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The ability of a virus to spread between individuals, its replication capacity and the clinical

course of the infection are macroscopic consequences of a multifaceted molecular

interaction of viral components with the host cell. The heavy impact of COVID-19 on the

world population, economics and sanitary systems calls for therapeutic and prophylactic

solutions that require a deep characterization of the interactions occurring between virus

and host cells. Unveiling how SARS-CoV-2 engages with host factors throughout its life

cycle is therefore fundamental to understand the pathogenic mechanisms underlying the

viral infection and to design antiviral therapies and prophylactic strategies. Two years into

the SARS-CoV-2 pandemic, this review provides an overview of the interplay between

SARS-CoV-2 and the host cell, with focus on the machinery and compartments pivotal

for virus replication and the antiviral cellular response. Starting with the interaction with the

cell surface, following the virus replicative cycle through the characterization of the entry

pathways, the survival and replication in the cytoplasm, to the mechanisms of egress

from the infected cell, this review unravels the complex network of interactions between

SARS-CoV-2 and the host cell, highlighting the knowledge that has the potential to set

the basis for the development of innovative antiviral strategies.
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INTRODUCTION

The Emergence of SARS-CoV-2
In December 2019 several cases of an atypical viral respiratory infection, later named COVID-19,
emerged in Wuhan, China (1). A month later, in January 2020, a novel coronavirus was isolated
from clinical specimens, phylogenetically related to betacoronaviruses that recently caused acute
respiratory syndromes i.e., SARS-CoV and MERS-CoV (2). The novel coronavirus was named
SARS-CoV-2 and, in March 2020, COVID-19 was declared pandemic by the World Health
Organization (WHO). The origin of SARS-CoV-2 remains unclear, as reiterated by the WHO
(3). Initially, a zoonotic origin was proposed, according to which “wet” markets in Wuhan would
have been the first source for animal-human transmission (4), but the market samples that were
collected did not allow to establish the exact zoonotic predecessor strain (5). Therefore, the exact
place of origin and the possible intermediate hosts need to be further investigated. One of the viral
strains closest to SARS-CoV-2, RaTG13, has been found in horseshoe bats (Rhinolophus affinis
from Yunnan Province in China) and has a genome sequence identity of 96.2% (2). Interestingly,
the variable loop region of the spike protein has a unique evolutionary history compared to the
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rest of the SARS-CoV-2 genome overall, since it is similar to
the same region observed in the coronavirus strain derived from
the Malayan pangolin (pangolin-CoV-2020). It was therefore
proposed that the Malayan pangolin may have been the
intermediate host of SARS-CoV-2 (6). However, a direct origin
from pangolin was challenged by the discovery of other viruses
similarly close to SARS-CoV-2, found in bats from different
locations of Southeast Asia (7).

An ancestral recombination event between the lineages
leading to SARS-CoV-2 could therefore also have taken place
in bats or in another intermediate host. Although pangolin-
CoV-2020, RaTG13, and other bat CoVs are phylogenetically
close to SARS-CoV-2, the viral genome underwent complex
recombination events between divergent strains residing in
different host species during its evolution, explaining the
evolutionary histories of different genomic segments (8).
Therefore, while bats are probably the reservoir hosts for
this virus, it is likely that other mammalian species acted
as intermediate hosts, as documented with civets and camels
for SARS and MERS, respectively. Within these unknown
intermediate hosts, SARS-CoV-2 acquired some or all the
mutations needed for efficient transmission and replication
into humans (9). In conclusion, although the molecular and
phylogenetic analyses indicate the zoonotic hypothesis as the
most likely, the origin and intermediate host species of SARS-
CoV-2 remain uncertain and an unnatural origin of this
coronavirus cannot be formally excluded [for a detailed review,
see (10)].

Pathogenesis
According to the current best estimate of the Center for
Disease Control and Prevention (CDC), the infection fatality
ratio (estimated number of deaths per 1,000,000 infections)
ranges from 20 in children and adolescents to 90,000 in adults
older than 65, demonstrating high morbidity for the elderly
population. Accordingly, it has been shown that the aging
process predisposes older people to greater morbidity and
mortality rates (11). It is estimated that 30% of the infections
are asymptomatic (12) with more than 50% of transmission
occurring in the pre-symptomatic phase (13), making the
infection difficult to identify and contain. Similarly to SARS-CoV
and MERS-CoV, SARS-CoV-2 may cause a severe respiratory
syndrome, frequently associated with comorbidities (14, 15).
The pathogenesis is characterized by diffuse alveolar damage
occasionally accompanied bymicrothrombi and vascular damage
with immune depletion [for a review see (16)]. Different
transmission modes have been described for SARS-CoV-2,
including aerosol, surface contamination, and the fecal–oral
route (17–19) leading to severe flu-like symptoms that include
fever, cough, and dyspnea. The incubation period ranges between
1 and 14 days and can progress to acute respiratory distress,
pneumonia, renal failure and death [see (20)]. Respiratory failure
in severe SARS-CoV-2 illness has been found to be associated
with a hyper inflammation, which may be caused by a cytokine
storm syndrome. Interleukin 6, interleukin 8, E-cadherin, MCP-
1, VEGF, among other molecules, are involved in the cytokine
release syndrome aggravated by trans signaling [reviewed in

(21)], similarly to what has been observed in the case of
SARS-CoV (22). These proinflammatory mediators can, in turn,
perpetuate lung disease by elevating C-reactive protein from the
liver through STAT3-IL-6 signaling (23), contributing to lung
tissue damage.

SARS-CoV-2 Viral Particle and Genome
Organization
SARS-CoV-2 is an enveloped, single-stranded positive-sense
RNA virus with a diameter of 60–140 nm and spikes of 9–
12 nm in length (Figure 1). It is part of the betacoronavirus
genus, which includes MERS-CoV and SARS-CoV (24). The
virus particle is made of structural viral proteins including spike
(S), envelope (E), membrane (M), and nucleocapsid (N) protein
(Figure 1 and Table 1). The 419 amino acid-long N protein is
the only structural protein inside the virion, associated with
the viral genomic RNA via electrostatic interactions driven by
positively charged amino acid residues and modulates RNA
unwinding after entry into the cell (33). Other structural proteins
are inserted into the lipidic viral envelope. The E protein forms
an ion channel and participates in viral assembly, while the M
protein is critical for incorporating essential viral components
into new virions during morphogenesis. The S protein binds
the receptor expressed by host cells and promotes fusion of the
viral and cellular membrane [see (34) for a review]. The SARS-
CoV-2 genome is ∼30 kb and encodes 14 ORFs (Figure 2). The
genome is flanked by 5′ and 3′ untranslated regions (UTRs)
that contain cis-acting secondary RNA structures essential for
RNA synthesis. At the 5′ end, the genomic RNA features two
large open reading frames (ORF1a and ORF1b) that occupy two-
thirds of the capped and polyadenylated genome and encode 16
non-structural proteins (Nsps 1–16) that make up the replicase
complex (Table 2). Nine accessory proteins—termed ORF3a, 3b,
6, 7a, 7b, 8, 9a, 9b, and 10—are encoded by homonymous orfs
and, although deemed as non-essential for the virus replication
in vitro (Table 3), are thought to exert important functions in
modulating the host cell metabolism and antiviral immunity [see
(78) for a review].

The Life Cycle
In the respiratory tract, SARS-CoV-2 invades preferentially
mucus-producing goblet cells and the ciliated cells, as indicated
indirectly by the topology of expression of host entry factors,
by in vitro and ex vivo tropism studies and by post-mortem
examinations (79–82). In addition, endothelial cells in the lung
were also shown to be susceptible to infection in vivo (81, 83). The
spike protein interacts with the host cell receptor hACE2 with the
receptor-binding domain (RBD) (84, 85) followed by important
conformational changes required to achieve infection (Figures 3,
4). Accordingly, SARS-CoV-2 relies on cellular proteases for
priming the spike protein (14, 84, 86). Conformational changes
follow receptor binding and trigger the events leading to fusion
with the cellular membrane followed by the penetration of
the viral ribonucleoprotein complex into the cytoplasm [for a
review on SARS-CoV-2 replication see (87)]. Once into the
cytoplasm, the virus releases its RNA genome which is first
translated to produce the viral replicase polyproteins pp1a and
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FIGURE 1 | Schematic representation of the SARS-CoV-2 viral particle. The virion contains a positive-sense, single-stranded RNA genome (+ssRNA) enclosed by a

lipidic envelope and by structural viral proteins. The nucleocapsid protein (N) is associated with the RNA genome inside the virus particles. Other proteins are inserted

in the lipid envelope: the spike trimers (S), the envelope (E), and membrane (M) proteins.

TABLE 1 | Structural proteins encoded by SARS-CoV-2 genome and their

functions.

