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Salmonella enterica serovar Dublin (S. Dublin) is a bacterium host-adapted to

cattle with increasing prevalence in dairy facilities. It can severely a�ect cattle

health, producing high morbidity and mortality in young calves and reducing

the performance of mature animals. Salmonella Dublin is di�cult to control

and eradicate from herds, as it can be shed from clinically normal animals.

In addition, S. Dublin is a zoonotic bacterium that can be lethal for humans

and pose a risk for human and animal health due to its multi-drug resistant

characteristics. This review provides an overview of S. Dublin as a pathogen in

dairy facilities, the risk factors associated with infection, and current strategies for

preventing and controlling this disease. Furthermore, current gaps in knowledge

are also discussed.
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1 Introduction

Salmonella enterica subspecies enterica serovar Dublin (S. Dublin) is a Gram-negative

bacterium commonly affecting dairy cattle. Salmonella Dublin is host-adapted to cattle,

where it can cause severe disease and compromise the welfare of young andmature bovine,

and the economic return of the producer (1–4). Moreover, S. Dublin is a zoonosis that

can cause severe disease leading to hospitalizations and mortality of consumers, farm

personnel, calf handlers, veterinarians, and their families (5, 6). In France, major outbreaks

had occurred as a result of the consumption of raw bovine cheese (7). Some countries

like Denmark initiated a surveillance and control program since 2002, and as a result,

the prevalence of S. Dublin in cattle was reduced from 25 to 7% from 2002 to 2015 (8).

In countries without a control program, however, the prevalence of infections is high.

For example, reports from Great Britain and Canada document apparent prevalence of

infected herds ≥25% (9, 10). Also, S. Dublin has been the most frequently identified

serotype among bovine Salmonella isolates from clinical samples submitted to veterinary

diagnostic laboratories in the US and UK (11–14), and the second most common serovar

in registered salmonellosis outbreaks in Germany, accounting for 30%−40% of cases (15).

In the European Union, Dublin was also the second most common Salmonella serovar in

cattle following Typhimurium (16).

In the US, S.Dublin has become one of themost importantmulti-drug resistant (MDR)

bacteria in cattle (5, 17). The MDR has complicated the treatment of clinically sick animals

and has become a threat to human medicine (18). In addition, S. Dublin may be difficult

to control and eradicate from positive herds, as infection may persist in latent carriers

and intermittently be shed to the environment (2). For the reasons provided, this review
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will focus primarily on risk factors for infection, prevention, and

control of S. Dublin in dairy herds.

2 Salmonella Dublin in animal and
human health

2.1 Prevalence in dairy farms

Salmonella Dublin is present worldwide but estimates of the

proportion of S. Dublin infected herds vary greatly by country

(Table 1). Some European countries have established a S. Dublin

control and eradication that includes routine testing of all farms

(19, 25, 26). Although no country is free from salmonellosis, 9

European countries report only sporadic cases. For example, S.

Dublin has not been detected in Finland since early reports in

the 1980s (26). Some countries, namely Finland, Norway, and

Sweden, have additional restrictions for cattle trade in place (27).

Conversely, more limited information regarding the prevalence

of S. Dublin is available in countries without control programs.

However, S.Dublin has been identified as one of the most common

isolates of Salmonella spp. in dairy farms in the US, Germany,

and the UK (11–15). In 2014, the USDA’s National Animal

Health Monitoring System (NAHMS) conducted a cross-sectional

study including 234 farms nationwide. Salmonella Dublin was

present in 0.7%, 6.7%, and 1.8% of the operations, milk samples,

and milk filters, respectively (23). Additionally, the University of

Minnesota Veterinary Diagnostic Laboratory (VDL) determined

that S. Dublin was the most prevalent serotype isolated from

bovine samples between 2005 and 2014, representing 31.8% of all

isolates examined from 880 dairy farms from the upper Midwest

(11). Likewise, S. Dublin was the most prevalent serotype in

bovine samples in the University of Wisconsin VDL, accounting

for 23% of all isolates from 2006 to 2015 (12). Similarly, S.

Dublin has been the most common Salmonella serovar isolated

from bovine samples at the Michigan State University VDL

between 2018 and 2022, representing 10%−20% of all bovine

Salmonella isolations (Table 2). In Germany and Italy, however,

Salmonella Typhimurium was the most frequently isolated serovar

in cattle samples collected as part of official outbreak investigations,

followed by serovar Dublin accounting for 30%−40% of samples

(15, 28). Nevertheless, there is some inherent bias in using

veterinary diagnostic submissions to infer the prevalence of an

organism on the broader population; therefore, these results need

to be evaluated carefully.

For determining the prevalence of S. Dublin, different

approaches may be taken, depending if the focus is the herd or

within-herd prevalence. The use of fecal culture or serology has

different strengths and limitations when determining prevalence.

This will be discussed in the diagnosis section. However, sampling

must be performed serially to categorize an animal as a carrier,

transiently infected, or negative (29). Similarly, herd sampling must

occur over time, as different factors may affect the shedding of the

bacteria in the infected animals (29). For example, the prevalence of

S. Dublin in Danish herds varied between 8 to 76% when samples

were measured every 3 months for 1 year from 2000 to 2002 (29).

Studies where S. Dublin has not been isolated should be taken

cautiously due to intermittent shedding or animal selection. For

example, Cummings et al. (30) did not isolate S. Dublin during the

years 2004–2005 in the northeastern US because the samples in the

study were collected from animals with clinical digestive disease

and not respiratory; therefore, cases might have been missed. In

addition, studies including samples from clinically ill animals may

overestimate regional or within-herd prevalence. Nonetheless, it

is still a valuable approach to differentiate positive and negative

herds. Serology has been widely used to determine prevalence

in herds (31–33). However, the age of the animal and the type

of sample used may affect the correct classification of herds and

animals. For example, if only milk is submitted for testing, non-

lactating animals may be missed, and the within-herd prevalence

may be underestimated.

2.2 Human health hazard

Salmonella Dublin is a zoonotic bacterium that can cause rare

but severe illness in humans, and it is characterized by acute

gastroenteritis and bacteremia (5). The case fatality for S. Dublin

has been reported as the highest compared to other Salmonella

enterica serotypes and has been described as six times greater

than S. Typhimurium (34). The consumption of raw milk or

raw dairy products has been associated with outbreaks of human

salmonellosis caused by serovar Dublin (7, 35–37). However, farm

personnel, veterinarians, and any person in direct contact with

cattle are at risk of infection by accidentally ingesting animal feces

or fluids (38). Moreover, S. Dublin has been isolated from the hide

of dairy cull cows in processing meat plants, where it can constitute

a risk for carcass contamination and a human health hazard (39).

