘gmodels’ package in R studio (V. 4.2.1) (27), and p-values of less 
than 0.05 were considered fish farms significantly affected by the 
depopulation strategy.

2.6. Data analysis and visualization

The location of each farm, the possibility of infection, the first 
time of infection and detection, and SEIR simulations in an individual 
farm were calculated and visualized in Google Maps using ‘ggmap’, 
‘dplyr’, ‘ggplot2’, ‘devtools’, ‘rvest’, ‘plyr’, and ‘deSolve’ packages and 
‘DTU-DADS-Aqua’ scripts in R (version 4.2.1) (21–24, 26, 28–33). 
The results of disease transmission at each fish farm from the 1st to 
the 365th day post-exposure in all simulations were visualized in the 
video file by rendering all figures in chronological order using 
Microsoft photo (Microsoft Corporation, IL, USA).
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3. Results

3.1. The possibility of disease transmission 
in the Romsdalsfjord and Gujwa regions by 
different ScalingInf values (scenario 1)

The possibility of disease infection in each region and farm 
under  the different values of ScalingInf was simulated in 
Supplementary Video S1 and Figure 2. In Romsdalsfjord, the pattern 
of disease transmission between fish farms is confined to the same 
BMA, and even the adjacent farms show a little possibility of infection. 
In particular, in all cases, the disease did not spread to other farms 
until 180 days post emerging disease (dpe) when −2.6 ScalingInf was 
applied in Romsdalsfjord (Figure 2A). On the other hand, when it 
comes to the Gujwa region, the value for −1.0 ScalingInf can make the 
disease spread from BMA E to farms in BMA B, C, D, and F even 
during the early disease transmission phase. When −1.0 ScalingInf is 
applied in the simulation, there is a low probability of disease 
transmission to even BMA A, which is the furthest site from the initial 
disease outbreak site until 180 dpe (Figure 2B). With −1.8 and − 2.6 
ScalingInf values, the pattern of disease transmission is not as dramatic 
as in the case of −1.0 ScalingInf, but still, the disease can 

be transmittable to the fish farms in adjacent BMA within a month. 
Simulations employing −1.8 and −2.6 ScalingInf do not result in any 
possibility of disease transmission to farms situated in BMA A, B, and 
G until 180 dpe. (Figure  2B). Despite the same gap in ScalingInf 
between simulations A and B (Δ0.8) or simulations B and C (Δ0.8), 
the possibility of infection in each fish farm between simulations B 
and C is not as large as in simulations A and B. However, the higher 
ScalingInf can spread the disease widely to different BMAs (Figure 2C).

3.2. The possibility of disease transmission 
in the Romsdalsfjord and Gujwa areas by 
host susceptibility (RelSusceptibility)

The pattern of disease transmission was simulated in the 
Romsdalsfjord and Gujwa regions based on the host susceptibility, 
which can vary due to factors such as vaccination and disease history. 
Since the disease transmission in the Romsdalsfjord region is not 
remarkable between fish farms, little change is observed by the 
different RelSusceptibility (Figure  3A). On the other hand, in the 
Gujwa region, where the distance between fish farms is relatively 
narrow, different RelSusceptibility greatly affected disease transmission 