Structural Function References

protein

N protein Impairs IRF3 phosphorylation and

nuclear translocation

Prevents STAT1/STAT2 phosphorylation Prevents

inhibition of viral mRNA translation

Prevents GSDMD cleavage by caspase-1

Disassembles and prevents formation of

stress granules

(25–28)

E protein Forms an ion channel and participates in virion

assembly

(29)

M protein Essential for the incorporation of viral

components during virion assembly

Impairs MAVS self-association and association

with SNX8

(30, 31)

S protein Binds to the host receptor ACE2 and mediates

fusion and entry

(32)

1ab and subsequently cleaved into smaller products by virus-
encoded proteases. The viral polymerase transcribes a series of
subgenomic mRNAs by discontinuous transcription, which are
then translated into the viral structural proteins. The N protein
forms a complex with the genomic RNA while the S, E and
M proteins are inserted into the viral envelope at the ER and
Golgi intermediate compartments. The newly assembled viral
particles are then released from the infected cells by exocytosis
(Figure 3).

The First Encounter With the Host Cell:
Adsorption to the Cell Surface
As for many pathogens, glycoconjugates surrounding
mammalian cells are also exploited by SARS-CoV-2 as
attachment factors driven by non-specific electrostatic
interactions which promote the primary virion-cell surface
binding (88). Accordingly, different coronaviruses have been
documented to bind host glycans, such as Heparan sulfate (HS)
(89–91). The SARS-CoV-2 RBD contains a strongly electro-
positive surface, which can accommodate 20 monosaccharides
from heparin via hydrogen bonds and hydrophobic interactions.
Notably, the glycan-binding surface on the RBD is adjacent to,
but separate from, the ACE2-binding site, suggesting that ACE2
and HS interactions with the spike glycoprotein are not mutually
exclusive (92–94). Despite 73% identity between SARS-CoV and
SARS-CoV-2 RBDs, the electrostatic potential of SARS-CoV-2 is
much higher, probably mediated by two amino acid substitutions
(Thr to Lys 444, Glu to Asn 354) that enhance the predicted
coordination with the 20 monosaccharide residues from heparin.
HS is thought to enhance binding to ACE2 by promoting an
RBD open conformation state (see below), therefore acting as a
priming co-receptor that favors the interaction with ACE2 (92).

The important role of such primary interactions suggests
pathogenic mechanisms as well as antiviral strategies. On one
side it has been hypothesized that secretion of polycations from
neutrophils may worsen SARS-CoV-2 infection by facilitating
receptor-mediated entry following neutralization of electrostatic
repulsive forces between the cell and the viral membranes (95).
On the other side such preliminary interactions inspire strategies
that could be exploited in therapies aimed at blocking the
electrostatic binding (96): negatively charged polysulfates, such as
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FIGURE 2 | SARS-CoV-2 genome organization. The 30 kb SARS-CoV-2 genome is flanked by 5′ and 3′ untranslated regions. At the 5′ end, the genomic RNA

contains two large open reading frames (ORF1a and ORF1b) encoding 16 non-structural proteins (Nsps 1–16). At the 3’ end, the genome encodes the four structural

proteins S, N, M, and E and nine accessory proteins, namely ORF3a, 3b, 6, 7a, 7b, 8, 9a, 9b, and 10.

heparin or hyperbranched polyglycerol sulfate (HPGS), can bind
to the spike protein, providing validmodels to design polyanionic
inhibitors of viral infection. Accordingly, heparin-derivatives
such as unfractionated heparin, non-anticoagulant heparin,
heparin lyases and low molecular weight heparin have been
proposed for COVID-19 treatment, not only to treat thrombotic
complications ranging from vascular micro-thromboses, venous
thromboembolic disease, and stroke, but also to interfere with
viral infection (97, 98). Preliminary attachment to cell surface
glycoconjugates was shown for different viruses for which the
inhibitory activity of heparan sulfate and similar polyanionic
compounds has been observed in vitro. For SARS-CoV-2, as well
as for other different viruses, the real therapeutic activity of these
strategies awaits clinical demonstration (99).

The Interaction With Cellular Receptors
While the cell surface molecule ACE2 was soon identified to
be the prominent receptor bound by the spike protein, other
cell surface molecules have been later proposed to function
as alternative receptors or co-receptors (Figure 4), including
KIM1, AXL, L-SIGN, and DC-SIGN, and SR-B1 (100–104). For
most of these molecules it remains unclear whether these are
alternative receptors to ACE2, or whether their activity is limited
to facilitating viral entry. In addition to describing the interaction
with the main receptor ACE2, here we discuss the potential role

of Neuropilin-1, independently reported by two research groups
(105, 106).

ACE2
The human angiotensin-converting enzyme 2 (hACE2) was
found to be the main host cellular receptor recognized by
the S protein (84–86). ACE2 is a blood pressure and kidney
function regulator of the renin-angiotensin-aldosterone system,
expressed in most tissues of the body. It is essential for processing
angiotensin 2 and therefore it is involved in vasoconstriction
as well as in pro-fibrotic and pro-inflammatory processes
(107). This receptor is organized as a homodimer, stabilized
by B0AT1 (SLC6A19), a transporter which mediates uptake
of neutral amino acids into intestinal cells (108). The spike
glycoprotein recognizes the N-terminal peptidase domain of
ACE2 (PD, 19–615 residues), which is also the catalytic
domain of the protein. Hence, there is the possibility that viral
infection could interfere with the angiotensin 2 pathway by
contributing to pathogenesis. Given the widespread use of ACE2
inhibitors to treat hypertension and diabetes, a contribution
of such medications to COVID-19 pathogenesis has also been
investigated, but so far without finding clinical support (109).

The virion spike glycoprotein (S) is a class I viral fusion
protein which forms a trimer and is processed by host proteases
in two domains (S1 and S2) folding into a metastable pre-fusion
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TABLE 2 | Non-structural proteins encoded by SARS-CoV-2 genome and their

functions.

Non-structural

protein (Nsp)

Function References

Nsp1 Inhibits the translation machinery and

production of immune defence factors

Shuts off host mRNA translation

(35–37)

Nsp2 Interacts with prohibitin, maybe altering the

host cell environment

(38)

Nsp3 Papain-like protease activity (39)

Nsp4 Participates to the formation of sites for viral

RNA synthesis and double membrane

vesicles (DMVs)

(40)

Nsp5 Principal protease

Impairs nuclear translocation of

phosphorylated IRF3

(41, 42)

Nsp6 Participates to the formation of sites for viral

RNA synthesis and DMVs

Binds TBK1 preventing IRF3 phosphorylation

Inhibits STAT1/STAT2 phosphorylation

(43–45)

Nsp7 Is involved in the primase complex (46)

Nsp8 Is involved in the primase complex (46)

Nsp9 RNA replicase activity (47)

Nsp10 Cofactor for Nsp14 and Nsp16 (48)

Nsp11 No known function

Nsp12 RNA-dependent RNA polymerase

Suppresses nuclear translocation of

phosphorylated IRF3

(49, 50)

Nsp13 Helicase/triphosphatase activity Binds and

blocks TBK1 phosphorylation

Disrupts TBK1 association with MAVS Hijacks

USP13

Inhibits STAT1/STAT2 phosphorylation

(44, 51, 52)

Nsp14 Exoribonuclease activity

Induces lysosomal degradation of IFNAR1

Blocks IRF3 nuclear translocation

(53–55)

Nsp15 RNA endonuclease

Inhibits autophagy

Blocks IRF3 nuclear translocation

(56, 56–58)

Nsp16 N7- and 2′O- methyltransferase activity

Inhibits RIG-I and MDA5

Mimics host mRNA post-transcriptional

modifications limiting IFIT restriction

(59, 60)

conformation. The S1 subunit binds ACE2 while the S2 subunit
catalysez fusion with the target cell (110). The S1 C-terminal
domain (CTD) contains the receptor binding domain (RBD,
Figure 5), which is sufficient for binding to the ACE2-PD domain
and is the main determinant of viral host range and tropism.
The glycoprotein can be found in two distinct conformations,
which make the RBD differently accessible to the receptor. While
an “up” state readily exposes the RBD to receptor binding, a
“down” state, which protects the RBD from crucial neutralizing
antibodies, makes it less available for the interaction with ACE2
(Figure 5B). The SARS-CoV-2 spike predominantly acquires the
latter conformation (32, 111) which makes receptor recognition
less favorable while also contributing to decreasing the virus
vulnerability to neutralization.

TABLE 3 | Accessory proteins encoded by SARS-CoV-2 genome and their

functions.