In the US, the Foodborne Disease Active Surveillance Network

determined an increase in the incidence of human S. Dublin by

7.6 times from 1968 to 2013 (5). The same study determined an

increase in hospitalization from 68 to 78%, and an increase in

mortality from 2.7 to 4.2%, when comparing the periods 1996–

2004 with 2005–2013 (5). In a case-control study performed in

Denmark, human salmonellosis due to S. Dublin was associated

with an adjusted mortality of 12.4%, which was 12 times greater

than the mortality in the control group (40). In the UK, S. Dublin

was associated with 2% of human salmonellosis between 1949 and

1951 (41). Furthermore, Salmonella Dublin can cause long-lasting

disease: in 17.7% of the cases, the condition lasted over 14 days with

a 3.9% of mortality, which was higher than any other Salmonella

serotype (41). As discussed in Section 2.4., S. Dublin has been

characterized as an MDR bacterium to common antibiotics used

for the treatment of bacterial infections in humans and animals.

Therefore, S. Dublin is a pathogen that can affect human health

severely and compromise the medical treatment. For that reason,

it is fundamental to prevent and reduce the risk of infection from

cattle to farm workers, animal care takers, and from animal derived

food to humans.

2.3 Pathogenesis and clinical signs in cattle

Salmonella Dublin is a rod-shaped, facultative anaerobic,

Gram-negative bacterium host adapted to cattle. It can produce
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TABLE 1 Estimation of Salmonella Dublin prevalence across di�erent countries.

Country (region)a National control plan Apparent prevalence Method for prevalence
estimation

References

Canada (Ontario) No 25% Antibody testing on bulk tank milk and

serum of 20 heifers in 100 herds

(10)

Denmark Yes 9% Bulk tank milk antibody testing every 3

months as part of national control program

(19)

Germany No 0.7% Isolation in samples of cecal contents on

slaughterhouse (n= 283)

(20)

Great Britain No 38% Quarterly bulk tank milk antibody testing in

401 herds

(9)

Sweden Yes 1% Bulk tank antibody milk testing in 4,683

herds

(21)

The Netherlands Yes 9% Bulk tank milk antibody testing every 4

months as part of national control program

(22)

United States No 0.7% Bulk tank milk PCR in 234 herds (23)

United States (New York State) No 0.9% Bulk tank milk antibody testing in 4,896

herds

(24)

aWhen no region is specified, the study was aimed at being representative of the whole country.

TABLE 2 Prevalence and antimicrobial susceptibility patterns of Salmonella Dublin in bovine isolates at the Michigan State University Veterinary

Diagnostic Laboratory from 2018 to 2022.

Year

2018 2019 2020 2021 2022

Number of Salmonella spp. isolations in bovine samples 206 202 223 186 131

Number (%) of S. Dublin isolations 26 (12.6%) 36 (17.8%) 36 (16.1%) 22 (11.8%) 25 (19.1%)

Antimicrobial susceptibility of S. Dublin isolatesa

Ampicillin 0% 0% 0% 0% 0%

Ceftiofur 4% 6% 8% 18% 12%

Clindamycin 0% 0% 0% 0% 0%

Danofloxacin 85% 80% 91% 90% 88%

Enrofloxacin 65% 83% 91% 90% 88%

Florfenicol 3% 0% 2% 9% 4%

Neomycin 0% 0% 0% 0% 0%

Penicillin 0% 0% 0% 0% 0%

Sulfadimethoxine 4% 0% 0% 4% 0%

Trimethoprim/Sulfamethoxazole 85% 100% 100% 95% 96%

Tetracycline 0% 0% 0% 4% 0%

Tulathromycin 62% 88% 66% 50% 68%

aExpressed as the percentage of susceptible isolates.

enteritis and septicemia in bovine and severe disease in humans

(5). The routes of infection for S. Dublin are shown in Figure 1.

Briefly, the most common route of infection for S. Dublin is oral

(42). Susceptible animals may uptake this bacterium by ingesting

feces or body fluids (milk, saliva, and nasal secretion) from infected

animals or contaminated environments (2, 42). In addition, vertical

transmission with abortion in the last trimester of gestation or the

birth of a congenitally infected calf has been reported (4, 43–45).

One study determined the presence of S. enterica in the newborn

calf. The results suggested that S. enterica was isolated from 50%

of the enrolled calves and from samples that included lymph nodes

and intestinal tissue (45).

Additionally, experimental evidence suggests less common

routes of infection through the upper respiratory tract (42)

and mammary gland in cows under 60 days of lactation (46),

although this study injected the bacteria directly into the udder

in higher numbers which might not reflect natural exposure

situations. In experimental conditions, it has been described

that the minimum dose for infection that results in clinical

disease and shedding of S. Dublin in animals younger than 6
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FIGURE 1

Illustration of the transmission routes for Salmonella Dublin. Symptomatic infected animals and latent carriers shed the bacterium to the

environment under stress conditions, primarily in the peripartum. Once S. Dublin is shed in feces and secretions (saliva, colostrum, and milk) can

survive in the environment. The newborn calf may uptake the bacterium via fecal-oral route at calving or by consumption of raw colostrum or milk

from infected cows. Moreover, the infected calf will shed the bacterium to the environment, where susceptible calves will ingest S. Dublin through

direct contact or fomite (contaminated surfaces or objects). In addition, the intrauterine infection of the fetus in the last trimester of gestation may

occur, resulting in abortion or the birth of an infected calf. Finally, the zoonotic route will occur mainly in caretakers working with symptomatic

animals and latent carriers at calving. The human will uptake S. Dublin from feces and secretions during calving assistance, cleaning equipment or

facilities, manipulating raw colostrum and milk, or close contact with sick animals. Created with BioRender.com.

months of life is 106 colony-forming unit (CFU) (2). However,

this dose might depend on factors such as the strain used

for infection (2, 47). In addition, experimental infection of

mature cows with the administration of 1010 and 1011 CFU

oral or intravenously resulted in diverse clinical manifestations,

ranging from no signs to severe disease and abortion, which

might be dependent on the strain used in the studies (44,

48). The incubation period has been determined as 12–72 h

(49). The infectious dose might have importance in individual

susceptibility to the pathogen and in the subclinical presentation

of this disease.

Once S. Dublin enters the animal, it colonizes the digestive

tract invading and multiplying in the enterocytes. From the distal

ileum, it is translocated by efferent lymphatics from the mesenteric

lymph node (50). After the translocation, Salmonella can

rapidly disseminate and produce systemic disease. Furthermore,

Salmonella can survive as facultative intracellular bacteria in

numerous organs (spleen, liver, and lungs) and lymph nodes,

allowing them to elude the adaptive immune response (38). The

adaptation of S. Dublin to cattle has been linked to the selection

of variants that can evade the innate response in the host and

reduce the inflammatory response in the intestine’s mucosa, which

facilitates the dissemination (51). This process has been achieved

by mutation within the host, resulting in the acquisition of genetic

elements that encode specific virulence factors or the loss of specific

genes to survive the particular conditions in the host environment

(51, 52). In contrast, the infection of other animal species is

accidental (52).

