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Stress-induced genomic changes in Candida albicans contribute to the 
adaptation of this species to various environmental conditions. Variations of the 
genome composition of animal-origin C. albicans strains are largely unexplored 
and drug resistance or other selective pressures driving the evolution of 
these yeasts remained an intriguing question. Comparative genome analysis 
was carried out to uncover chromosomal aneuploidies and regions with loss 
of heterozygosity (LOH), two mechanisms that manage genome plasticity. 
We detected aneuploidy only in human isolates. Bird-derived isolates showed 
LOH in genes commonly associated with antifungal drug resistance similar to 
human isolates. Our study suggests that environmental fungicide usage might 
exert selective pressure on C. albicans infecting animals, thus contributing to 
the spread of potentially resistant strains between different hosts.
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1 Introduction

Comparative genomics of clinical isolates of yeasts have revealed several genetic events 
that drive eukaryotic genome dynamics during evolution. Candida spp. are capable of rapid 
and significant genetic changes that may contribute to the successful colonization, persistence, 
and adaptability across diverse host niches and enhance survival under emerging selective 
pressures (1). Candida albicans has predominantly diploid genome composed by eight 
heterozygous chromosomes. However, studies with C. albicans showed that its genome is 
shaped by a wide variety of processes including small-scale point mutations, insertions and 
deletions as well as larger-scale karyotypic rearrangements acting upon ploidy (imbalance in 
the number of whole chromosomes or chromosomal segments), and zygosity (the number of 
alleles at a given position in the genome), thus increasing the genomic variations within 
evolving populations (2, 3).
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The genome of C. albicans contains a relatively high density of 
heterozygous positions distributed unequally unevenly in the genome. 
Rapid adaptation to the environment is also influenced by substantial 
differences in heterozygosity between isolates. Mitotic recombination 
between chromosome homologues might result in loss of 
heterozygosity (LOH) increasing the response to environmental 
stressors (oxidative stress, high temperature, antifungal drugs) (4). 
LOH can involve an entire chromosome or partial chromosomal 
segments due to mitotic crossover or break-induced replication 
typically extending to the telomeres (5). Although aneuploidy in 
eukaryotes is commonly accompanied by fitness costs, aneuploid 
forms of C. albicans may confer a selective advantage under certain 
stress conditions. The reproduction of this yeast is mainly clonal 
(asexual), nevertheless, parasexual cycle might also occur allowing 
chromosome shuffling and mitotic recombination events. Mating 
between diploid strains with opposite mating type locus (MTLa and 
MTLα) occurs both in vitro and in vivo. The result of cell–cell 
conjugation is a tetraploid form that undergo ploidy reduction via 
random chromosome loss instead of conventional meiosis to reach 
diploid or near diploid genomic state (6). These cells are frequently 
trisomic for one or more whole chromosomes. Harboring 
supernumerary chromosomes might have a profound effect on the 
antifungal susceptibility of strains that was evident after 
isochromosome formation of chromosome 5 yielding resistance to 
azoles (7).

Although C. albicans is a prevalent opportunistic fungal pathogen 
responsible for superficial and severe systemic infections of humans 
and animals, most studies investigated clinical isolates from human 
source and genomic information of isolates from animals are still 
missing (8). Distinct environmental and host factors might shape the 
genome structure of C. albicans strains in different manner, therefore, 
comparison of genomes of C. albicans isolates originated from 
different source is essential to better understand the evolution and the 
adaptation of this species to various host environments. Antimicrobial 
resistance is an emerging major concern affecting human, animal, and 
environmental health that prioritize the collective monitoring of 
infectious diseases and the evaluation of the antifungal susceptibility 
of pathogenic fungal species from a One Health perspective. 
Furthermore, the identification of resistance-driving factors including 
genomic features may help to initiate preventive measures to overcome 
the spread of resistance (9). The aim of this pilot study was to assess 
the genomic differences of avian and human C. albicans isolates with 
a special emphasis on antifungal resistance genes and interspecies 
transmission potential of resistance.

2 Materials and methods

2.1 Isolates

Species-level identification was carried out with culturing swab 
samples on Sabouraud dextrose agar supplemented with 
chloramphenicol, Matrix-assisted laser desorption/ionization time of 
flight mass spectrometry (MALDI-TOF) and sequencing the internal 
transcribed spacer (ITS) region of fungal rDNA with universal fungal 
primers (10). C. albicans isolates were collected from humans and 
birds and the genetic relatedness between strains was investigated by 
multilocus sequence typing (MLST) method by Domán et al. (11). 