FIGURE 2

Different distance scaling factors (ScalingInf; −1.0, −1.8, and  −  2.6) in Romsdalsfjord (A) and Gujwa (B) were applied to simulate the infectious disease 
transmission between fish farms by the condition of simulations A, B, and C, respectively (Supplementary Table S1). Regardless of region, a1 and a2 
show the possibility of infection in each farm simulated at 30 and 180  days post emerging disease (dpe) with −1.0 scaling factor, and b1 and b2 show 
the possibility of infection simulated at 30 and 180 dpe with −1.8 scaling factor. c1 and c2 indicate the possibility of infection in each farm at 30 and 
180 dpe with −2.6 scaling factor. ScalingInf  −  0.42 was applied in the Romsdalsfjord region (C) by the condition of Simulation_Null, and the possibility 
of infections in each farm simulated at 30, 180, and 365 dpe are illustrated in (C-a–c). The estimation of the spreading disease pattern from 1–365 dpe 
is available in Supplementary Video S1.
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patterns. When the host had 100% susceptibility (1.0 RelSusceptibility) 
in Gujwa, it showed a high possibility of infection, not only in BMA E 
but also in BMA D and F regions within 30 dpe. Although the 
possibility of infection was low, it was predicted that all fish farms in 
the Gujwa region had a chance of being infected. From a time-wise 
perspective, no significant difference in the possibility of infection was 
observed between 180 and 365 dpe under 1.0 RelSusceptibility 
(Figure 3B; Supplementary Video S2B). When it comes to applying 
lower RelSusceptibility (0.5, 0.2, and 0.05), the number of infected fish 
farms decreased in both the early and late phases of infection and the 
speed of disease spread was slower than in the high RelSusceptibility 
group (Figure  3B; Supplementary Video S2B). For example, the 
average time of first infection in the 1.0 RelSusceptibility group 
(simulation A) for all fish farms in BMA E was approximately 
17.2 ± 0.6 days. However, it was extended to 22.9 ± 0.7, 36.2 ± 1.3, and 
90.1 ± 3.4 days in the 0.5, 0.2, and 0.05 RelSusceptibility groups 
(simulation D, E, and F), respectively. Moreover, no infection was 
predicted in any fish farms belonging to the BMA A region at 180 dpe, 
except for the full susceptibility group (simulation A).

The results of the SEIR simulation for the damage of a single fish 
farm after a disease outbreak showed that in the absence of 
immunized fish (susceptibility: 100%), the estimated mortality was 
around 42,900 fish. However, when 50, 80, and 95% of the fish in the 
herd had acquired immunity at the beginning, it was predicted that 
approximately 12,500, 900, and 500 fish would die, respectively (see 
Figure 4). Likewise, the number and proportion of susceptible and 
immunized fish considerably changed in the group without 
immunized fish (susceptibility: 100%) after the disease outbreak 
(Figure  4A). However, fewer changes were observed following a 
higher proportion of immunized fish (50, 80, and 95%) at the 
beginning (Figures 4B–D).

3.3. The possibility of disease transmission 
by the site of the disease outbreak

The above two scenarios have assumed that the disease 
originated from the seashore or fish farm on BMA E. However, the 

FIGURE 3

Different disease host susceptibility (RelSusceptibility; 1, 0.5, 0.2, and 0.05) was applied in Romsdalsfjord (A) and Gujwa (B) to simulate the infectious 
disease transmission following the conditions of simulations A, D, E, and F (Supplementary Table S2). Regardless of region, a1 and a2 describe the 
possibility of infection in each farm simulated at 30 and 180  days post emerging disease with 1.0 RelSusceptibility, and b1 and b2 show the possibility of 
infection simulated at 30 and 180 dpe with 0.5 RelSusceptibility. c1 and c2 indicate the possibility of infection in each farm at 30 and 180 dpe under the 
condition of 0.2 RelSusceptiblity, and d1 and d2 describe the possibility of infection in each farm at 30 and 180 dpe under the application of 0.05 
RelSusceptibility. The estimation of the spreading disease pattern from 1–365 dpe is available in Supplementary Video S2.

https://doi.org/10.3389/fvets.2023.1205506
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Roh and Kannimuthu 10.3389/fvets.2023.1205506

Frontiers in Veterinary Science 07 frontiersin.org

third scenario was designed for the situation when the disease 
occurred at one of the fish farms in each BMA and simulated the 
pattern of disease transmission between fish farms. In 
Romsdalsfjord, except for BMA A and E, the disease with the 
transmission power simulated in this study did not significantly 
influence adjacent fish farms within a BMA (Figure  5; 
Supplementary Video S3).