Accessory

protein

Function References

ORF3a Ion channel protein involved in cell cycle arrest

and apoptosis

Is involved in the activation of the

inflammatory process

Inhibits STAT1 phosphorylation

(44, 61–64)

ORF3b Is involved in IFN (Type I) production and

signaling inhibition

Induces high levels of antibody production

(immunodominant protein)

(65, 66)

ORF6 Is involved in IFN (Type I) production and

signaling inhibition

Has a potential highly pathogenic role in the

cross-talk between SARS-CoV-2 and host

signaling pathways

Prevents STAT1/STAT2 nuclear translocation

(67–69)

ORF7a May inhibit host translation

Marginally inhibits STAT1 phosphorylation

Inhibits STAT2 phosphorylation

(44, 70)

ORF7b Inhibits STAT1/STAT2 phosphorylation (44)

ORF8 Has a potential role in the immune evasion process

to promote viral growth

Prevents IRF3 nuclear translocation

Induces MHC-I lysosomal degradation

(71–73)

ORF9a No known function

ORF9b Prevents the interaction between TOM70 and

Hsp90-bound TBK1

Interacts with RIG-I, MDA-5,

MAVS, TRIF, STING, and TBK1 to impede the

phosphorylation and nuclear translocation of IRF3

Suppresses formation of K63-linked

polyubiquitination of NEMO

(74–76)

ORF10 No known function; not essential in humans (77)

Our molecular understanding of the interaction between the
spike protein and ACE2 builds from the knowledge gained from
SARS-CoV studies (112), later confirmed by structural studies
with SARS-CoV-2 (Figure 5A) (84, 85, 113). The RBD contains
2 subdomains: the “core loop” made of five-stranded anti-
parallel β sheets (β1 to β4 and β7), with three short-connecting
α helices (αA to αC) and the “extended loop” subdomain,
which is a concave surface formed by two-stranded β sheets (β5
and β6) forming the interface with ACE2. Variations of ACE2
sequences in different animal species impact on the affinity of
the binding with the S protein determining different degree
of susceptibility to infection and virus transmission. Of note,
within β6, residues Leu472, Asn479, Thr487 are critical for cross-
species and human-to-human transmission of SARS-CoV.Met82
of human ACE2 interacts with Leu472, while the Asn82 in
rat ACE2 introduces a glycan that produces steric hindrance,
disrupting the binding. Indeed, some amino acidic variations
in the recognition interfaces of SARS-CoV-2-RBD/ACE2 are
likely to increase the binding affinity compared with SARS-
CoV-RBD/ACE2 (85), possibly explaining the higher infection
efficiency of SARS-CoV-2.
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FIGURE 3 | The life cycle of SARS-CoV-2. SARS-CoV-2 interacts with cellular receptors such as human angiotensin-converting enzyme 2 (hACE2) and with host

proteases which activate the spike proteins (not shown). Entry in the cell cytoplasm may occur in two ways: the viral particle is endocytosed before fusing with the

endosomal membrane (late pathway), or the viral membrane fuses with the cell membrane at the cell surface (early pathway). Two large open reading frames, ORF1a

and ORF1b, are immediately translated in polyproteins pp1a and pp1ab, that are processed into the individual non-structural proteins (nsps) which form the viral

replication and transcription complex (RTC). Viral genomic RNA replication occurs in protective double-membrane vesicles (DMVs). Transcription and translation of the

negative template result in the formation of structural proteins that are inserted into the endoplasmic reticulum (ER) membrane and transit through the ER-to-Golgi

intermediate compartment (ERGIC). Here, condensates of newly produced genomic RNA and N proteins interact with E and M proteins resulting in assembly of viral

particles, which bud into the lumen of secretory vesicular compartments. Virions are secreted from the infected cell by exocytosis in two ways: through the classical

exocytosis pathway via the Golgi compartment or through the incorporation in deacidified lysosomes that fuse with the cellular surface membrane.

NRP1
Neuropilin-1 (NRP1), is a multifunctional surface protein
which binds secreted peptides such as VEGF and semaphoring
(114). NRP1 plays an important role for the development of
neurons and the cardiovascular system as well as for tumor
growth and tumor vascularization (115). The protein recognizes
furin-cleaved 192 substrates which, upon cleavage, expose a
polybasic conserved C-end rule peptide (TQTNSPRRAROH).
Accordingly, furin cleavage of the spike glycoprotein generates
a C-end rule peptide, which was found to bind NRP1 and
mediate cell entry through endocytosis (116). NRP1-driven
virus entry is thought to facilitate infection of cells with low
ACE2 expression level, such as olfactory endothelial cells (105),
possibly by facilitating the separation of S1 and S2 (117). Indeed,
entry promoted by NRP1 could have important neurological
implications, especially in the olfactory-related region of the

CNS, supporting the role of NRP1 in the neurological symptoms
of SARS-CoV-2 (118). In vitro studies have shown that ACE2
expression in pulmonary and olfactory cells is low (119), while
NRP1 appears to be abundantly expressed, consistent with an
important role of the latter as a coreceptor to enhance cell
tropism for the upper respiratory tract. Understanding the
molecular details of the interaction between NRP1 and the
furin-cleaved S1 domain may therefore help future studies for
developing SARS-CoV-2 inhibitors (106). For over 20 years there
has been strong interest in interfering with NRP1 binding to its
ligands. For example, different strategies have been pursued to
interfere with NRP1 binding to VEGF to block endothelial cell
migration, including NRP1-based antibody therapy (120) and
small molecules-based therapy to target the NRP1-b1 domain
(121), the same found to interact with the SARS-CoV-2 spike.
Monoclonal antibodies were therefore tested to establish the
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FIGURE 4 | Early interactions of SARS-CoV-2 with the target cells. The spike protein of SARS-CoV-2 recognizes surface receptors to bind and fuse with the cell. A

preliminary interaction of the virus particle with the cell is mediated by attachment to cell surface glycans, such as heparan sulphate, followed by the interaction with

specific receptors. While the human angiotensin-converting enzyme 2 (hACE2) is the main receptor recognized by the spike, other cell surface proteins, such as NRP,

are also known to serve as receptors capable of triggering virus entry. The activation of the fusogenic activity of the spike protein also requires proteolytic processing

by cellular proteases which are located on the cell surface or in the endosomal vesicles. Furin is required for the cleavage which separates the S1 and S2 subunits of

the spike, predisposing the protein to the interaction with ACE2 and to the subsequent cleavage (S2’) by the activating proteases: TMPRSS2, exclusively located at

the cell surface, and cathepsins, in the endosomes.

functional relevance of the NRP1-b1-S1 molecular interaction.
Therapies which block NRP1, such as antibodies-based therapy,
small peptides-based therapy as well as small molecules-based
therapy (122), may potentially be exploited to target also SARS-
CoV-2. Accordingly, a selective NRP1 210 antagonist that
interacts with the NRP1-b1 binding pocket was shown to reduce
NRP1-b1/S1 binding and to inhibit viral entry (105).

Virus-Activating Interactions: The Cellular
Proteases
In addition to receptor binding, efficient entry of coronaviruses
also requires processing of the spike protein by cellular proteases.
In the case of SARS-CoV-2, the proteolytic processing includes
both a “priming” and an “activation” cleavage (86, 116). The
first “primimg” cleavage reshapes the spike by cleaving S1
and S2, which remain non-covalently attached. The second
cleavage (S2’) occurs within S2, exposing the fusion peptide
and activating its fusogenic potential (Figure 6). The priming

processing predisposes the spike protein to the interaction
with ACE2 and to the cleavage by the activating protease
(86, 116). Proteolytic processing is therefore crucial for SARS-
CoV-2 infectivity and has been intensively investigated to
reveal which cellular factors are involved and in which cellular
compartment they act. The spike of SARS-CoV-2 can be
targeted by proteases during biogenesis in the Golgi of virus-
producing cells and in target cells, either on the cell surface or
inside an intracellular vesicle, depending on the entry pathway
followed by the virus. After emerging from the producer cell,
coronaviruses are known to infect target cells either by fusing
with the host cell at the plasma membrane (“early pathway”),
or within an intracellular vesicle following endosomal uptake
(“late pathway”). SARS-CoV-2 is documented to exploit both
pathways [Figure 3, see (123) for a review] and takes advantage
of different host proteases encountered on its way including
furin, transmembrane protease serine S1 member 2 (TMPRSS2)
and endosomal cysteine protease Cathepsin B and L (CatB/L)
(124). Such proteases play a crucial role during infection
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FIGURE 5 | The interaction of SARS-CoV-2 spike with ACE2. (A) structure of

SARS-CoV-2 spike RBD in complex with ACE2 (PDB 6M0J). (B) different

conformations of the spike trimer with RBD “down” (PDB 6ZB5) and RBD “up”

(PDB 6zGG) which shows the exposure of the RBM within the RBB which

facilitates the interaction with ACE2.

since they modulate viral infectivity, tropism, transmission and
pathogenesis (125).

The Priming Proteases
The first protease cleavage (“priming”) occurs at the
boundary between the two functional subunits of the spike
extracellular domain (S1 and S2, Figure 6) by recognition
of a unique multibasic furin cleavage site (FCS) rich in
Arginine (680SPRRAR↓SV688) which has been structurally well-
characterized in complex with the protease (126). The presence
of this sequence at the S1/S2 boundary is a crucial virulence
determinant peculiar to SARS-CoV-2 since it is absent in most
other coronaviruses, including SARS-CoV (127, 128). Only
MERS-CoV contains a furin pseudo-binding site, though not
as efficiently processed by the protease (128). In SARS-CoV-2,
the FCS is a well-exposed loop within the spike structure, fully
accessible to protease recognition. Indeed, from biophysical
analysis (126) it was demonstrated that the cleavage loop
(N657 to Q690) perfectly fits in the canyon-like crevice which
identifies the substrate-binding pocket of furin. The higher
proteolytic processing susceptibility of the spike from SARS-
CoV-2 compared to that from others HCoV S, together with the

ubiquitous expression of furin, may therefore facilitate viral entry
into cells, leading to increased infectivity and transmissibility of
the virus compared to SARS-CoV and MERS-CoV.