Several virulence factors have been associated with Salmonella,

such as Salmonella Pathogenicity Islands (SPI), toxins, flagella,

fimbriae, and virulence plasmids (53). Salmonella Dublin encodes

the Type III Secretion System from SPI-1 and SPI-2, which

allows it to invade the intestine and spread to systemic sites,

respectively (54). Additionally, S. Dublin encodes the Type VI

Secretion System from SPI-6 and SPI-19, which allows the injection

of effector proteins into cells, increases the virulence, and in

experimental settings, contributes to interbacterial competition

(55). In addition, S. Dublin has the pSDV plasmid with a spv

operon that encodes a toxin associated with the host’s cellular

apoptosis (53). Furthermore, the plasmid contributes to increased

virulence, the systemic presentation of the disease, and encoding

of antimicrobial-resistant genes (47, 53). Moreover, S. Dublin

expresses flagella encoded by the gene fliC (56). The flagella

allow motility and, through chemotaxis, enables the bacterium
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to respond to changes in the host environment (56). Salmonella

Dublin also has fimbriae that aid in the adhesion to the host cells

and virulence plasmids (53). Finally, S. Dublin virulence factors

had been associated with an enhanced intracellular proliferation

in intestinal and extraintestinal tissues, leading to severe diarrhea

and mortality in experimental conditions (57). However, virulence

factors will influence the infection depending on the host’s

immunity, and immunity is crucial in the outcome of clinical

salmonellosis, especially in young calves with an immature immune

system (58).

Compared to other Salmonella serovars, the clinical

manifestation of S. Dublin is more severe due to a more

invasive capacity in cattle (59). However, the clinical signs related

to S. Dublin infection in cattle will depend on the animal’s age and

the endemicity of the pathogen on the farm, as endemic farms will

have persistent infected animals (29). The clinical manifestation

of S. Dublin infection is most common in calves 2–12 weeks

old (42, 60); although it can affect cattle of all ages. A peracute

presentation may occur in calves with sudden death in 1–2 days

due to endotoxic shock. This presentation is more common

in naïve herds (2, 3). Even though S. Dublin is an intestinal

bacterium, the most distinctive clinical signs in acute infections

of calves are pneumonia, respiratory distress, and hyperthermia

(3, 17). In addition, calves show signs of obtundation, lack of

appetite, diarrhea, arthritis, and meningoencephalitis. Chronic

infection is more common in calves 6–8 weeks old that survived

an acute infection and is characterized by growth retardation,

loose stool, and lameness due to arthritis (2). The morbidity in

outbreaks of S. Dublin has been reported between 10.5 and 34.8%,

mortality between 2.3 and 18.2%, and case fatality of 26.4% for

dairy calves (3, 61). As a point of comparison, respiratory disease

is a common cause of morbidity and mortality in pre-weaned

calves. It has been reported that respiratory disease mortality

ranges from 2.8 to 14% and a case fatality of 6.0% (62–64).

Considering the information in published studies, S. Dublin

exceeds the mortality and case fatality of the common calf

respiratory disease.

In unexposed adult animals, S. Dublin may lead to fever,

bloody diarrhea, and in extreme cases to death. However, signs

might be unnoticed in herds with a history of S. Dublin; the

typical presentation is a slight fever and mild diarrhea, which

can be accompanied by a sudden reduction in milk production

(2, 38). As previously mentioned, abortion in the last trimester of

gestation is another clinical manifestation in mature cows due to

bacteremia (4).

Nonetheless, S. Dublin infection may generate persistent

infections without clinical signs of disease, except for a reduction

in the milk yield (2). These animals have been called “latent

carriers.” These carriers host the bacteria in lymphoid tissue

and periodically shed the pathogen in feces or fluids when the

immune system is compromised or challenged, as in calving

or transportation (29, 43, 65). Therefore, latent carriers are a

source of infection for the herd, and identifying and culling

these animals is essential for controlling the spread of the

disease within and between herds (66, 67). Factors associated

with an animal becoming a latent carrier are described in the

Section 3.

2.4 Antimicrobial resistance

The prevalence of MDR S. Dublin is associated with

geographical location. For example, although S. Dublin is

considered one of the most common MDR serotypes in the US

(17), MDR is not a common phenomenon in the European S.

Dublin isolates (68). However, S. Dublin MDR can reduce the

success of treatments, delay recovery, and increase mortality and

costs in humans and cattle (18). As mentioned in the previous

section, the infection of dairy calves with S. Dublin may produce

a severe disease that may require antibiotic treatment. However, if

antimicrobial treatment is administered without testing for drug

susceptibility, the animal will not only fail to recover, but this

practice will contribute to enhancing pathogen resistance (6).

Hence, this will have negative consequences for human health due

to the zoonotic nature of this agent (6). Furthermore, there are

limited antimicrobial options to treat animals with clinical signs

effectively, and some of those drugs are not labeled for treating S.

Dublin infections, as will be discussed later in this section.

In the US, a study performed between 1996 and 2013 found

that S. Dublin had a 43% higher prevalence of MDR compared

to other Salmonella isolates (5). The National Antimicrobial

Resistance Monitoring System (NARMS) reported that among

S. Dublin isolates, 84% were resistant to five or more classes

of antimicrobial drugs, and 57% were resistant to seven or

more antimicrobial classes (5). Furthermore, an increase from

29 to 79% was observed in the proportion of isolates resistant

to one or more antimicrobial classes when comparing 1996–

2004 with 2005–2013 (5). Studies including samples from cattle,

retail meat, and humans have reported S. Dublin antimicrobial

resistance (AMR) to ampicillin, chloramphenicol, neomycin,

tetracycline, streptomycin, sulfonamide, amoxicillin/clavulanic

acid, and ceftriaxone (5, 6, 13, 17, 69). A similar situation has

been described in other countries; in China, bovine isolates had

AMR between 92 and 98% for tetracycline, sulfamethoxazole, and

ampicillin (70). In the same study, human isolates were resistant

to ceftiofur, chloramphenicol, tetracycline, and sulfamethoxazole

in 40%, 50%, 50%, and 70% (70). Furthermore, in Canada, a

study determined a high resistance to streptomycin, β-lactams,

gentamicin, chloramphenicol, sulfisoxazole, and tetracycline from

bovine samples (71). In Germany and the UK, S. Dublin has not

been associated with significant AMR in bovine samples collected

from cattle (68, 72) or beef products (73). This might be explained

by a difference in the expression of plasmids and genes associated

with AMR and MDR between regions, as specific AMR plasmids

have been reported in the US and China but not in Europe (68).