The results of simulations that assume the initial disease outbreaks 
in BMA C, D, E, or F showed the disease could spread to the fish farms 
located in BMA E, which has the highest number of fish farms in the 
Gujwa region. Furthermore, the subsequent patterns of disease 
transmission were similar across these simulations (Figure  6; 
Supplementary Video S4). When it comes to simulation M, since the 
origin of the disease is in BMA G, relatively far from BMA E, the time 
of infection and the possibility of infection at fish farms in BMA E is 
relatively slower and lower than in simulations I, J, K, and L (Figure 6; 
Supplementary Video S4). In addition, there was a pattern of faster 
and earlier disease transmission to BMA E’s fish farms than other 
adjacent BMA(s), which is a shorter distance from the site where the 
disease first appeared in simulations H, D, and M (Figure  6; 
Supplementary Video S4).

3.4. Comparison of the possibility of 
infection in each fish farm following 
disease transmission control strategy

The simulations with and without culling the fish were 
compared with the assumption that the first disease outbreak was 
in the same BMA to evaluate the effect of depopulation as 
preemptive quarantine measures. Since the infectious disease is 
not extensively spreading in Romsdalsfjord, it is difficult to 
evaluate the effect of depopulation (Table  1). However, more 
differences were observed in the Gujwa region. The effects and 
outcomes of the depopulation strategy, which utilized 135,000 for 
a daily culling capacity as a quarantine measure, varied 
significantly depending on the location where the disease initially 
emerged. In the cases of initial disease outbreaks at BMA A, C, D, 
E, and F, the depopulation strategy had very little impact on the 
possibility of infections among fish farms in the Gujwa region 
(Table 2). On the other hand, the simulation where we set the first 
disease outbreak farm at BMA B and G showed the depopulation 
strategy could lead to a significant decrease in the possibility of 
infection in fish farms (Figure 7; Table 2). In particular, when the 

FIGURE 4

The number of susceptible, exposed, infected, recovered, and dead fish with the time of post-infectious bacterial pathogen exposure in the fish farm 
where 0, 50, 80, and 95% of immunized fish out of 135,000 fish exist (A–D).
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disease first occurred in the BMA B, it was predicted that the 
depopulation strategy contributed to significantly reducing the 
possibility of infection to 0–1% in more than 85% of fish farms in 
the Gujwa region (Table 2). The strategy of culling fish (135,000 
fish day-1) can help to reduce the total number of infected fish 
farms and diagnosed farms when the pathogen originated from 

BMA B and G, which implies that the effect of culling the fish can 
vary depending on the origin site of a disease outbreak (Figure 8). 
In addition, the expected number of infected fish farms and the 
time (day) of transitioning to the plateau stage for the curve for 
cumulative infected and diagnosed fish farms were different 
according to the site of the first disease outbreak.

FIGURE 5

The pattern of bacterial disease transmission between fish farms with the assumption of the first disease outbreak in BMA A, B, C, D, and E under the 
condition of simulation G, H, I, J, and K in Romsdalsfjord (A–E) (Supplementary Table S3). The possibility of infection in each farm is shown at 10 
(A-a,B-a,C-a,D-a,E-a), 90 (A-b,B-b,C-b,D-b,E-b), and 180 (A-c,B-c,C-c,D-c,E-c) dpe. The estimation of the disease spreading pattern from 1–365 dpe 
is available in Supplementary Video S3.