Furin is a membrane-bound protease and as such it is
produced in the ER and transported through the secretory
pathway. Like glycoproteins of other viruses (e.g., retroviruses),
the spike glycoprotein can be processed by furin during
biogenesis in producer cells. However, membrane-bound furin
can also process the spike glycoprotein in target cells during the
early steps of infection and, being also shed from the membranes,
viruses can be primed by the protease in the extracellular space
before attachment to target cells. Of note, the S1/S2 sequence
boundary can be quickly lost because of lab adaptation to cell
culture (129–131). Accordingly, virus replication in vitro results
in deletion of the—RRAR—motif and increases the dependence
of the virus on the endosomal pathway. This indicates that
the emergence of the FCS could have been driven by in vivo
selective pressure to fuse at the cell surface rather than in the
endosomes, a pathway that allows the virus to avoid inhibition
by IFITM proteins (132). Irrespective of the cellular site of
cleavage, furin is expressed in different tissues and contributes to
expanding the virus tropism to sites and organs usually refractory
to infection by other coronaviruses (132). The increased tropism
mediated by furin could also favor viral dissemination among
individuals, since the virus can be shed in different body fluids
and secretions (125).

In addition to increasing virus pathogenicity by altering virus
particles infection, the ability of the spike protein to engage furin
was also suggested to affect the normal physiology of the lungs
because of molecular mimicry. An amino acid sequence similar
to the FCS found within the SARS-CoV-2 spike is present in the
human epithelial sodium channel α-subunit (ENaC-α), a protein
involved in the homeostasis of airway surface liquid (133). This
structural mimicry could therefore lead to a competition for
furin in infected lung cells, with the virus interfering with fluid
clearance from alveoli and contributing to edema and pulmonary
pathology (134).

The Activating Proteases
The priming step gives rise to a spike structure made of S1–S2
non-covalently bound in a “pre-fusion” conformation which is
also processed by other proteases, either on the target cell surface
or within an endosome (127). This processing activates the
fusogenicity of the spike protein, leading also to the formation of
syncytia, which, as explain later, may contribute to pathogenesis
and to spreading of the virus to neighboring cells.

Following protease-mediated “priming,” the S1 subunit is
released, exposing a S2’ cleavage site (814KR↓SF817) located at
the N terminal of the fusion peptide. Such “activation” cleavage
can be performed by diverse proteases which are found in
different cellular compartments. As already well-characterized
for SARS-CoV and MERS-CoV, TMPRSS2 plays a major role
in activating the spike glycoprotein at the cell surface of target
cells [see (135) for a review]. In addition, Cathepsin L, a
member of the lysosomal cysteine protease, activated at low
pH, was also found to target the spike protein of incoming
virions taken up into the endosomal pathway (136–138). Of
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FIGURE 6 | Spike cleavage in betacoronaviruses. (A) schematic organization of the SARS-CoV-2 spike protein domains and cleavages by host proteases. The

priming cleavage at the S2 site separates the subunit S1 from S2, while the activating cleavage occurs at the S2’ site in close proximity to the fusion peptide. NTD,

N-terminal domain; RBD, receptor-binding domain; SD1, subdomain 1; SD2, subdomain 2; FP, fusion peptide; CH, central helix; SD3, subdomain 3; TM,

transmembrane domain; CT, cytoplasmic tail. (B) sequence alignments of the regions containing the protease cleavage sites in human betacoronaviruses. The priming

cleavage of SARS-CoV-2 involves a polybasic S2 furin cleavage sequence (RXXR) which is absent in other sarbecoviruses, such as in SARS-CoV, but is found in other

human betacoronaviruses. Processing of S1/S2 exposes the S2’ site which can be cleaved by type II transmembrane serine protease and cathepsins.

note, while activation by TMPRSS2 requires the prior furin
priming cleavage, the spike can be activated independently on
priming by cathepsins within an endosomal vesicle (139), giving
SARS-CoV-2 the possibility to exploit different entry pathways.
Accordingly, it has been observed that in Calu-3 cells the virus
exploits a pH-independent early pathway by exploiting proteases
such as TMPRSS2, enriched in airway epithelial cells, while in
simian epithelial Vero cells SARS-CoV-2 is suggested to follow a
low pH endosomal entry pathway supported by proteases such
as Cathepsin L (132, 140). The observation that TMPRSS2 is
enriched in nasal and bronchial tissues may therefore explain
the high efficiency of SARS-CoV-2 infection of these tissues via
respiratory droplets (80).

Could Inhibitors of Cellular Proteases Be Used as

Antivirals?
Given the importance of proteases during the early phases of the
infection process, inhibition of furin, TMPRSS2 or cathepsins
has been proposed in order to interfere with “priming” and
“activation” cleavages of the trimeric S glycoprotein (141–143).
Proving this concept, Hoffmann and coworkers (127) were the
first to report the ability of a TMPRSS2 inhibitor, camostat
mesylate, in preventing viral entry in lung Calu-3 cells, possibly
by interfering with the activating cleavage.

Furin-specific inhibitors, such as decanoyl-RVKR-
chloromethylketone (CKM) and naphthofluorescein, were
also identified as potential antiviral leads able to prevent
both priming of S glycoprotein and syncytia formation (144). In
contrast, other studies highlighted how inhibitors of furin may be
not sufficient to block virus infection, given the redundancy with
other proteases (145). Along the same line, E-64d (a Cathepsin B
and L inhibitor) was found to act efficiently against the virus only
when used simultaneously with a TMPRSS2 inhibitor, further
corroborating the concept that SARS-CoV-2 can exploit more
than one protease to proteolytically activate the S glycoprotein.
This is consistent with the evidence that simultaneous treatment
of human bronchial epithelial cells with serine and cysteine
protease inhibitors in vitro prevents SARS-CoV entry into cells
expressing ACE2 and TMPRSS2 (146). The cooperation of
different protease inhibitors could therefore be a promising
strategy to treat COVID-19 (144, 145, 147), as shown with a
combination of camostat mesylate and MI-1851 (a synthetic
furin inhibitor) which promoted a strong and synergic reduction
of viral replication in human airway epithelial cells. Of note,
the experimental system used could lead to discordant results
given that SARS-CoV-2 can follow different entry routes in
different cells and therefore be processed by different proteases.
However, even though TMPRSS2 and lysosomal cathepsins have
been both demonstrated to have cumulative effects with furin
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on activating SARS-CoV-2 entry, inhibition of TMPRSS2 was
found to be sufficient to prevent SARS-CoV-2 entry in lung cell
lines and primary lung cells (148), raising hopes for their future
use as antivirals in vivo. Accordingly, promising preclinical
results obtained with Nafamostat, another TMPRSS2 inhibitor
(149, 150), are currently awaiting clinical confirmation (151).

Syncytia Formation by SARS-CoV-2 Spike:
A Fusogenic Interaction of Infected and
Non-infected Cells
As observed with many enveloped viruses, such as HIV-1, RSV,
and herpesviruses, cell surface expression of viral glycoproteins
may promote fusion between infected cells and non-infected
cells that express a functional virus receptor [see (152) for a
review]. This interaction causes the formation of multinucleated
syncytia which may contribute to virus propagation and to tissue
damage. While syncytia were never observed with SARS-CoV-1,
infection with SARS-CoV-2 is reported to induce the formation
of multinucleated cells in vitro (153–156) as well as in vivo (154,
157–159), leading to the fusion of pneumocytes (157) with the
contribution of lymphocytes (159) in the lungs. The propensity of
the SARS-CoV-2 spike to induce the formation of multinucleated
cells could be related to the processing by cellular proteases, such
as furin and TMPRSS2 (156, 159), which activates and unleash
the fusogenic potential of the viral glycoprotein not only on the
viral particle but also on the cell surface. Of note, as well as
requiring recognition of the cognate receptor and the activation
by proteolytic processing, fusion depends also on the engagement
of the calcium-activated ion channel TMEM16 in cells expressing
the spike protein (158). On this basis, approved drugs inhibiting
TMEM16 were found not only to block syncytia formation but
also to prevent cytopathic effects and inhibit virus replication in
vitro, suggesting a novel antiviral target.