In the US, it was reported that S. Dublin is susceptible

to gentamicin, amikacin, cefoxitin, cephalothin, enrofloxacin,

meropenem, and azithromycin (6, 17). Even though this pathogen

is susceptible to enrofloxacin, this drug is only allowed to treat

specific bovine respiratory disease pathogens in non-lactating

cows and dairy replacements younger than 20 months. Hence,

enrofloxacin is not labeled as a treatment for S. Dublin infections,

and the extra-label use of this drug is prohibited for food animals

in the US. Although most producers and veterinarians would

treat respiratory disease without a pathogen isolation diagnosis,

current US regulations imply that enrofloxacin cannot be used
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when S. Dublin is suspected or confirmed. This complicates the

proper treatment of sick calves and potentially might increase the

use of drugs to which S. Dublin has reduced susceptibility. The

antimicrobial susceptibility pattern of S. Dublin isolated has largely

remained unchanged in recent years (Table 2), with S.Dublin being

generally susceptible to only four antimicrobials. Among those

four, only Trimethoprim/Sulfamethoxazole has been labeled for

treating Salmonella infections.

Different mechanisms have been described for the observed

antimicrobial resistance, such as the production of enzymes

that degrade or produce structural changes in antimicrobial

agents, membrane impermeability, activation of antimicrobial

efflux pumps, modification of cellular target for antibiotics, and

biofilm formation (74, 75). Additionally, S. Dublin MDR has been

linked to plasmid-borne resistant genes (6, 70, 75–77). Through

whole genome sequencing, Srednik et al. (6) determined that

the most common genes associated with AMR in the US were

sulf2, tetA, aph(3
′′

)-Ib, floR, and blaCMY−2. In China, similar genes

were associated with AMR, and in a lower proportion aph(3
′

)-

Ia and blaTEM−1B (70). In Canada, the AMR was associated

with strAB, blaCMY−2/blaTEM−1, aadB, floR/cmlA, sul2, and a

class A tetA (71). The mentioned genes conferred resistance to

sulfonamide, tetracycline, aminoglycosides, chloramphenicol, and

beta-lactams. Furthermore, in the mentioned studies, the MDR

plasmid, IncA/C2, was present in 81.8% and 98.6% of all bovine

isolates (6, 70). Hence, IncA/C2 might represent a critical MDR

plasmid and a distinctive feature from bovine isolates with AMR

(68, 70).

2.5 Economic impact

To date, a formal assessment of the financial impact of S.

Dublin in the US has not been conducted. However, the economic

importance of this pathogen in dairy farms is associated with

the treatment of sick animals, reduction in milk yield, abortion,

culled animals, mortality, cost of disinfection of facilities, and

increased working hours during outbreaks (78, 79). Additionally,

latent carriers contribute to the endemicity of the pathogen

in the herd, spreading the pathogen and infecting susceptible

animals, increasing the risk of outbreaks and associated costs. In

Denmark, Nielsen et al. (78) utilized a simulationmodel to estimate

the economic effects of S. Dublin for 10 years in a herd. The

model included 12 scenarios based on three herd sizes and four

management levels. The results indicated that the more significant

economic losses occurred in the first year after the introduction

of S. Dublin. The losses increased as the herd size increased, and

the management practices decreased. From this analysis, milk yield

losses in active and latent carriers were the most impactful. Even

though these scenarios were adapted to dairy herds in Denmark,

and some information might differ from other dairy systems,

it provides an estimation of the economic implication of this

pathogen. For example, in a 200 head herd with poor management

practices, losses were estimated at 326 EUR per stall in the first

year and 188 EUR per stall as an annual average of 10 years

(78). Furthermore, this simulation reinforces the impact of basic

management practices on the herd’s economy. Those practices will

be discussed in the prevention and control section.

3 Risk factors for infection

The identification of risk factors for infection with S. Dublin

in animals and herds has come from epidemiological studies

primarily conducted in Europe. These studies have reported factors

associated with the host, farm practices/environment, and the

agent. A summary list of risk factors can be found in Table 3.

3.1 Host factors

The animal’s immune status has a fundamental role in the

control of new infections. Calves are born with an immature

immune system that makes them highly susceptible to diseases

early in life (96). In endemic herds, therefore, newborn calves

exposed to contaminated environments or infected cows are at high

risk of uptake S. Dublin by oral ingestion of feces, colostrum, or

other body fluids and developing clinical disease (38). A similar

situation is described for pre-weaned calves, as components of the

adaptive immune system start to mature progressively from the

second week of life (96); therefore, contact with S. Dublin in the

environment or feed may lead to infection (38).

Moreover, animals experiencing concomitant diseases are at

greater risk of infection or shedding of Salmonella spp. (97). In

mature cows, liver fluke has been associated with an increase of

over 14 times in the likelihood of S. Dublin infection compared to

healthy cows (83). Likewise, concurrent infection with Bovine Viral

Diarrhea Virus, an immunosuppressant virus, has been associated

with a more severe clinical presentation of S. Dublin in calves (98).

3.2 Latent carrier factors

The importance of latent carriers in the epidemiology of S.

Dublin is critical as they are defined as animals with a persistent

infection without clinical signs but with an intermittent shedding

of the pathogen to the environment through feces or secretions

(2). However, latent carriers may be clinically ill or reactivate the

shedding when the immune system is compromised (2). There is an

association between age and the productive stage of the cattle with

the risk of new infections and latent carrier status. For example,

calves younger than 12 weeks of age are highly susceptible to

infection of S. Dublin (42, 60). Repeated infection in young calves

leads to a high proportion of resistant adult cattle and an increase

in abortions in the last third of gestation (80). Moreover, it was

reported that heifers infected between 1 year of life and calving were

11 times more likely to become a latent carrier than cows infected

in mid or late lactation (29). A similar situation was described for

cows infected in the peripartum, as they were 4 times more likely to

become latent carriers (29).

Additionally, stress is an important factor associated with the

infection of susceptible animals and the shedding of S. Dublin in

latent carriers (29). Calving and transportation have been identified

as periods of increased stress and shedding of S.Dublin (29, 87–89).
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TABLE 3 Summary table for risk factors associated with infection and shedding of Salmonella Dublin and preventative strategies for dairy herds.