FIGURE 6

The pattern of bacterial disease transmission with the assumption of first disease outbreak in BMA A, B, C, D, E, F, and G in the Gujwa region under the 
condition of stimulation G, H, I, J, K, L, and T (A–G). The possibility of infection in each farm is shown at 10 (A-a,B-a,C-a,D-a,E-a,F-a,G-a), 90 (A-b,B-
b,C-b,D-b,E-b,F-b,G-b), and 180 (A-c,B-c,C-c,D-c,E-c,F-c,G-c) dpe. The estimation of the spreading disease pattern from 1–365 dpe is available in 
Supplementary Video S4.
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4. Discussion

The modeling and simulations used in this study cannot reflect 
the real situation with 100% accuracy due to insufficient data and/or 
the assumption of many epidemiological factors, such as the number 
of fish and fish farms, host stages, and disease history that affect 
disease susceptibility, various environment conditions (e.g., tide, 
oceanic currents), etc. Nevertheless, evaluating and predicting the 
infection risk in a timely manner, taking into account geographical 
characteristics, is crucial for sustainable aquaculture as it minimizes 
risks to the ocean environment and biological diversity (23–25). 
Accordantly, simulating the best and worst-case scenarios while 
considering the multi-dimensional factors that can significantly 
impact the spread of disease can be immensely helpful in preparing 
and efficiently counteracting future disease outbreaks. In this study, 
we  aimed to predict the potential impact and extent of bacterial 
disease transmission in the Romsdalsfjord and Gujwa regions. To 
achieve this goal, we considered several crucial factors that affect the 
spread of diseases, including ScalingInf, RelSusceptibility, the distance 
between farms, and culling capacity. Specifically, we  focused on 
evaluating the epidemiological impact of the distance between fish 
farms in regions where fish are intensively cultured but have different 
mean distances between farms. Given that the mean distances between 
fish farms are ~24 and ~ 8 km in the Romsdalsfjord and Gujwa regions, 
excluding the fish farm reported in the same GPS site, a comparison 
of both disease transmission patterns could provide the 
epidemiological influences of the distance between fish farms on 
disease transmission. Based on the simulations, the distance between 
fish farms in Romsdalsfjord is ~3 times longer than Gujwa, and the 

results confirmed that the distance between farms could have a 
significant effect in preventing disease against waterborne mediated 
transmission. However, it does not mean that distantly located farms 
are protected against the disease because the disease could be spread 
by pathogens with a higher value of ScalingInf, like Simulation_Null, 
anthropogenic activity, and wild aquatic animals (34–36). In addition, 
the different geographic environments, semi-closed fjord 
environments, and open seas could result in epidemiologically 
different results between regions. Nevertheless, it is certain that the 
distance between fish farms is the most featured epidemiological 
factor relevant to disease transmission. In the following discussion, 
we focus on the impact of other epidemiological factors on disease 
transmission in the Gujwa region, in addition to the distance between 
fish farms.

Most pathogens in aquaculture can be delivered and horizontally 
transmitted by the water. The issue of how long bacterial pathogens can 
survive and maintain infectivity in the seawater environment should 
be considered. ScalingInf is one of the most influential factors in pathogen 
dispersion, which is determined by considering various conjugated 
factors such as water temperature, sun or UV light exposures during the 
transmission, growth of natural biota in seawater, hydrodynamic 
variables (tide, water currents) (23, 24, 37, 38). A lower value of ScalingInf 
suggested lower disease transmission between fish farms, and former 
studies used −0.364 and − 0.6 ScalingInf for the simulations of IHNV and 
ISAV, known as highly infectious viruses (23, 34). However, many 
important factors are different for the simulation of disease transmission. 
The biological differences between bacteria and viruses, farming systems, 
and geographical characteristics can affect disease transmission. 
Although transmission power can be different depending on species, the 

TABLE 1 The possibility of infection for the fish farm(s) belonging to each BMA (A–E) with and without depopulation (mean  ±  standard deviation) under 
the different sites of disease outbreak in the Romsdalsfjord region.