Thirty C. albicans isolates were collected for genotyping. Samples were 
obtained from ducks and geese diagnosed with oesophageal mycosis 
(n = 22). Isolates from a falcon and an ostrich suffering from 
gastrointestinal mycosis were also available for genomic analysis. All 
human isolates (n = 6) were cultured from patients with fungal 
infections (such as decubitus, wound, blood, cervix and pharynx). Out 
of 30 C. albicans, six isolates identified as new genotypes were selected 
for whole genome sequencing. Human strains were isolated from 
blood and cervix, while animal-derived isolates originated from 
esophageal and intestinal samples of birds (Table 1).

2.2 Genome sequencing

Genomic DNA extraction was carried out using the fungi/yeast 
genomic DNA extraction kit (Favorgen, Taiwan) following the 
manufacturer’s instructions. Libraries were prepared from genomic 
DNA using Illumina Nextera XT DNA Library Preparation Kit 
(Illumina, San Diego, CA, United States) as published elsewhere (12). 
Whole genome sequencing was performed on Illumina NextSeq 500 
sequencing platform (Illumina, San Diego, CA, United  States). 
Single-end reads of 150 nucleotides were generated.

2.3 Sequence analysis

Sequence reads were mapped to the genome of C. albicans 
reference strain SC5314 (Assembly 22) available at Candida Genome 
Database1 using the Burrows–Wheeler Alignment tool (bwa 0.7.17-
r1188) with the BWA-MEM algorithm. SNPs were called using the 
Genome Analysis Toolkit (GATK) v4.2.2.0 (13). Poor quality SNPs 
and indels were filtered using the GATK VariantFiltration module 
using the following parameters: QD < 2.0, FS > 60.0, MQ < 40.0, 
HaplotypeScore > 13.0, MappingQualityRankSum < −12.5, 
ReadPosRankSum < −8.0. We checked the read depth of SNPs and 
included only those in the downstream analyses that had a read depth 
larger than three to decrease the ratio of false positives. Mean 
sequencing depth and SNPs were illustrated by IGV (2.16.2) (14, 15). 
The approach validated by Pryszcz et  al. (16) was used to define 
heterozygous and LOH blocks. Briefly, genomic regions having two or 
more heterozygous sites closer than 100 bases were marked as 
heterozygous regions. Heterozygous SNPs were filtered using bcftools 
view 1.16 (17), then the bed files of genomic regions were created 
using bedtools makewindows 2.31.0 (18). The number of heterozygous 
SNPs within the bed regions was estimated with bedmap 2.4.20 (19). 
LOH blocks were considered all non-heterozygous regions in the 
genome. A 100 bp threshold was established for the minimum LOH 
and heterozygous block size as well. Additional filtering was used to 
avoid false positive results according to the following criteria: bases 
with coverage lower than 5 or higher than 100 were excluded from the 
analysis. The ploidy of the chromosomes in each sample was estimated 
separately using nQuire 16.2 (20). After denoising the alignments with 
nQuire denoise, the ploidy model that had the smallest delta 

1 http://www.candidagenome.org/download/

sequence/C_albicans_SC5314/
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log-likelihood compared to the likelihood of the free model was 
considered to be supported. SNPs within the resistance genes were 
identified by alignment of the reference sequences of the resistance 
genes (Supplementary material) to the reference genome used for the 
short-read alignments with blastn 2.14.0+ with an expected e-value of 
1e-50 and a similarity cutoff of 95%, then the corresponding genomic 

regions from the vcf files generated with GATK using bedtools 
intersect 2.31.0 (18). Homozygosity of resistance genes were 
confirmed by mapping the reads to both A and B haplotypes of each 
chromosome of the reference genome in Geneious software (version 
2022.2.2). The workflow representing bioinformatic analyses are 
shown in Figure 1.

TABLE 1 Genomic characteristics of C. albicans isolates detected after pair-wise comparison to reference genome SC5314.