Risk factor Prevention References

Poor hygiene (maternity barn, pre-weaned area, tools used to feed

or treat sick animals)

Frequent sanitation of barns and water troughs, avoid high-pressure

washing

(38, 66, 67, 80–82)

Purchase of non-tested livestock or from positive facilities Purchase of cattle tested for S. Dublin (31, 83–86)

Age (animals younger than 12 weeks, heifers between 12 months

and calving)

Avoid contact between different age animals, culling latent carriers (29, 42, 60)

Stressors (calving, transportation) Reduce stress and frequent sanitation of barns and trailers used for

high-risk groups

(29, 38, 87–89)

Delayed separation of the newborn from the dam in endemic

herds

Prompt separation of the newborn. Identification and culling of latent

carriers

(66, 67, 81, 90, 91)

Feeding pooled colostrum, raw colostrum, or waste raw milk to

calves

Pasteurization of colostrum and milk (38, 81, 92)

Contact of young stock with older or adult cattle Strict age group housing and physical separation of different groups (81)

Use of maternity as a recovery pen Avoid housing sick animals in maternity pens (93)

Overstocking Correct animal density by pen size (67, 94)

Sick and healthy calves in the same area Isolation of clinically ill animals, disinfection of tools and housing (60, 81, 90)

Close contact with neighboring animals from positive herds Limit access to neighboring operations (31, 32, 86)

Presence of rodents and no use of personal protective equipment

by veterinarians and visitors

Strict internal biosecurity (22, 95)

Furthermore, anymanagement practice that may increase the stress

of the animals and the direct contact with infected animals that are

actively shedding S. Dublin may result in infection of susceptible

animals or outbreaks of disease (38).

3.3 Management practices and
environmental factors

Different management strategies increase the prevalence of

the herd and the susceptibility to infection for calves and cows.

One of the most important risk factors for introducing and

spreading infection into a susceptible herd is the purchase of

livestock from facilities positive to S. Dublin or the purchase of

non-tested animals (31, 83–85). The purchase from test-positive

facilities has been associated with an increase between 2.5 and 4.2

times in the likelihood of infection of the new herd compared to

animals purchased from negative facilities (31, 83). Furthermore,

comparing the purchase of 1–10 animals with the purchase of more

than 20 animals from test-positive herds, the likelihood of herd

infection increased from 3.8 to 7.4 (86). The basic reproduction

ratio (R0) for S. Dublin has been estimated at 1.1–2.7, meaning

that 1–2 susceptible animals will be infected by introducing an

infectious cow (84, 99). However, the screening and diagnosis

of infected animals and latent carriers before purchase may be

complex, as discussed in the diagnosis section.

In addition, poor hygiene has been identified as a highly

influential risk factor, especially in maternity and calving pens

(80). As mentioned previously, the shedding of S. Dublin increases

around calving, and there is a greater probability of contact

between the pathogen, newborn calves, and susceptible cows. Poor

hygiene has been defined as visible or buildup of manure in the

environment, the legs and udder of the cows, wet bedding, and

infrequent manure removal (80). In fact, farms that added bedding

material to calving areas once or twice per week had lower odds of

being S. Dublin positive compared with farms that added bedding

less than once weekly (10). A study comparing different levels of

hygiene through a simulation model, determined that in a herd of

200 cows the probability of S. Dublin spread was 77 vs. 92% when

comparing excellent with poor hygiene (80). Management practices

associated with increased risk of Salmonella spp. infection of

newborn calves are pooling and feeding raw colostrum in endemic

herds (38, 92), delayed separation of the newborn calf from the

dam (81), overstocking of the maternity pen (67, 94), increased

number of cows calving outside the maternity area, and the use of

the maternity as recovery pen (93). All these managements increase

the exposure of newborn calves to feces and body fluids that might

be contaminated with S.Dublin. In calf facilities, overstocking, poor

nutrition, different age groups in a pen, and poor hygiene might

lead to a fast spread of diseases. Additionally, clinically ill calves that

are not isolated represent a hazard for pen mates or closely housed

calves, as they are active shedders (38, 60, 81, 90). In endemic herds,

feeding waste raw milk or the provision of contaminated water

or feed has been associated with a greater probability of infection

(38, 81).

There is no agreement in published studies if herd size is a

risk factor for S. Dublin infection and spread. Several studies have

determined that larger herds have a greater herd susceptibility

(31, 83, 85, 86). However, other studies have not found herd

size influential in infection, shedding, or spread of Salmonella

(93, 100). Despite herd size, the lack of personal protective

equipment may significantly increase the risk of introduction

and infection of herds when veterinarians and visitors enter a

facility (22). In addition, Tablante and Lane (95) suggested that

wild mice could act as a reservoir and potentially transmit the
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pathogen to cattle or allow the persistence of the pathogen in

the environment.

Concerning the environment, the prevalence of S. Dublin

in nearby dairy facilities was associated with a greater risk of

introduction into the herd (31, 32, 86). For example, a dairy farm

with two or more positive neighboring facilities in a radius of 2 km

is 1.7 times more likely to be infected than farms with no positive

neighbors (86). This information may be critical in systems where

cows have access to pasture and the possibility of close contact

with neighboring herds exists. In systems where cows are housed

in barns with no pasture access and higher biosecurity, this factor

might be less influential in introducing S. Dublin. However, local

herd prevalence was associated with 1.8 times greater risk of S.

Dublin introduction (31). In addition, surface water contaminated

with S. Dublin can lead to a fast spread of infection in animals

with access to ponds, lakes, or rivers (83). Lactating and dry

cows were 2.1 times more likely to shed Salmonella when having

access to surface water than cows with no access (100). Finally,

in the US, a seasonal association has been described; cows have a

greater likelihood to test positive in summer, spring, and fall when

compared to winter months (100). However, the authors speculate

that this difference may be due to the intensity of the sampling in

comparison to other studies, and the states included in the study

had relatively similar weather conditions.

3.4 Agent factors

Themain virulence factors associated to S.Dublin in cattle were

presented in Section 2.3. In addition, S. Dublin is able to cross the

placenta and infect the fetus. Therefore, maintaining latent carriers

in the herd may contribute to the prenatal infection of newborn

calves and keep the infection in the herd (4, 43–45). Hanson et al.

(45) performed a study and found that 50% of the newborn calves

enrolled were positive to S. enterica immediately after birth and

before consuming colostrum. However, neither the dams nor the

calves were tested to determine the serotype, and the sample size

was small.

In addition, S. Dublin can survive in the environment,

increasing the risk of infection of susceptible animals (101). Dairy

cows in intense grazing herds had 13.2 times greater odds of

infection with S. Dublin than cows from less intense grazing

systems (83). This increase was explained by a greater fecal

contamination of the pasture and a reduction in the time between

manure spread and grazing. Likewise, a greater risk for shedding

of S. Dublin has been identified in cows that consumed roughage

from fields where manure was applied in solid or liquid form but

not plowed in the same season (100).

4 Diagnosis

There are two main approaches for the diagnosis of S.

Dublin: the detection of bacteria and the detection of antibodies.

Both methods have advantages and limitations, and they can be

performed in individual animals or the herd. This review will

provide a basic approach to diagnosis, as techniques have been

described in depth elsewhere (2).