Disease 
outbreak

BMAID

Without 
Cull 

(FALSE; 
%)

Cull 
(135,000; 

%)
Chisq* Disease 

outbreak
BMAID

Without 
Cull 

(FALSE; 
%)

Cull 
(135,000; 

%)
Chisq*

A

A 20.3 ± 33 17.9 ± 30 (0/7)

B

A 0 ± 0 0 ± 0 (0/7)

B 0 ± 0 0 ± 0 (0/8) B 10.4 ± 29.3 10.4 ± 29.3 (0/8)

C 0 ± 0 0 ± 0 (0/2) C 0 ± 0 0 ± 0 (0/2)

D 0 ± 0 0 ± 0 (0/3) D 0 ± 0 0 ± 0 (0/3)

E 0 ± 0 0 ± 0 (0/9) E 0 ± 0 0 ± 0 (0/9)

C

A 0 ± 0 0 ± 0 (0/7)

D

A 0 ± 0 0 ± 0 (0/7)

B 0 ± 0 0 ± 0 (0/8) B 0 ± 0 0 ± 0 (0/8)

C 38.5 ± 54.4 38.5 ± 54.4 (0/2) C 0 ± 0 0 ± 0 (0/2)

D 0 ± 0 0 ± 0 (0/3) D 29 ± 50.2 29 ± 50.2 (0/3)

E 0 ± 0 0 ± 0 (0/9) E 0 ± 0 0 ± 0 (0/9)

E

A 0 ± 0 0 ± 0 (0/7)

B 0 ± 0 0 ± 0 (0/8)

C 0 ± 0 0 ± 0 (0/2)

D 0 ± 0 0 ± 0 (0/3)

E 15 ± 25.9 10.8 ± 26.5 (1/9)

All models are simulated based on a year (365 days). The percentage (%) in the table indicates the count of iterations, out of 100 simulation runs, in which infections occurred in fish farms 
belonging to each BMA region within 365 dpe. Asterisk (*) indicates the number of fish farms that significantly change the possibility of infection out of the total number of fish farms in each 
BMA based on a Chi-square analysis (p < 0.05). Bold letters indicate BMAs where a significant decrease in the possibility of infection, affecting at least one fish farm, is observed.
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transmission of viral diseases is more difficult to control than bacterial 
diseases due to insufficient vaccines and anti-viral agents (39). In 
addition, most olive flounder on Jeju Island have been cultured in the 
land-based aquaculture system that normally filters and disinfects 
incoming seawater, unlike the sea-cage system, which can also greatly 
contribute to decreasing pathogen transmission. With the full 
consideration of these differences, ScalingInf was simulated from −1.0 to 
−2.6 for the Gujwa region and −0.42 to −2.6 for Romsdalsfjord, Norway 
(23, 24). Although most fish farms in the Gujwa region could 
be susceptible under the simulation with −1.0 ScalingInf from seawater 
at BMA E, the possibility of disease infection in BMA A, B, and G was 
relatively lower within 180 dpe. However, Currás et al. (11) successfully 
showed that ~105 CFU mL−1 of S. parauberis cannot survive in the 
seawater environment at 6 and 22°C for longer than 36 days through the 
direct plate count method, but it can survive longer than 180 days in the 

marine sediment environment. Furthermore, S. parauberis can survive 
even in seawater for a long time in the form of viable but nonculturable 
(VBNC) stages (11). Indeed, a high number of copies of S. parauberis was 
detected in seawater off the coast of Gujwa, Jeju Island (4 × 107 copies 
100 mL−1), but its viable counts were only 4 CFU 100 mL−1 (10). This 
suggests that the bacterial endemic can be much longer than simulations. 
Moreover, bacterial virulence is different depending on strains and 
genetic information; even the same strain of bacterial pathogen can 
be changed when exposed to an environment that can affect multiple 
phenotypic characteristics (40, 41). The fundamental study to determine 
ScalingInf with the consideration of pathogenicity and other 
characteristics related to the transmission can help to formulate a more 
accurate simulation case by case.

Host susceptibility is also one of the important factors for the 
prevalence of the disease. Several commercial vaccines for the 

TABLE 2 The possibility of infection for the fish farm(s) belonging to each BMA (A–G) with and without depopulation (mean  ±  standard deviation) under 
the different sites of disease outbreak in the Gujwa region.