The Importance of Lipids for SARS-CoV-2
Entry
The success of the fusion process also depends upon the
composition of the viral and host membranes, given that
the biophysical properties of different lipid species determines
membrane fluidity and curvature [see (160) for a review].
If on one side phosphatidylethanolamine and cholesterol
are found to enhance membrane fluidity and promote a
negative curvature critical for viral fusion, lysophospholipids
(LPLs) promote positive curvature and inhibit fusion (161).
Accordingly, compounds interfering with lipid metabolism are
proposed as drugs for the treatment of COVID-19, capable of
inhibiting virus replication and syncytia formation. In particular,
25-hydrocholesterol (25HC) was shown to block membrane
fusion by depleting cholesterol from the plasma membrane
following activation of acyl-CoA:cholesterol acyltransferase (154,
162). The importance of the cholesterol metabolism for SARS-
CoV-2 infection was also demonstrated by the inhibition of virus
replication in vitro upon treatment of 27-hydroxycholesterol,
an endogenous oxysterol metabolite of cholesterol targeting
lipid rafts and the late endosomal compartment (163) with no
cytotoxic effects in vitro. The potential of targeting viral fusion

by altering the lipid composition of biological membranes is
therefore an antiviral strategy that should be further explored to
test its applicability in vivo.

The Interaction With Fc Receptors: A
Potential Alternative Entry Pathway
Soon after SARS-CoV-2 was isolated, serious concerns were
raised about the possibility that the virus could take advantage of
antibody dependent enhancement of infection (ADE, Figure 7),
posing a problem for vaccine development and therapeutic
approaches in patients infected with different SARS-CoV-2
variants (164). The molecular bases of the ADE rely on poorly
neutralizing or non-neutralizing antibodies binding to surface
viral antigens and promoting viral particle uptake into cells
that express an Fc receptor, thus enhancing the infection of the
host (165). Of note, ADE could be potentially caused by the
presence of suboptimal concentrations of neutralizing antibodies
or antibodies with decreased affinity produced in the host either
following an earlier infection, vaccination, or passive transfer
(166). The ADE phenomenon has been reported for some human
viruses, such as dengue, Zika and respiratory syncytial virus
(RSV), and also in some veterinary pathogens such as foot-
and-mouth disease virus (FMDV), porcine reproductive and
respiratory syndrome virus (PRRSV) [for a review see (167)].

Myeloid cells, including monocytes, macrophages and
dendritic cells (DCs), are considered likely targets of ADE
infection, since they express the FcγR which could confer
the virus the ability to infect cells even in the absence of the
spike cognate receptor (167). For non-macrophage-tropic
respiratory viruses (such as RSV), the formation of immune
complexes (i.e., virus-antibody complexes) in lung and airway
tissues induce a local activation of the complement system
and release of cytokines resulting in heavy inflammation and
airway obstruction that eventually can lead to acute respiratory
distress syndrome (168) closely similar to COVID-19 clinical
manifestations, which could involve the complement system
activation (169).

Concerns about the possibility of ADE for SARS-CoV-
2 were raised looking at its close relative SARS-CoV. The
two viruses have a genome sequence similarity of 79.5% and
they also share the canonical receptor for viral entry (ACE2),
which is bound by SARS-CoV-2 with 10–20 times increased
affinity compared to SARS-CoV. ADE could result from poorly
neutralizing antibodies raised by previous infections with other
coronaviruses, since the S protein sequence similarity between
different coronaviruses suggests the presence of cross-reactive
epitopes (169). Indeed, in the case of SARS-CoV, anti-spike
antibodies were reported to bind Fcγ receptors on the surface
of M2 macrophages normally devoted to anti-inflammatory
functions (170). Accordingly, anti-spike antibodies were shown
to increase the infection of monocytes and lymphocytes by
SARS-CoV in vitro in the absence of the canonical viral
receptor, indicating an ACE2 independent entry mechanism
(171). Understanding whether ADE can occur during SARS-
CoV-2 infection has been fundamental for the evaluation of
vaccine safety and the development of immunomodulatory
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FIGURE 7 | ADE: a potential mechanism of ADE for SARS-CoV-2? Antibodies interacting with virions without neutralizing the ability of the virus to infect target cells

could potentially mediate viral particles uptake by cells expressing Fcγ receptors via endocytosis. Internalized virions could then fuse with the endosomal membrane

and release the genome into the cytoplasm. While this mechanism, known to favor infection of other viruses, has been hypothesized, no evidence so far has

demonstrated that ADE occurs with SARS-CoV-2.

therapies. Fortunately, up to date, there is no proof that ADE
occurs in SARS-CoV-2 infections and there is no evidence that
the available vaccines for COVID-19 are eliciting ADE in subjects
that are reinfected. Indeed, it appears that vaccinated subjects are
less severely affected by the disease. However, it will be important
to keep monitoring for signs of ADE to optimize and update
current prophylactic and therapeutic interventions.

The Interaction of SARS-CoV-2 With the
Endocytic Pathway and the Antiviral
Potential of Inhibiting Endosomal pH
Following receptor binding and the possible uptake into a vesicle,
the fusion mechanism is triggered by S2 [see (172) for a review].
The S2 sequence contains regions conserved among CoVs
required for the fusion machinery, notably a fusion peptide and
two conserved heptad repeats (HR) instrumental for bringing
viral and cellular membranes in close proximity for fusion.
After activation of the spike glycoprotein, a conformational
change occurs leading to the release of the fusion peptide and
the interaction with the cellular membrane (172). The collapse
of S2, which bridges the virus and cellular membranes, pulls
the two membranes together with HR1 and HR2 forming the
canonical 6-helix bundle first reported for CoVs in mouse
hepatitis virus (MHV) (173) and then for other coronaviruses

(141). As mentioned earlier, SARS-CoV-2 can fuse either at the
cell membrane or after having been taken up by endocytosis.
Understanding which entry pathway plays a crucial role in vivo
remains an important issue which also indicates whether endo-
lysosomotropic compounds can be used as possible therapeutic
agents. In the meantime, the possibility of inhibiting virus
infection by interfering with the maturation of endosomes has
been investigated intensely. As mentioned earlier, CatB and CatL
are themain proteases required for SARS-CoV-2 activation in the
endosomes and both are active only at an acidic pH. Accordingly,
as the endosomal vesicle is formed and clathrin breaks off,
the pH of the vesicle decreases and the endosome matures to
late endosome (pH of 5.5–6), which eventually fuses with the
lysosome reaching a pH of ∼4.6 (174). Understanding which
cellular factors govern endosome acidification has become crucial
to identify cellular functions required for the virus to infect cells
using this pathway. Viral envelope fusion with the endolysosomal
membrane cells depends, among other factors, on the lysosomal
two-pore channel 2 (TPC2) (175). TPCs are dimeric ion
channels composed of a duplicated domain architecture and are
considered an evolutionary bridge to four-domain voltage-gated
Ca2+ and Na+ channels [for a review see (176)]. The opening of
TPCs is known to induce a strong sodium-driven depolarization
in the endo-lysosomal membrane, which has been demonstrated
to facilitate membrane fusion (177). Even though the specific role
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of TPC2 for virus escape into the cytoplasm is not completely
clear, inhibition of TPCs should both impair the fusogenic
potential of the endo-lysosomal system and disrupt the correct
intracellular vesicle trafficking, resulting in inhibition of viral
replication (178, 179). Accordingly, it has been demonstrated
that knockdown and pharmacological inhibition of both TPC2,
mainly expressed in late endosomes/lysosomes, and TPC1, which
mainly localizes to early endosomes, attenuate intracellular
trafficking of MERS-CoV through the endolysosomal system
(180). Accordingly, Naringenin (Nar), which is the predominant
flavanone in grapefruit and was found to impair TPC2 (181),
has been investigated for its effects against SARS-CoV-2, after
its activity had previously been observed against viruses that
enter via a pH-dependent pathway such as Hepatitis C virus
(182), influenza A virus (183), dengue virus (184), and Zika
virus (185). Interestingly, Nar suppresses also inflammatory
cytokine production through both transcriptional and post-
transcriptional mechanisms, by regulating lysosome function,
resulting in the inhibition of TNF-α and IL-6 secretion by
macrophages and T cells (186, 187), which could contribute
to prevent the excess of inflammation in COVID-19 patients.
Like Nar, the TPC-specific blocker tetrandrine was also found
to prevent cellular entry, viral-endosome membrane fusion and
capsid disassembly required for successful virus entry (176, 188,
189). In addition, the endo-lysosomal lipid phosphatidylinositol-
3,5-bisphosphate [PI(3, 5)P2] has also emerged as a direct
channel activator that binds to TPCs (190) suggesting that
inhibiting PI(3, 5)P2 could have antiviral effects. Accordingly,
inhibition of the phosphoinositide kinase PIKfyve has been
demonstrated to prevent infection by Zaire ebolavirus and
SARS-CoV-2 (191). While these results obtained in vitro
suggest the strong antiviral power of inhibiting the correct
endolysosomal functionality, the toxicity and efficacy of these
treatments in vivo remain to be tested, especially considering
the ability of SARS-CoV-2 to exploit both pH-dependent
and -independent pathways. Such adaptability of SARS-CoV-
2 could be at the basis of the controversy surrounding the
use of hydroxychloroquine for treating COVD-19. Quinine-
derivative drugs, and hydroxychloroquine in particular, are well-
known compounds with lysosomotropic activity which inhibit
the replication of coronaviruses in vitro (192, 193) and were
soon proposed as possible treatments for SARS-CoV-2 (194).
However, the antiviral efficacy of the drug in cell culture (195–
197) is in stark contrast with its inefficacy as a prophylactic and
therapeutic drug in clinical settings (198–200). Accordingly, the
ability of SARS-CoV-2 to exploit TMPRSS2, avoid the endosomal
compartment and fuse at the cell surface could explain such
discrepancy and limit the efficacy of drugs targeting the pH
acidification (201).