4.1 Detection of bacteria

Bacteriological culture has been useful for isolating and

identifying S. Dublin to trace infections and active shedders (2,

102). Bacteriological culture can be performed utilizing a variety

of samples, including feces and fluids from live animals, organs

from necropsies, aborted fetuses, or environmental samples. This

method aims to isolate live bacteria (2). Thus, the procedure

involves a pre-enrichment and a selective enrichment to allow

bacterial growth, followed by plating and confirmation (2). This

method has been described as more relevant in acute infections

and clinically ill animals, as the correct isolation will depend on

the number of bacteria in the sample (2, 102, 103). For that reason,

the sensitivity of this assay has been described as low (104), and

it has a limitation that latent carriers might be undetected due to

the intermittent fecal shedding of S.Dublin. Bacteriological culture

using samples from manure pits, drinking water, milk filters, and

feces of clinically ill animals was associated with a sensitivity of

45%, 5%, 7%, and 38% for detecting S. Dublin, respectively (105).

In post-mortem examination of clinically ill animals, the collection

of tissues from the lungs, spleen, liver, intestine loops, gallbladder,

intestinal content, and lymph nodes increases the probability of

bacteria isolation (3, 106). A potentially more sensitive and faster

method for the detection of genetic material of Salmonella is the

polymerase chain reaction test (PCR) or real-time PCR (107).

Persson et al. (108) described an S. Dublin-specific real-time PCR.

The procedure for this method requires a pre-enrichment of the

sample from lysates or extractedDNA (107). To increase sensitivity,

a DNA extraction is recommended (107). However, the specificity

of the assay in comparison to the numerous other Salmonella

serotypes is yet to be determined. Currently, the most commonly

utilized PCR assays do not allow serotype determination, and

bacterial culture is recommended after performing a PCR (2).

There is evidence of a multiplex PCR to discriminate Salmonella

Enteritidis, Salmonella Pollorum, and S. Dublin (109). This assay

is based on detecting three genes (tcpS, lygD, and flhB), where tcpS

exists only in the serovars mentioned (109).

4.2 Detection of antibodies

The detection of immunoglobulins against S. Dublin is

performed through an Enzyme-linked immunosorbent assay

(ELISA). This method has a lower cost than bacteriological culture,

and it can be used as a monitoring strategy in the herd to identify

latent carriers during programs of control and eradication (67, 110).

Salmonella Dublin is part of the D-serogroup of Salmonella and

has the antigenic factors O1, O9, and O12; therefore, cross-reaction

between serovars sharing O antigens may occur (111). The ELISA

is based on detecting immunoglobulins directed to the LPS O-

antigen from serum, milk, and bulk tank milk (BTM) samples

(112, 113). The kit is commercially available in several countries for

monitoring and surveillance of Salmonella infections in cattle herds

(Applied BiosystemsTM, Massachusetts, USA). The results provided

in this ELISA are semi-quantitative for antibody concentration

as they are expressed in ODC% (optical density coefficient). The

interpretation of the result is based on an estimated cut-off point to
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determine positive animals depending on the sample. The ODC%

cut-off for serum, milk from an individual, or BTM is 35 ODC%.

A positive correlation exists between the ODC% and antibody

concentration in a sample. In BTM, the greater the ODC%, the

higher the spread of infection in the herd (32). To identify latent

carriers and the intermittent shedding of S. Dublin, sequential

samples should be obtained from individual animals by using

milk or serum samples. For example, studies from countries with

eradication plans recommend that cows be sampled quarterly (31,

32). The limitations of this assay include that the sensitivity and

specificity are age-dependent, as it performs better as a diagnostic

test in animals older than 100 days (104). Additionally, milk

samples have the limitation that only lactating cows can be tested

(2, 105). Furthermore, when BTM samples are used, there is the

probability of diluting immunoglobulins in cows’ milk with low

or no titers (110). Even though the aim of using BTM samples is

to estimate herd prevalence, it is still unclear what is the limit of

detection of the assay in BTM samples (i.e., the lowest proportion

of positive animals needed for the sample to be correctly classified

as positive). However, simulation models suggest that the apparent

herd prevalence would need to be between 0.3 and 0.55 for a bulk

tank milk sample to be declared positive with a 35 ODC% (110).

4.3 Postmortem examination

There are no pathognomonic lesions in internal organs for

infections with S. Dublin. However, while considering the age of

the animal and the clinical signs, necropsy may be helpful to

guide diagnosis or for sample collection. In calves with clinical

presentation, the gross pathologic findings in the lungs include

pulmonary congestion, suppurative pneumonia, and chronic

bronchopneumonia, depending on the severity of the clinical case

(17, 106). The intestinal lesions may include diffuse catarrhal

hemorrhagic enteritis, ileitis, and mesenteric lymphadenitis (3,

106). The intestinal content is watery, malodorous, and may

contain mucous, blood, or fibrin clots (3, 106). Moreover, the

liver is enlarged with rounded edges and hemorrhagic areas on

the capsular surface, and gelatinous edema of the gallbladder (3).

Jaundice and splenomegaly are also common postmorten findings

in cases of S. Dublin (114). In some cases, swollen joints may be a

finding (17).

5 Treatment

The treatment of S. enterica infection is directed to provide

supportive therapy by correcting the electrolyte imbalance,

dehydration, and management of inflammation (106, 115).

However, salmonellosis due to serovar Dublin may be difficult

to treat and fatal. Electrolyte therapy can be provided orally or

intravenously, depending on the calf ’s degree of dehydration and

suckle reflex. Calves with strong suckle reflex and dehydration

below 8% can be offered oral electrolytes, while calves with over

8% dehydration should be administered intravenous fluid (116).

Calves experiencing systemic infection should be administered

non-steroidal anti-inflammatory drugs to manage inflammation.

Antimicrobial use to treat the clinical presentation of S. Dublin

is controversial, as discussed in the section on antimicrobial

resistance. Ideally, the appropriate selection of antimicrobials

should be based on susceptibility testing (106). However, this might

not always be an option in the face of an outbreak. Moreover, the

nutrition of the sick calf is important for recovery as it is the source

of calories. Milk can be offered in smaller portions throughout

the day to encourage milk consumption (117). Additionally, the

calf ’s environment should be clean with dry bedding, have access

to water, and be protected from adverse weather conditions.

6 Management strategies for
prevention and control

The strategies for prevention and control of S. Dublin should

focus on reducing disease transmission by changing management

practices and restrictions in the purchase of animals, detecting and

managing infectious animals, and continued surveillance (81). This

section will discuss the most critical management for preventing

and controlling S. Dublin on dairy farms. Table 3 lists strategies to

reduce the risk of infection and shedding of S. Dublin.