Isolate Host Sampling 
site

DST Number 
of SNPs

Ploidy Resistance genes

ERG11 ERG24 MDR1 TAC1 FKS1

14362 Human Blood 3598 2,937 Diploid HOM
HET

424 ntp → Y

HET

219 

ntp → W

1,651 

ntp → R

HOM HOM

27700 Human Cervix 3600 3,320

Diploid 

Chr1, Chr3, 

Chr5–7, 

ChrR, 

triploid Chr2 

and Chr4

HET

411 ntp → Y
HOM

HET

1,084 

ntp → W

HOM HOM

Om-8 Duck Oesophagus 3595 3,727 Diploid

HET

1,470 

ntp → Y

HOM HOM

HET

2,687 

ntp → R

HET

939 

ntp → Y

2,562 

ntp → R

ML-5 Goose Oesophagus 3599 3,264 Diploid HOM

HET

1,285 

ntp → Y

HOM HOM

HET

717 

ntp → Y

909 

ntp → R; 

915 

ntp → W; 

1,350 

ntp → Y; 

1,359 

ntp → Y; 

1,653 

ntp → Y

Im-12 Ostrich Intestine 3598 2,970 Diploid HOM
HET

535 ntp → Y
HOM HOM

HET

3,239 

ntp → Y; 

3,264 

ntp → W; 

3,820 

ntp → R

38002 Human Cervix 3597 1,396

Tetraploid 

Chr1-3, 

Chr5–7, 

ChrR

Triploid 

Chr4

HET

383 

ntp → M

658 ntp → Y

HOM HOM

HET

624 

ntp → R

HET

2,079 

ntp → R; 

2,813 

ntp → Y; 

3,801 

ntp → S

Chr, chromosome; DST, diploid sequence type; HOM, homozygous; HET, heterozygous; ntp, nucleotide position; SNP, single nucleotide polymorphism.
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3 Results

We sequenced six isolates and characterized their variability using 
7,527,829 to 9,452,186 short reads. The sequenced isolates were 
previously assigned as novel MLST genotypes (diploid sequence types, 
DSTs, https://pubmlst.org/organisms/candida-albicans) (11). Across 
the 6 isolates, 17,614 SNPs were identified by mapping the reads to the 
reference genome. The highest number of SNPs were identified in 
avian isolate Om-8 (n = 3,727), whereas the genome of human isolate 
38002 contained the least SNPs (n = 1,396).

Chromosomal aneuploidies were observed in only two human 
isolates. Whole chromosome gains were found in these strains with 
extra copies of Chr 2 and Chr 4 in isolate 27700. We also observed 
tetraploidy for nearly all chromosomes in isolate 38002 except for Chr 
4 which was triploid. All other isolates appeared to be  diploid 
according to the ploidy models of nQuire. All isolates showed 
heterozygous mating-type locus; thus, mating-competent isolates were 
not identified. Heterozygous regions were similarly distributed in the 
genome of isolates that share the same DST (human 14362 and avian 
Im-12) or clade (avian Om-8 and ML-5) (11). Overall, homozygous 
and heterozygous chromosomal regions slightly differed between 
isolates, however, some genomic trend could be seen in all isolates 
irrespective of isolation site (e.g., the homozygosity of the right arm of 
Chr R, large-scale LOH in Chr 3 and Chr7) (Figure 2). SNP analysis 
revealed that the genome of the human isolate 38002 was the most 
similar compared to the reference strain SC5314.

We assessed the heterozygosity of genes known to be involved in 
antifungal drug resistance. Interestingly, LOH was evident in isolates 
from human source and even in bird-derived isolates as only 
homozygous regions and a few heterozygous positions were identified 
in genes responsible for azole resistance (ERG11, ERG24, MDR1 and 
TAC1). Four out of 6 isolates contained several heterozygous regions 
in FKS1 (certain point mutations in this gene result in echinocandin 
resistance) and only two human isolates (14362 and 27700) proved to 

be homozygous for this gene (Table 1). Of note, none of the LOH 
events were located in hot-spot regions of FKS1, in which specific 
mutations and subsequent amino acid changes are often associated 
with echinocandin resistance (21).

4 Discussion

Fungal strains with stress-induced genomic variations that are 
potentially advantageous in special circumstances tend to spread and 
increase the number of these evolved genotypes in the population. 
Large-scale and rapid genome changes involving whole chromosomes 
or chromosomal segments occur more frequently than point 
mutations and have the potential to mediate the response to various 
stressors (4). In this study, genome-wide analyses were carried out to 
assess the differences in ploidy, zygosity and gene variations that 
confer drug resistance between C. albicans isolates derived from avian 
and human hosts. No ploidy shift was detected in strains isolated from 
birds, but aneuploid state were observed in two out of three human 
isolates. Notably, both aneuploid isolates originated from cervix 
indicating that these isolates might exposed to antimycotics and other 
selective pressures at a higher extent than other sequenced isolates. 
Several reports are available in the literature discussing that these copy 
number variations are not always followed by fitness cost and often 
associated with antifungal drug resistance (22–24). Comparative 
genome hybridization array showed that 21 out of 42 fluconazole-
resistant C. albicans isolates carried aneuploid chromosomes (7). In 
our study, antifungal susceptibility profile was known only in case of 
human isolates, where fluconazole resistance of isolate 27700 was 
noticed. This isolate possessed Chr4 trisomy that might contribute to 
the phenotypic azole resistance (22). While this study shows a high 
rate of aneuploidy among selected isolates of human C. albicans (n = 2, 
66%), a comprehensive study that analyzed 182 isolates, showed that 
aneuploidy is a relatively rare phenomenon in C. albicans isolates (8).