The Virus in the Cytoplasm
Interaction of Nsp1 With the Translation Machinery

and the Host RNA
After the virus accesses the cytoplasm, the replicative cycle begins
with the translation of single-stranded positive-sense genomic
RNA (ssRNA+). The translation of ORF1a and ORF1b from
the genomic RNA produces two polyproteins, pp1a and pp1ab.

Like all viruses, SARS-CoV-2 depends on the host cell translation
machinery (Figure 8). Accordingly, RNA-interactome studies
revealed the association of the viral RNA with components of
the eukaryotic translation machinery, such as initiation factors,
the cap- and poly(A)-binding proteins and ribosomal proteins
(202–205). Furthermore, coronaviruses have evolved specialized
mechanisms to hijack the host gene expression machinery and
employ cellular resources to regulate viral protein production.
Such mechanisms include inhibition of host protein synthesis
and endonucleolytic cleavage of hostmRNAs (206). A pivotal role
in regulating the translation machinery of the host cell is played
by the viral protein Nsp1, which is among the first proteins to be
expressed after cell entry and causes repression of host translation
(207). For SARS-CoV, Nsp1 has also been demonstrated to
induce an endonucleolytic cleavage of the host RNA (208),
while sparing from degradation viral mRNA by a yet unknown
mechanism, likely mediated by the 5’ UTR of the virus transcript
(209). By combining cryo-electronmicroscopy and biochemistry,
SARS-CoV-2 Nsp1, the host shutoff factor, has been recently
demonstrated to bind the ribosomal mRNA channel (210). The
protein was shown to interact with a range of different ribosomal
conformations, as it co-migrates with both the 40S and the 80S
complexes, competing with mRNA for ribosome binding. Nsp1
associates with the 40S ribosomal subunit with its C terminus
interfering with the level of mRNA entry into the ribosome
channel, thereby inhibiting host translation (210). As observed
in the high-resolution structure of the 40S–Nsp1 complex,
the C-terminal part of Nsp1 in the mRNA entrance channel
folds into two helices. The first helix, composed of C-terminal
residues 153–160, interacts with uS5 and uS3 [as reviewed (211)]
through multiple hydrophobic side chains. The two helices
are connected by a short loop containing the KH motif that
establishes stacking interactions with helix h18 of the 18S rRNA
through U607 and U630, as well as backbone binding. The
second helix (residues 166–178), interacts with the phosphate
backbone of h18 via two conserved arginines, R171 and R175
(210). Overall, these interactions tightly bind Nsp1 to the 40S
subunit to cause translation inhibition by sterically occluding
the entrance region of the mRNA channel. Interestingly, this
inhibition mechanism may be unique to SARS-CoV-2 and other
closely related beta-coronaviruses because the C-terminal region
of Nsp1 is shorter in alpha-coronaviruses and is not highly
conserved among other beta-coronaviruses, including MERS-
CoV [as reviewed (212)]. Nevertheless, the viral mRNA has been
demonstrated to be more efficiently translated than host mRNAs
in the presence of this mechanism. Further details were emerged
by studying the eukaryotic ribosome during initiation with the
cricket paralysis virus (CrPV) internal ribosome entry site (IRES),
which can directly recruit and assemble with the 40S or 80S
ribosome without requiring any eIFs (213). Cryo-EM analyses
with CrPV IRES have suggested that Nsp1 may act by changing
the conformation of ribosomal subunit resulting in incorrect
positioning of the mRNA 3’ region (211). The conformation of
the 40S ribosomal subunit in the Nsp1-40S complex appears to
be in a “closed state,” suggesting that Nsp1 not only plugs the
mRNA channel but also changes the 40S subunit conformation
making it incompatible with loading of mRNA. Nsp1 is proposed
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FIGURE 8 | Cytoplasmic interactions of SARS-CoV-2. a. ORF3a requires binding to the plasma membrane to promote Ca2+-dependent apoptosis and prevents

autophagosome-lysosome fusion. b. Nsp1 sterically occludes the mRNA entrance channel of the ribosome, prevents the physiological conformation of 48S PIC, and

reduces mRNA transport through the NPC. Molecular mechanisms whereby Nsp1 specifically blocks only host translation have yet to be clarified. c. Computational

predictions indicate that SARS-CoV-2 E protein binds to PALS1, normally involved in tight junctions maintenance, leading to their disruption. d. Excessive viral protein

production, membrane rearrangements leading to the formation of DMVs and membrane depletion due to virus budding from ERGIC contribute to ER stress, which

results in the UPR. Prolonged ER stress induces missorting of GRP78/BiP to the cell membrane, likely increasing infectivity upon binding of the chaperone with the

SARS-CoV-2 spike protein. e. Nsp3 and Nsp4 prevent the formation of autophagosomes by inducing the formation of DMVs; ATG5, LC3 and other cellar factors

involved in the autophagosome formation colocalize with the non-structural proteins. f. Different host proteins have been identified in the RTC microenvironment,

including proteins involved in transportation, catabolic processes, cell organization and translation.

to dislodge the canonical tRNA-mRNA interaction from the 40S
subunit, interfering with the joining of the 60S subunit to form
the 80S initiation complex (211). Overall, these results indicate
that the C-terminal domain of Nsp1 is necessary and sufficient
for inhibition of translation. Instead, its N terminus may play
a role in suppressing host gene expression of Type I interferon
in infected cells, as described later (214), and regulating cellular
mRNA stability (215). Accordingly, an attenuating mutation of
Nsp1 was found to decrease the ability of SARS-CoV to replicate
in cells with an intact interferon response (216). However, how
SARS-CoV-2 RNA escapes inhibition of translation remains
unclear, even though it has been postulated that interactions
involving the viral 5’ UTR may result in the “unplugging” of
Nsp1 from the 40S ribosome during initiation of viral translation
(211). The SL1 hairpin structure found at the 5’ leader sequence
is required for the interaction of the RNAmolecule with the Nsp1

C-terminal domain, allowing viral RNA to be translated despite
Nsp1 binding to the ribosome (37).

In addition to altering the initiation of translation, the
observation that the overall transcriptome profile is perturbed
by Nsp1 in infected cells has led to the hypothesis that this viral
protein functions autonomously as an mRNA export inhibitor
(217). Nsp1 directly binds the mRNA export factor NXF1 and
reduces its interaction with the nuclear pore complex (NPC),
thereby reducing expression of host mRNAs, including those
which encode antiviral factors. Nsp1 disrupts NXF1 interaction
with adaptor proteins which regulate mRNA interaction, and
with the NPC (217). Accordingly, Nsp1 has been observed in
the vicinity of the NPCs, raising the possibility that Nsp1 may
shuttle between the nucleus and the cytoplasm, with its steady-
state distribution being predominantly cytoplasmic. The effect on
mRNA nuclear export results in an increased availability of the
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host translationalmachinery for viral mRNAs, thus favoring virus
replication. SARS-CoV-2 Nsp1 therefore suppresses host gene
expression by both inhibiting translation and blocking mRNA
nuclear export, two functions performed by distinct domains
within the C- and N-terminal regions of the protein (217).

Following translation, a Replication and Transcription
Complex (RTC) is assembled, involving several non-structural
proteins including Nsp12, the RNA-dependent RNA polymerase
(RdRp), and its two accessory factors Nsp7 and Nsp8, that
all together form the RdRp core complex. It is thought that
additional subunits bind this complex, including Nsp9, Nsp10,
Nsp13, Nsp14, and Nsp16 (218). The RTC is involved in
two processes of the coronavirus replicative cycle: genome
replication and transcription of subgenomic mRNAs, which are
then translated into structural and accessory proteins (219).
In analogy with our knowledge from other coronaviruses, we
can deduce that several host factors associate with the RTC of
SARS-CoV-2 to modulate transcription. The involvement of host
factors in the functionality of coronaviruses RTCwas investigated
recently using proximity labeling with the mouse hepatitis virus
(MHV) model (220). More than 500 host proteins were found
associated with the RTC microenvironment, including factors
involved in transportation, catabolic processes, cell organization
and translation. The latter category was enriched by factors
involved in translation initiation, such as the ribosomal proteins
Rpl13a and Rls24d1 and several subunits of the eIF3 complex,
which were confirmed to be crucial for MHV replication. The
association of factors orchestrating translation initiation was
confirmed for SARS-CoV-2 by a recent study which found Nsp9
interacting with eIF4H, a partner of the initiation factor eIF4A
(221). Accordingly, the eiF4 inhibitor zotatifin was observed
to exert a strong antiviral activity and on these bases was
approved for a phase-I clinical trial for the treatment of COVID-
19 (222), leading the way to exploit the interface between the
viral replication machinery and the host factors as target for
therapeutic intervention.