6.1 Sanitation

Research has demonstrated that practices associated with the

cleaning and disinfection of the environment are key elements in

the prevention and control of S. Dublin (66, 67, 81). The first step

in decontaminating the environment and equipment is removing

organic material (i.e., food, manure, bedding), as this can inactivate

disinfectants. Secondly, it is necessary to rinse the surfaces with

water and apply a detergent in all the areas to clean. A thorough

rinse with water should follow this step. High-pressure washing

should be avoided, especially in indoor housing, as it may spread

contaminants and aerosols to the environment (81). The final step

is the application of the disinfectant in the concentration and

contact time described on the label, as any variation in the use of

a disinfectant may affect its effectiveness. Salmonella is susceptible

to most disinfectants if steps one and two have been appropriately

performed (118).

Besides cleaning and disinfection, improvement in

management practices, such as cleaning water troughs with

chlorinated disinfectant twice a week, replacing bedding weekly,

and not recycling the water used for flushing pens, have been

associated with a decrease in Salmonella incidence in a herd

experiencing an outbreak (66). Furthermore, S. Dublin in endemic

herds from Denmark has been controlled by daily removal

of manure, the cleaning and disinfection of the calving area

at least twice a month, and new bedding added weekly (67).

Although these practices may be unpractical in some herds, the

sanitation of calving areas should be performed according to

their use. Moreover, trailers used for the transport of animals

should be cleaned and disinfected consistently (38). In the case

of calves, it has been recommended that after disinfection,

pens should be kept empty for a minimum of 2 days before

new animals are housed in them (81). Furthermore, cleaning

and disinfection should be a priority for all equipment used

to manage sick calves or to feed calves, including tools used
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to harvest, store, and provide colostrum and milk, such as

esophageal tubes, nipples, bottles, and buckets (38, 66). In addition,

buckets used to feed water and starter in pre-weaned calves

should be cleaned daily and positioned to reduce the risk of fecal

contamination (106).

Even though feeding waste milk can be cost-effective, the

provision of raw milk may increase calf morbidity and mortality

due to the ingestion of pathogens (82). Therefore, another hygiene

strategy to prevent and control Salmonella infection in pre-

weaned calves is the pasteurization of colostrum and milk as

it has been shown to reduce microbial populations including

S. enterica species (92). However, adequate maintenance of the

equipment and regular sampling of colostrum and milk is highly

recommended as a tool to monitor the correct functioning of the

pasteurizer (38, 82).

6.2 Stocking density and isolation of sick
animals

Maintaining an adequate stocking density in mature cow pens

(i.e., close-up, maternity, fresh cow), heifer pens, and pre-weaned

calves housed in groups is a practice that can reduce the contact

between animals, the contamination of the environment, and new

infections. As mentioned in the latent carrier factors section, it

is necessary to consider the existence of groups of animals that

are more susceptible to new infections or to shed S. Dublin.

For instance, in those groups, it is critical not to overcrowd.

In addition, the calving area should not be used to house sick

animals due to the risk of environmental contamination and

infection of newborn calves (67). Moreover, young calves should

not have access to or contact with older animals; therefore, strict

age group housing in conjunction with adequate stocking density

has been recommended to prevent and control S. Dublin (81).

Finally, animals exhibiting clinical signs of S. Dublin infection

should be isolated, and strict cleaning procedures should be in

place (38).

6.3 Newborn management

The management of the newborn and the calving area is critical

to prevent S.Dublin infections. Some considerations must be taken

as latent carriers can reactivate the shedding of bacteria around

calving (29, 89). Newborn calves should be separated from the

dam as soon as possible after birth to avoid oral infection due to

consumption of colostrum or feces from the dam or other adult

cows. The correct management of colostrum is fundamental to

preventing infectious diseases in young calves (119). The newborn

calf should receive the first colostrum feeding within 4 h after birth

(119). Ideally, calves in endemic herds should be provided with

pasteurized colostrum. Moreover, having fewer personnel in charge

of calving and colostrum handling was associated with preventing

S. Dublin infections (67). However, this might be challenging and

not be suitable for all farms. Thus, it is fundamental to provide

training to the personnel to keep farm practices according to the

established protocols.

6.4 Vaccination

Commercial and autologous vaccines have been used to control

S. Dublin in herds. However, autologous vaccines have not been

evaluated in published studies for their efficacy in preventing and

reducing the clinical signs or the shedding of S. Dublin in dairy

animals. A commercially available modified-live vaccine available

in various countries (EnterVene-D, Boehringer Ingelheim) is

recommended for animals older than 2 weeks with a booster after

12–16 days. The benefits of an attenuated-live S. Dublin vaccine are

associated with a robust response at mucosal level due to its action

on lymphoid tissue in the gut, and a robust cell-mediated immune

response due to intracellular proliferation (120, 121).

The age for the first dose can be too late as calves may get

infected with S. Dublin at birth or in the first hours of life.

Moreover, limited research addresses the dam vaccination as an

approach for producing antibodies that can be delivered to the

newborn calf through colostrum (122). The evidence suggests that

specific antibodies for S. Dublin are in a higher concentration in

the colostrum of cows vaccinated 30 days before dry-off than in

non-vaccinated cows (122). However, it remains unknown if those

antibodies have a protective effect on the newborn calf. In addition,

research evaluating intranasal and oral vaccination of 4-day-old

calves suggests that those are safe routes (123, 124). Using these

extra-label routes of administration reduced the disease severity

as calves administered the vaccine had a reduced mortality rate

compared to unvaccinated calves (124). However, the incidence

of pneumonia, abnormal fecal scores, and the fecal shedding of S.

Dublin were not reduced (123, 124). Furthermore, no differences

were observed in the average daily gain or antibody concentration

at 10 weeks and 10 months of life compared to control calves (124).

Additionally, few studies assessed the cross-protection between

S. enterica with modified-live vaccines. Mohler et al. (106) found

that calves younger than 2 weeks of life orally vaccinated with

modified-live S. Typhimurium had less severe clinical signs,

improved appetite, and reduced fecal shedding when challenged

with S. Dublin compared to control calves. However, calves

in that study were challenged with a dose of S. Dublin to

induce disease and minimize mortality, and respiratory clinical

signs were not assessed. Similar results were found using an

attenuated-live S. Typhimurium vaccine on diarrhea and shedding

of Salmonella Newport and Salmonella Cerro (120). Moreover,

there is a study assessing the vaccination of the dry cow with

an S. Newport bacterin to provide cross-protection in an S.

Typhimurium challenge in calves fed colostrum from vaccinated

dams. Despite higher serological titers, no difference in mortality,

clinical signs, hematology, and fecal cultures were observed in

calves fed colostrum from vaccinated cows and the control

group (125). Based on this research, the cross-protection between

Salmonella spp. and potential protection against S. Dublin in dairy

herds is still in development.

6.5 Farm biosecurity

Although the S. Dublin status of the herd is not frequently

known in countries without a control program, several European

studies have found that avoiding the purchase of cattle from
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test-positive herds or herds with unknown infection status

should be a consistent practice in dairy facilities to prevent

the introduction of S. Dublin in the herd (31, 67, 83, 86).