Disease 
outbreak 
(BMA)

BMAID

Without 
Culling 
(FALSE; 

%)

Cull 
(135,000; 

%)
Chisq*

Disease 
outbreak 

(BMA)
BMAID

Without 
Culling 
(FALSE; 

%)

Cull 
(135,000; 

%)
Chisq*

A

A 86.2 ± 1.9 79 ± 5 (0/6)

B

A 11.5 ± 0.8 3.0 ± 0.0 (0/6)

B 10.0 13.0 (0/1) B 84.0 84.0 (0/1)

C 1.0 1.0 (0/1) C 13.0 1.0 (1/1)

D 0.0 1.0 (0/1) D 16.0 1.0 (1/1)

E 0.0 0.6 ± 0.5 (0/53) E 16.8 ± 0.4 1.0 ± 0.0 (53/53)

F 0.0 0.0 (0/1) F 14.0 0.0 (1/1)

G 0.0 0.0 (0/2) G 3.5 ± 0.7 0.0 (0/2)

C

A 2.7 ± 0.5 5.7 ± 0.5 (0/6)

D

A 2.0 ± 0.0 6.5 ± 0.5 (0/6)

B 24.0 16.0 (0/1) B 17.0 26.0 (0/1)

C 88.0 88.0 (0/1) C 75.0 74.0 (0/1)

D 83.0 55.0 (0/1) D 76.0 76.0 (0/1)

E 79 ± 2.5 51.5 ± 2.1 (0/53) E 81.6 ± 2.4 81.1 ± 2.4 (0/53)

F 79.0 52.0 (0/1) F 81.0 80.0 (0/1)

G 37.0 ± 0 18.5 ± 0.7 (0/2) G 38.0 ± 1.4 35.5 ± 2.1 (0/2)

E

A 2.8 ± 1.2 2.8 ± 0.8 (0/6)

F

A 2.7 ± 0.5 2.2 ± 0.4 (0/6)

B 21.0 16.0 (0/1) B 19.0 15.0 (0/1)

C 77.0 74.0 (0/1) C 72.0 72.0 (0/1)

D 91.0 90.0 (0/1) D 88.0 86.0 (0/1)

E 88.5 ± 3.0 88.5 ± 2.9 (0/53) E 84.6 ± 2.7 83.2 ± 2.5 (0/53)

F 90.0 90.0 (0/1) F 84.0 84.0 (0/1)

G 40.5 ± 0.7 47.5 ± 0.7 (0/2) G 41.5 ± 2.1 40.0 ± 0.0 (0/2)

G

A 3.5 ± 0.5 1.0 ± 0.0 (0/6)

B 12.0 5.0 (0/1)

C 38.0 19.0 (0/1)

D 45.0 23.0 (0/1)

E 42.8 ± 1.7 22.4 ± 0.7 (5/53)

F 43.0 20.0 (1/1)

G 84.0 ± 5.7 77.5 ± 13.4 (0/2)

All models are simulated based on a year (365 days). The percentage (%) in the table indicates the count of iterations, out of 100 simulation runs, in which infections occurred in fish farms 
belonging to each BMA region within 365 dpe. Asterisk (*) indicates the number of fish farms that significantly change the possibility of infection out of the total number of fish farms in each 
BMA based on a Chi-square analysis (p < 0.05). Bold letters indicate BMAs where a significant decrease in the possibility of infection, affecting at least one fish farm, is observed.
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bacterial disease are available, and they have been shown to have a 
relative survival rate of more or less 50% (5). When simulated with a 
RelSusceptibility 0.5 (50%), the speed of disease transmission between 
fish farms was slightly slower than the simulation with RelSusceptibility 
1.0 (100%). RelSusceptibility 0.5 did not contribute to reducing disease 

transmission. Nevertheless, given that the predicted number of dead 
fish by S. parauberis in the 0.5 RelSusceptibility group showed more 
than 3 times lower mortality than 1.0 based on SEIR simulation, it is 
expected to be  of great help in reducing mortality and loss. The 
simulations with RelSusceptibility 0.2 and 0.05 can greatly contribute 