The Virus Interaction With Intracellular Membranes
The replication of coronaviruses and many other positive-sense
RNA viruses occurs in the cytoplasm of infected cells, in
association with modified membranes that are transformed into
distinctive structures called viral replication organelles (ROs).
ROs provide platforms that facilitate viral RNA synthesis by
concentrating relevant factors, while preventing the exposure
of viral replication intermediates to cytosolic innate immune
sensors (223). The formation of invaginations can occur
at different membranes of various organelles, including
the endoplasmic reticulum (ER), the endolysosomes, and
mitochondria (224, 225). Such membranous structures
may take the shape of convoluted membranes (CVs) and
double-membrane vesicles (DMVs), originating from the
endoplasmic reticulum, and the recently discovered double-
membrane spherules (226). Viral RNA synthesis was shown to
predominantly occur within such DMVs, with a pore connecting
the interior of the vesicles to the cytosol for transport of viral
RNAs and metabolites required for RNA synthesis.

The membrane-spanning Nsp3, Nsp4, and Nsp6 have been
proven to be implicated in diverting cellular endomembranes
into replication organelles, with other non-structural proteins
and unknown cellular factors possibly involved in the process
(224, 227). Such proliferation and reorganization of intracellular
membranes by viruses is reminiscent of the formation of
autophagosomes, which nucleate in the cytoplasm to originate
a double membrane organelle. It is therefore plausible that
SARS-CoV-2 exploits cellular factors required for autophagy
alongside viral proteins for the biogenesis of DMV. Accordingly,
coronaviral Nsp3 and Nsp4, which are co-translationally
inserted in the ER, are sufficient to induce the formation
of convoluted membranous structures in human cells and by
inducing the formation of DMVs they inhibit the formation of
canonical autophagosomes (45, 228). Cellular factors involved in
autophagosome formation, such as ATG5 (229), LC3 (230), and
ptdIns3P (231), were observed to colocalize with non-structural
viral proteins on DMVs, and to be required for coronavirus
replication, though perhaps in a cell-type specific fashion.

The ability of coronaviruses to induce formation of DMVs
associates also with the modulation of lipid biosynthesis,
resulting in a selective lipid composition with alteration
of glycerophospholipids and cholesterol levels. To this
end, coronaviruses hijack host factors to manipulate lipid
mobilization and synthesis. Accordingly, sterol regulatory
element-binding proteins (SREBPs), which regulate the
biosynthesis of cellular cholesterol and fatty acids, were found
to play an essential role for DMV formation by MERS-CoV
(232). In addition, TMEM41B, an ER resident protein involved
in induction of autophagy (233) and thought to be required for
coronavirus replication, was identified as a crucial factor for
the replication of diverse coronaviruses possibly by mobilizing
cholesterol and other lipids for DMV formation (234). The
antiviral effect of drugs targeting lipid biosynthesis, such
as AM580 (232), demonstrate that interfering with lipid
homeostasis could become an effective antiviral strategy. Further
elucidation of the mechanisms and factors required for DMV
formation will however be crucial to understand to what extent
this process can be targeted to interfere with virus replication.

Virus Assembly and the Interaction With the

Secretory Pathway
As recently proposed in a cryo-ET study (235), nucleocapsid
assembly of SARS-CoV-2 is driven by the interaction between
the N protein and the viral gRNA, giving rise to viral
ribonucleoparticles (vRNPs) in a beads-on-a-string like
conformation, resembling the helical filaments already observed
for other coronaviruses (236). This conformation allows
maintenance of high steric flexibility between the vRNPs, ideal
for the incorporation of the SARS-CoV-2 large genome. It has
been estimated that vRNPs are made of ∼12N monomers and
800 nt RNA and that each virion contains ∼35–40 vRNPs (237).
The pivotal role of the N protein in nucleocapsid assembly is
further supported by its ability to undergo phase separation
with RNA, as reported by several independent studies (238–
243). Specific gRNA elements were proposed to differentially
interact with the N protein, either promoting liquid-liquid phase
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separation (LLPS) or impeding it. A mixture of LLPS promoting
elements, such as the 5’end and the nucleocapsid encoding
region found at the 3’end, characterize the full lenght gRNA
and favor a selective LLPS resulting in the exclusion of host
mRNA from packaging (239). An L/Q rich region found in the
central intrinsically disordered region (IDR) of N is supposed
to be responsible for these interactions (243). As suggested by
others and despite previous indications of phase separation being
implicated in other viral contexts (242), it is currently impossible
to exclude that phase separation is just an epiphenomenon
due to the high concentration and multivalency of N proteins.
For this reason, further studies are needed to elucidate the
implication of LLPS in the viral replication cycle, eventually
addressing its physiological relevance in SARS-CoV-2 assembly
(239), as already proposed (242). Interestingly, recent analyses
using fluorescent microscopy and FRAP indicate accumulation
of RdRp at the level of N/RNA condensates (241). Even though
this seems in contrast with the concept that replication occurs
in ER DMVs, a dual involvement of N protein in both assembly
and replication was recently demonstrated. It appears that
phosphorylation of the N proteins in a particular S/R rich region,
found in proximity of the L/Q-rich region of the central IDR,
allows it to recruit host factors (e.g., RNA helicases), to eventually
promote viral RNA template switching and subgenomic mRNA
transcription. On the other hand, hypophosphorylation of the N
protein in the same domain is responsible for its incorporation
into virions (238, 243).

Altogether, these findings are pointing at the central
role of the condensates involving the N protein, indicating
this as a potential therapeutic target for future antiviral
therapies against SARS-CoV-2. Possible compounds could
either induce condensate dissolution (e.g., 1,6-hexanediol) and
size modifications (e.g., kanamycin, lipoic acid) and/or alter
protein/RNA ratio (e.g., kanamycin) (239). It is reasonable to
assume that condensate formation could be advantageous to
concentrate viral components in an isolated compartment in the
cytosol, possibly improving nucleocapsid assembly. However, the
mechanism underlying the recruitment of these condensates to
the membranes, where subsequent steps in virion assembly take
place, remains unclear (242).

The final assembly of SARS-CoV-2 virions requires M,
E, S and N proteins and takes place at the level of
intracellular membranes belonging to the ER-Golgi intermediate
compartment (ERGIC), as previously shown for SARS-CoV-1
and other coronaviruses (236, 244). Virus budding occurs mainly
at the level of the ERGIC membrane arrangements where vRNPs
were observed to accumulate on the cytosolic side (235), while S
trimers were found to be facing the luminal side. S trimers and
M protein alone were shown to be unable to induce membrane
curvature, consistent with previous evidence from SARS-CoV
(244). Nonetheless, it appears that the M protein interacts with
vRNPs (243) possibly driving their accumulation at the ERGIC
membrane and together causing its curvature, which might also
be dependent on the E protein, as suggested by studies with
other coronaviruses (236). The evidence that some individual
vRNPs are oriented on the viral envelope in an “eggs-in-a-nest”
shaped assembly supports the role of specific M-N interactions

driving packaging of new virions (237). Moreover, additional
evidence shows that the N protein undergoes phase separation
with soluble fragments of the membrane associated M protein,
highlighting an important interaction that reinforces the pivotal
role of M protein in recruiting the assembled nucleocapsid to
the ERGIC compartment (243). Furthermore, the simultaneous
expression of M, N, S, and E was shown to be pivotal for
efficient viral assembly and it was also demonstrated that both
E and M play a central role in inducing the retention of S
in the ERGIC compartment. A recent study shows that M is
able to directly interact with S through a C terminal retention
signal, while E indirectly induces S retention by altering the cell
secretory pathway, possibly by acting as a viroporin (245). The
accumulation ofM and E at the level of ERGIC/Golgi membranes
could alter the activity of glycosylases, hence disrupting the
N glycosylation profile of the S protein. The advantage given
by the modulation of S maturation might be related to the
ability of the virion to attach to lectins found at the surface of
permissive cells, as proposed for SARS-CoV (246). Interestingly,
a recent publication (247) suggests that the glycosylation profile
of the Spike protein can be affected by inhibitors of protein
glycosylation such as Miglustat and Celgosivir, resulting in
misfolded S protein accumulation and reduction of infectious
viruses release, highlighting the antiviral potential of these drugs.