Similarly, pasture-based operations should prevent close contact

with cattle from neighboring farms, as the introduction of S.

Dublin can occur through direct contact (22, 32, 83, 86). The

vertical transmission of S. Dublin can perpetuate the disease

even in closed herds (43, 45, 83). Therefore, culling of latent

carriers should be considered for control or eradication of S.

Dublin (66, 67). However, this strategy might not be suitable for

all herds as seroprevalence within the herd may range from 3

to 70% (105, 126, 127). Additionally, persistently infected herds

may have a high percentage of seroprevalence for S. Dublin

without clinical signs or frequent outbreaks (127). Therefore,

producers might find it economically counterproductive to cull

valuable animals.

For surveillance, the collection of serial samples from the

BTM is an easier, non-invasive, and less expensive method

to determine the status of a herd concerning the presence

or absence of S. Dublin antibodies (33, 91). In addition, for

control of S. Dublin in a herd, it is helpful to collect serial

samples from individual animals to diagnose the pathogen in

an outbreak or identify latent carriers, this can be done with

individual ELISA o bacteriological culture (90, 91). Additionally,

the proper use of personal protective equipment for visitors and

veterinarians, the control of rodents, along with the prevention

of cross-contamination by not using the same equipment for

different tasks are encouraged (22, 38, 95). As part of the

eradication plan in Denmark, herds positive for S. Dublin had

to maintain a high level of internal and external biosecurity

for an average of 3 years to become test negative and prevent

the recurrence of infection (31). Therefore, consistency in

management practices is critical throughout the time to control

S. Dublin.

6.6 Farm personnel

Training should be provided to personnel working with

animals regarding the risk of zoonotic diseases and their

prevention. Particular attention should be put on personnel

handling animals during an outbreak of S. Dublin or personnel

handling animals in periods of stress, when latent carriers

may reactivate the shedding of S. Dublin. While working with

animals or cleaning equipment, personal protective equipment

(coveralls, washable boots, gloves, masks, and goggles) should be

used. In addition, personnel should remove personal protective

equipment before leaving the farm, and boots should be cleaned

and disinfected. During an outbreak of salmonellosis or in

eradication programs, it is recommended to have personnel

working exclusively with clinically ill animals or isolated carriers to

avoid potential spread and cross-contamination to other animals

or areas. Finally, it is crucial to consider the mental and moral

cost of an outbreak of S. Dublin on animal handlers, as it is

a disease that might result in high morbidity and mortality,

extended working hours, and depletion of morale due to low

treatment success.

6.7 Gene therapy and gene editing

Recent research has evaluated the possibility to use gene

therapy or gene editing to inhibit virulence gene expression in

Salmonella spp. (54, 128). The use of certain lactic acid bacteria

(LAB) combinations and their degradation products has been

associated with the downregulation of virulence genes in different

pathogens associated with neonatal calf diarrhea, including S.

Dublin (54). Specifically for S. Dublin, a combination of 61 LAB

strains was able to downregulate the expression of virulence factor

fliC, which was assessed with RT-qPCR (54). Additionally, current

research explores using CRISPR/Cas9 to delete the plasmid-based

SpvB gene by using a modified pCas9 plasmid in pathogenic

strains of S. Gallinarum (128). The results are promising, as

the manipulated strain did not induce clinical disease or gross

pathological lesions in broiler chickens 36 days after the challenge

(128). Even though there are no current reports on S. Dublin, this

procedure might be applied to produce nonvirulent strains that

could be used in vaccines.

6.8 Next-generation sequencing

Whole genome sequencing (WGS) has become a tool to

investigate the epidemiology of diseases, and S.Dublin has not been

the exception. This methodology makes it possible to compare the

whole genome of pathogens, which is a tremendous contribution

to understanding disease dynamics, and it is a tool that can be

used for the surveillance and control of diseases (129). WGS has

been used to characterize the proximity in S. Dublin clades and

differentiate the AMR and MDR genes between different regions

and continents (68, 130). In addition, it has been used to determine

the clonal relationship of S.Dublin strains in cattle and food animal

products, with the potential to track zoonotic outbreaks (7, 73, 131).

Furthermore, it has been used to study the proximity between

cattle and human strains of S. Dublin, their virulence, and AMR

genes (70). WGS has been and will be critical to understanding

the adaptation of S. Dublin in different areas and the challenges

associated with specific gene expression (68).

7 Future work

There is significant research related to S. Dublin in dairy

cattle and operations. However, some areas remain less explored.

Estimates of regional and national prevalence in many dairy

production areas worldwide have yet to be determined. This type

of research is associated with high costs, extended periods of

sampling, and regional variation that might make the comparison

difficult. Even though there are published studies, these have

included specific regions, and in some cases, samples have not

originated only from dairy farms. In addition, some studies have

focused on determining several serovars of S. enterica; therefore,

the study designs have not been specifically developed for S. Dublin.

Moreover, studies determining the prevalence of S. Dublin have

been performed mainly with samples submitted to VDLs, which

might bias prevalence estimation (11, 12). Without knowing the

local situation concerning S. Dublin, it is difficult to understand
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the real impact of this pathogen on cattle health and establish

appropriate prevention strategies. Whole genome sequencing is

becoming a tool of increasing importance in epidemiological

studies, and it is an adequate method to investigate outbreaks,

virulence factor, and their similarities between different regions

and continents.

Currently, there are no published studies assessing the

economic impact of S. Dublin in other production systems beyond

Denmark. Worldwide, few studies have addressed the financial

losses related to S. Dublin using simulation models (78, 79).

However, the results of these studies might not be extrapolated to

productive systems different from those described in the models.

The simulation models might be an approach to estimating the

economics of S. Dublin in a herd.

Another area with growing but limited information is gene

editing or gene downregulation to prevent the severity of S. Dublin

infections. Also, there is limited information is the use of vaccines

to prevent S. Dublin in calves. As mentioned in the vaccination

section, few studies have evaluated the effectiveness of the passive

immunity provided to newborn calves by vaccinating the dam

prepartum. Moreover, no studies evaluated the effect of vaccinating

pregnant latent carriers on the disease transmission and severity in

the offspring. Finally, few studies have addressed the effectiveness

of extra-labeled routes of administration of vaccines against S.

Dublin administered to young calves in field trials. Currently, no

studies have addressed an integrated approach to prevent and

reduce the devastating consequences of S. Dublin in neonatal and

pre-weaned calves.

8 Conclusions

S. Dublin severely affects cattle and human health. Recent

reports indicate that its prevalence has increased in several

countries in the last several years, making it an emergent pathogen.

Information is available on pathogenicity, antimicrobial resistance,

risk factors, and preventive management practices. However, more

research is still needed on the economic impact of outbreaks

or endemic disease on herds and the effectiveness of strategies

that could be implemented in dairy facilities to prevent and

control S. Dublin.
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