FIGURE 7

Simulations O (A) and T (B) show the possibility of significantly reducing the rate of infection through depopulation control in the Gujwa region. The 
green dots indicate the fish farm where the possibility of infection decreases significantly by Chi-square analysis (p  <  0.05).

FIGURE 8

The number of infected and detected farms with the time of emerging disease based on simulations N, O, P, Q, R, S, and T shown in the histogram with 
vertical lines for the mean value of infection and diagnosis time (A-a–g), box plot (B-a–g), and cumulative curve (C-a–g) in the Gujwa region.
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to both reducing areas where disease can spread and mortality 
compared to the 1.0 group. However, Hwang et al. (5) conducted a 
survey and found that approximately 80% of olive flounder in Korean 
fish farms were vaccinated. Considering the average RPS or protection 
rate of commercial vaccines (~50%) and the proportion of vaccinated 
flounder in fish farms (~80%), it has been speculated that the real-
world situation could be worse than the simulation assuming a 0.5 
RelSusceptibility. Currently, most commercial vaccines are based on a 
formalin-killed vaccine, which could have relatively lower efficacy 
than other types of vaccines, such as live-vaccine and DNA vaccines 
(42, 43). The use and development of a more effective vaccine or the 
development of more robust disease-resistant fish in the future could 
be an important factor that could significantly reduce mortality and 
disease transmission. Furthermore, the level of fish stress, nutrient 
availability, host number, and farm system and maintenance 
significantly affect the host health condition directly connected to the 
disease outbreak. Accordantly, the level of RelSusceptibility requires 
overall consideration of these factors by scientists in the relevant fields 
or fish health biologists.

The pattern of disease spread is also changeable by geographical 
reasons, such as the location and complexity of fish farms. In general, 
the disease has been transmitted to adjacent fish farms in most cases 
at the beginning, and it is very natural, as S. parauberis might 
continuously spread to the surrounding water over time. However, 
some simulations showed faster disease transmission to fish farms in 
BMA E, where many fish farms are concentrated but far from the 
disease outbreak site rather than the fish farms closer to a site where 
the disease first emerges. For example, even though the disease 
emerges in simulations H, I, and T originated from BMAs B, C, and 
G, respectively, a higher likelihood of disease transmission was 
predicted in BMA E compared to BMAs C, D, or E, despite being 
geographically closer to the origin of the disease, exhibited a higher 
potential for transmission due to factors such as the number of fish 
farms in the BMA and its complexity. The distance between fish farms 
was also identified as an important contributing factor. Mathematically, 
it is evident that the possibility of infection in each epidemiological 
aquaculture unit in BMA E is lower than in the fish farm closer to the 
disease origin because of the distance. When the lower possibility of 
infection value was applied to a significantly larger number of fish 
farms, the presence of many fish farms in BMA E greatly increased the 
likelihood of a disease outbreak. When the first disease infection 
occurred, despite a lower probability, faster than other adjacent BMAs, 
the disease transmission in BMA E might have spread so fast that it 
was hard to control. Moreover, as a consequence of infection, the 
BMA E region was predicted to have a much higher number of dead 
and infected fish than others. These results highlight the importance 
of spacing out the fish farms and the requirement of coordinated 
management practices (synchronized stocking, fallowing, etc.) for fish 
farming. Former studies (44, 45) have emphasized that bacterial 
pathogens such as Flavobacterium columnare infect freshwater fish 
and can colonize dead fish and spread the pathogens to living fish, 
which is a more efficient mode of transmission than transmission 
from diseased to susceptible fish. The simulation applied in this study 
assumes all dead fish were removed or lost the pathogen infectivity 
from dead fish from 3 days post-death, which means that the period 
for which dead fish maintained their infectivity was 2 days (DayDead). 
However, if high mortality within a short period occurs, the situation 
will be worse than the simulation presented.