FIGURE 1

Overview of bioinformatic workflow using reads generated by Illumina platform covering the whole genome of C. albicans isolates.
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LOH events with impact on short-or long-range segments of 
the genome affect fitness under stress conditions providing 
phenotypic diversity in C. albicans isolates. Human infections with 
C. albicans are frequently treated with fluconazole due to its efficacy, 
low cost, lack of toxicity and ease of administration. Different 
mechanisms are responsible for azole resistance, such as alterations 
in the sterol biosynthesis pathway, increased expression of the 
ERG11 gene encoding the drug target enzyme, mutations in Erg11p 
that result in reduced binding capacity of fluconazole to its target 
protein, and reduced effective drug concentration in the cells by 
overexpression of multi-drug efflux pumps. Elevated drug resistance 
might occur via mutations of ERG11, TAC1 or MRR1 followed by 
LOH that alter azole drug targets or increase drug efflux (25). 
Interestingly, there were no significant differences between 
C. albicans isolates originated from different host species regarding 
LOH of antifungal drug resistance genes. Most of the isolates were 
homozygous for genes associated with azole resistance in contrast 
with reference strain SC5314. As isolates Om-8 and ML-5 were 
obtained from fattened goose and duck which were not treated with 
any antifungal drugs due to food safety issues, perhaps another 
selective pressure or route of drug exposure result in LOH in these 
genes. This finding raises the possibility that repeated exposure to 
agricultural fungicides that are structurally related to fluconazole 
accumulated in water, soil, or in the food chain might exert selective 
pressure on C. albicans isolates colonizing or infecting animals (26). 
A recent study has also reported fluconazole-resistant C. albicans 
from chicken crop mycoses and calf diarrhea (27). Animals then 
may shed these C. albicans strains with relevant genetic variations 
to the environment and enable intra-or interhost transmission of 
yeast resistant to various antimycotics in the absence of previously 
documented drug exposure.

Nowadays, the management of health policies in a One Health 
perspective is essential to control the spread of diseases. New 

technologies like geospatial analysis tools might reveal environmental 
patterns that facilitate disease transmission between animals and 
humans. New methodologies like geographic information system 
(GIS) and remote sensing tools largely contributed to better 
understanding of disease dynamics as associations between 
environmental conditions and infectious diseases were recognized 
(28, 29). Genome-based approaches coupled with GIS may serve as a 
pioneering method in veterinary and human medicine to prevent the 
spread of diseases in ecosystems. Investigations using larger dataset 
and these new methods might identify risk factors of C. albicans 
transmission between individuals and populations (e.g., associations 
between genotypes and environmental factors) underlining the 
importance of metadata and surveillance studies.

5 Conclusion

Only a few studies are available in the literature that examine 
antifungal drug resistance of animal-derived C. albicans isolates. 
Moreover, information on genomic changes that might associated 
with resistance in C. albicans originated from animals is still lacking. 
Although our study has some limitations (including the low sample 
size, the lack of confirmation of genome sequencing data by 
susceptibility testing methods), we showed here by whole genome 
sequencing method that poultry might serve as source of C. albicans 
strains resistant to antifungal drugs commonly used in human 
medicine. This finding highlights the importance of One Health 
approach to prevent the spread of drug resistant fungal species and 
justifies the extension of comparative genomics on animal origin 
C. albicans. Increased surveillance of antifungal resistance within 
animals and the environment could provide significant information 
to integrate control measures for disease prevention even in the 
absence of fungicides.

FIGURE 2

Density of heterozygous SNPs in six sequenced C. albicans isolates compared to SC5314 reference strain. (A) Heterozygous SNP blocks as defined by 
Pryszcz et al. (15) (horizontal red stripes) on each chromosomes identified after aligning the short reads to the SC5314 reference genome haplotype A 
and B. (B) Coverage track examples of heterozygous (left) and homozygous (right) genomic regions on chromosome 5 visualized with IGV. Colors are 
indicative of polymorphic sites. Heterozygous variants are indicated by bars having multiple colors representing the read depth of the given allele.
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