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While we are writing these lines, the first year of the COVID-19 pandemic is coming to an end.
The worldwide emergency is not over, though, and SARS-CoV-2 is still circulating widely in most
countries. Together with its disruptive effects on health systems, societies, and economies, the
pandemic has also triggered an unprecedented international effort by the scientific community.
Research has proceeded at enormous speed. An immense amount of data has been generated
and almost immediately released for public use. The spread of SARS-CoV-2 has been followed
in real-time by active sequencing and application of phylodynamic approaches. During the first
pandemic year, more than 400,000 complete viral genomes have been deposited in repositories
such as GISAID (https://www.gisaid.org/) and ViPR (https://www.viprbrc.org/). Making sense of
such a wealth of sequence data is being a challenge per se, only partially met by the existence of
pipelines for phylodynamic analysis such as Nextstrain (1).

Never in the past has the relevance of bioinformatic and predictive tools been more central
in the field of virology as today. SARS-CoV-2 has brought along a huge health burden, but also
a deeper awareness that scientific progress can no longer be effective without extensive systems
for data storage, sharing and analysis, as well as computational tools dedicated to molecular
epidemiology, NGS data analysis, prediction of drug targets, multi-OMIC data integration, and
many other applications.

The birth of bioinformatics is often placed in the year 1962, when, on punch-cards, Margaret
Dayhoff and Robert Ledley developed COMPROTEIN, a FORTRAN-based program to determine
protein sequences from peptide sequencing data obtained by the Edman degradationmethod (2, 3).
Interestingly, one of the first problems that computational tools were designed to address was
the assembly of hundreds of short peptide sequences into a whole protein sequence. With due
differences, this is not so distinct from one of the major applications of present-day bioinformatics
algorithms, namely the reconstruction of genomes, meta-genomes, and transcriptomes from
millions of short sequence reads.

In the years following the development of COMPROTEIN, the advancement of computational
tools closely paralleled that of molecular and cellular biology methodologies, with a
major breakthrough occurring when nucleic acid sequencing methods became available.
The first complete genomes to be obtained were those of two viruses, specifically of
bacteriophages PhiX174 (4) and MS2 (5), in 1976–1977. Since then, technological progress
has allowed a constant increase in the number of available sequence data, with the rise
becoming exponential from 2001 onward, thanks to the advent of NGS and other high-
throughput technologies. Going back to human coronaviruses as a test case, fewer than
100 complete viral genomes were obtained during the SARS-CoV epidemic of 2002–2003,
and around 1,000 MERS-CoV complete sequences were generated a few years later, since
the first case was registered in 2012 (6). These numbers are in striking contrast with the
more than 400,000 SARS-CoV-2 genomes deposited in public databases in the past year.
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These figures very well-represent the general trend in all fields of
research, not only virology and not only nucleic acid sequencing–
the generation of huge amounts of data. Extracting biological
and clinical knowledge from such data using analytical and
predictive computational tools is the overarching grand challenge
of computational biology.

Metagenomics and metaviromics approaches have revealed
that viruses are the most abundant and most genetically diverse
entities in the biosphere [reviewed in Koonin et al. (7)]. The
amount of new viral genetic data that are generated through
metagenomics has revolutionized the field of virology to such
an extent that the International Committee for Taxonomy of
Viruses (ICTV) has made the decision to classify new viral
species (or higher taxa) solely on the basis of metagenomic data
(8). The ICTV has also recently approved the establishment of
high taxonomic ranks (e.g., order, realm, kingdom, phylum) to
facilitate virus classification (7, 9, 10). Still, major challenges
remain in the classification of millions of viruses, as members
of the ICTV have recently highlighted (9). Moreover, whereas
genome sequences are readily generated, little is known about
the biological, evolutionary and ecological characteristics of most
newly discovered viruses. It is likewise largely unknown whether
and which viruses represent potential threats for humans, other
animals or plants/crops. On the one hand, the SARS-CoV-
2 pandemic has clearly shown that we have remarkably little
capacity to predict which viruses are likely to spillover to humans
and even less ability to predict their phenotype in terms of host
range, virulence and transmissibility. On the other hand, despite

the huge amount of virus genome data that are being generated
worldwide, we still have little clues as to where some of the most
widespread human pathogens (e.g., HCV) came from and when
or how this happened.

In recent years, enormous progress has been made in the
development of computational tools to study virus evolution
and track viral spread in time and space. The SARS-CoV-2
epidemic is not the only example of real-time phylodynamic
analysis. Similar, although smaller scale, approaches have been
applied to study the cross-country Ebola virus epidemic of 2013-
2016, the Zika virus pandemic, as well as the surge in Lassa
virus outbreaks in West Africa (11–17). We have learned a
lot, but we also lack major insights into several pivotal issues.
First and foremost, the role (or lack thereof) of viral genetic
diversity in disease presentation. Many challenges lie ahead in
data analysis and interpretation in the field of virology–and this is
the topic of the bioinformatics and predictive virology section of
Frontiers in Virology: Bioinformatics algorithms and predictive
models to understand viral evolution and phatogenicity, virus-
host interactions, and linking viral (and host) diversity with
manifestation and presentation of disease. We are looking
forward to working with all of you on this exciting topic and
pursuing this challenge.
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