Depopulation by culling the fish that are exposed to infectious 
diseases is one of the strongest strategies for controlling disease 
transmission. Assessing the potential impact of depopulation can assist 
in identifying optimal countermeasures in the event of a worsening 
situation or an outbreak of emerging diseases. It is worth noting that 
employing the culling strategy does not necessarily yield the same 
expected effect, and its outcome can vary depending on the location of 
the disease outbreak. Regrettably, in the Gujwa region, the use of the 
depopulation strategy did not significantly affect the transmission of the 
disease from BMA A, C, D, E, and F, as the possibility of infection 
remained unchanged. The failure to achieve the benefits of depopulation 
may be primarily due to the gap between the initial infection and the 
time of detection, despite the influence of various factors such as 
geographical characteristics, fish population, and surveillance options. 
Since culling is performed only after diagnosis, the pathogen may have 
already spread extensively throughout the sea by the time the 
surveillance system identifies the disease. However, when the disease 
occurred in the BMA B region at the beginning, which saw the highest 
effects of depopulation, it was simulated that there was little possibility 
of transmission to the nearest adjacent farms for 60 dpe. Given the 
average time gap between the first infection and diagnosis time is around 
50 days, adopting a depopulation strategy could potentially eliminate the 
source of the disease before it spreads to other fish farms. In summary, 
the effectiveness of depopulation depends significantly on the extent to 
which the disease has already spread. As Romero et al. (23, 24) simulated 
previously, the increase in surveillance and control capacity can lead to 
detecting the disease promptly in each farm. Early detection does not 
always link to successful depopulation to control the disease, but it can 
increase the possibility of success.

In conclusion, this study simulated disease transmission under the 
assumption of varying bacterial disease transmission power in two 
different regions, Romsdalsfjord in Norway and Gujwa in South Korea. 
The results revealed that the distance between fish farms is a crucial 
factor in controlling disease transmission. Specifically, disease 
transmission in Romsdalsfjord could be controlled within a few fish 
farms because of the longer distance between fish farms, while the 
opposite was observed in Gujwa. Depending on the set ScalingInf value, 
the simulation resulted in the spread of disease in either a few fish 
farms or all fish farms in the Gujwa region. Hence, it is necessary to 
have a more accurate ScalingInf value specific to the infectious agent. 
The study also highlights the importance of RelSusceptibility in disease 
transmission. The efficacy of the commercially used vaccine (RPS: 
~50%) might not significantly affect the overall disease spreading 
pattern in the Gujwa area, but it can reduce the mortality in each farm 
by more than three times. Future vaccines with higher efficacy can 
prevent both disease transmissions between farms and mortality in 
each farm. All the results presented in this study support that efforts to 
enhance the host’s disease resistance, such as vaccination, the use of 
specific disease-resistant breeds, probiotics, etc., not only reduce the 
damage caused by diseases in individual farms but also significantly 
contribute to preventing disease transmission among fish farms 
epidemiologically. In addition, the simulations with the assumption of 
a different BMA site as the first disease occurred suggest that the 
depopulation strategy can be  highly dependent on geographical 
characteristics and the control capacity of the surveillance system. 
While the simulation based on DTU-DADS-Aqua and SEIR might 
be simplistic, considering various factors affecting the event in the real 
world, it can still contribute significantly to predicting disease 

https://doi.org/10.3389/fvets.2023.1205506
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Roh and Kannimuthu 10.3389/fvets.2023.1205506

Frontiers in Veterinary Science 13 frontiersin.org

transmission while considering geographical characteristics and the 
impact of vaccination and surveillance systems in Aquaculture.
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