The completion of the first step along the egress pathway
of SARS-CoV-2 is established by the virus budding in the
lumen of the ERGIC compartment. From this point on, it
was originally believed that SARS-CoV-2 would follow the
biosynthetic secretory pathway engaged by other enveloped
viruses. However, recent findings suggest that SARS-CoV-
2 and other betacoronaviruses exploit a lysosomal exocytic
pathway that results in non-lytic release of the virions (248)
confirmed also by recent cryo-imaging studies which indicate
the formation of tunnels connecting multi virus-containing
vesicles to the cell membrane, possibly supporting the lysosomal
mediated exocytosis (249). These tunnels were not observed
in another independent study, which instead indicates that
virus egress follows a secretory pathway involving fusion of
small vesicles generally containing only one viral particle
(250). Nevertheless, by following such unconventional non-
lytic egress pathway, viruses are co-trafficked together with
the ER chaperone GRP78/BIP which could therefore assist the
correct folding of newly synthesized viral protein. Interestingly,
given the low pH, the lysosomal egress pathway could cause
a premature activation of the viral particles. However, late
endosomes/lysosomes of infected cells were shown to be
deacidified and carry lysosomal enzymes with reduced activity.
The exact deacidification mechanism has not yet been elucidated,
with one possibility being that this is actively promoted by the
infected cells to relieve viral-induced stress (248, 251). However,
one deacidification pathway involves ORF3a which may act as a
viroporin, consistent with previous knowledge involving SARS-
CoV (63, 252, 253).

Interestingly, perturbation of lysosomal pH could also disrupt
the antigen cross-presentation pathway and the endolysosomal
Toll-like receptor signaling (248), benefiting virus survival. Since
the lysosomal exocytic pathway depends on small GTPases, such
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as Arl8b and Rab7, which regulate intracellular trafficking, these
have also become possible targets to inhibit the latest stage of the
virus life cycle (248, 254).

The Interaction of ORF3a With the Apoptosis and

Autophagy Pathways
It has been well-established that the SARS-CoV accessory
protein ORF3a induces apoptosis, Golgi fragmentation, and
accumulation of intracellular vesicles (255). Even though data
with SARS-CoV-2 remain scarce, the pro-apoptotic activity of
SARS-CoV-2 ORF3a has been confirmed in different cell lines,
where the viral protein was shown to activate mainly the
extrinsic apoptotic pathway by promoting cleavage of caspase-
8 (64). Features that regulate SARS-CoV ORF3a intracellular
transport include a tyrosine-based sorting motif (YXX8) and
a diacidic EXD domain (256), a cysteine-rich sequence and
a region with potassium channel activity (257). The protein
ORF3a from SARS-CoV-2 shares 73% amino acid homology
with its counterpart in SARS-CoV, maintaining the cysteine-
rich sequence, the YXX8 motif and the potassium channel
region (64) and exerting a relatively weaker apoptotic activity
than that associated with SARS-CoV ORF3a, correlating with
the lower virulence of the pandemic virus. Interestingly, some
of the mutations naturally occurring in the SARS-CoV-2 ORF3a
coding sequence have been recently demonstrated to significantly
affect protein stability and secondary structure (258), possibly
affecting the virus pro-apoptotic activity. In-silico studies suggest
that thesemutationsmay help the virus to evade the host immune
system because of the loss of B-cell putative epitopes (258),
indicating a possible trade-off between the loss of apoptotic
activity in favor of immune evasion. Nevertheless, residues of
SARS-CoV-2 ORF3a predicted to favor stability of the protein
central pore remain unaltered conserved (259) indicating that,
though lower than in SARS-CoV, the ability to induce apoptosis
remain important. Since the ion channel activity of ORF3a is
required for its pro-apoptotic activity, inhibiting its function may
still provide a direction toward interfering with coronaviruses
cytopathology (257).

As a catabolic pathway of mammalian cells, autophagy
controls viral infections at multiple levels by causing destruction
of viruses, regulating inflammatory responses, and promoting
antigen presentation. Moreover, viruses manipulate autophagy
for their immune evasion, replication, and release from
infected cells [for a review see (260)]. SARS-CoV-2 ORF3a
has been shown to inhibit autophagosome-lysosome fusion by
disrupting the assembly of the RAB7-HOPS fusion machinery,
evidence obtained with ectopic expression of ORF3a (261).
The HOPS tethering complex regulates the activity of SNARE
proteins which govern autophagosome fusion with lysosomes
(262). The C-terminal region of SARS-CoV-2 ORF3a was
reported to interact with VPS39, a component of the HOPS
complex, and to disrupt the assembly with the SNARE proteins
(263). Interestingly, given the conformation similarity between
DMVs and autophagosomes, ORF3a disruption of RAB7-HOPS
interaction may also be beneficial for the virus to prevent DMVs
from fusing with lysosomes, thereby promoting the conditions
for optimal viral replication (261).

The Interaction of SARS-CoV-2 With the ER
Infections caused by coronaviruses, such as SARS-CoV, MHV,
IBV, and HCoV-HKU1, are known to induce ER stress, resulting
in the activation of the unfolded protein response (UPR). This
is regulated by ER transmembrane sensors PKR-like ER protein
kinase (PERK), inositol-requiring protein 1 (IRE1) and activating
transcriptional factor 6 (ATF6), leading to increased expression
of ER chaperons, to global repression of protein synthesis or even
to apoptosis when the ER stress becomes persistent [reviewed
in (264, 265)]. ER stress is demonstrated by the induction of
Immunoglobulin heavy chain-binding protein (BiP, also known
as glucose-regulated protein 78, or GRP78) or glucose-regulated
protein 94 (GRP94) in cells infected with SARS-CoV (265).
From our knowledge based on SARS-CoV, ER stress is induced
by different mechanisms which are consequences of the viral
replicative cycle in the host cell. First, the UPR can be triggered
by ER saturation following the extensive production of viral
proteins, particularly the spike and the accessory proteins
ORF3a, ORF6, ORF7a, and ORF8ab (266–268). In addition,
contributions to ER stress originate from the formation of
DMVs and other membrane rearrangements as well as from
the ER membrane depletion following virus budding from the
ERGIC and autophagy (265). More directly, the central region
of the S1 subunit (amino acids 201–400) of SARS-CoV was
found responsible for activating the transcriptional activity of
GRP78 and GRP94 promoters, eventually leading to UPR (269).
ORF8b was instead shown to contribute to ER stress by forming
aggregates dependent on a C-terminal VLVVL motif (253). The
contribution of ORF8 to ER stress was additionally confirmed
by studying two genotypes of SARS-CoV-2, namely ORF8L
and ORF8S, which carry a Leucine or a Serine at position 84
and were identified during the early stages of the pandemic in
China. Despite lacking the aggregation motif found in SARS-
CoV (270), both ORF8L and ORF8S are able to trigger the
activation of ATF6 and IRE1 (71) and PERK (271). SARS-CoV-2
ORF8 is encoded by a hypervariable gene and several different
polymorphisms have already been identified, as reported by a
recent review (73). A large deletion (1382) which abolishes ORF8
expression associates with a favorable clinical outcome despite
no appreciable effects on viral replication (272) demonstrating
the contribution of ORF8 to SARS-CoV-2 virulence. Given all
these indications that point toward a crucial role in pathogenesis,
inhibiting ORF8 effector functions could be used to improve the
clinical course of the infection (273).

Another contribution to the induction of UPR comes from
the region IV of the SARS-CoV-2 spike protein which was
observed to interact with the substrate-binding domain (SBD)
of BiP (254). Conditions of prolonged ER stress result in
an altered trafficking of BiP to the cell surface, causing its
accumulation on the cell membrane or in extracellular secretions.
Indeed, increased levels of BiP in lung pneumocytes and
macrophages was observed in patients with COVID-19 (274).
Interestingly, cell surface accumulated BiP has been shown to
function as attachment factors for MERS-CoV, promoting viral
infection (275). SARS-CoV-2 spike protein might also bind BiP,
presumably facilitating viral entry and boosting infection (254).
In addition to characterizing several pathological conditions,
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such as diabetes, obesity, and neurodegeneration, persistence of
ER stress resulting from the accumulation of misfolded proteins
can be elicited during aging by a decline of ER chaperone
activity. Age and comorbidities therefore may predispose to
ER stress caused by coronavirus infection, as well as lead to
an increased susceptibility to infection due to accumulation of
BiP on the cell surface (276, 277), therefore contributing to the
severity of the coronavirus diseases in elderly or chronically
diseased individuals.

If from one side it appears that the interaction between SARS-
CoV-2 proteins and UPR effectors leads to the activation of
this stress response, another recent article suggests that, even
though CoVs infection initiate ER stress signaling and induces
UPR components at the mRNA level, these are inhibited at
the protein level (278). This could indicate that coronaviruses,
including SARS-CoV-2, might have evolved strategies acting
at posttranscriptional or translational level to escape antiviral
response placed by BiP, IRE1α, and HERPUD. The evolution
of a viral mechanism to counteract the effects of ER-stress is
consistent with the emergent notion that UPR provides a crucial
contribution to the activation of innate antiviral signaling, as
seen with flaviviruses (279). Strikingly, treatment of cells with
thapsigargin, a guaianolide which induces ER-stress by inhibiting
the ER Calcium ATPase, represses replication of SARS-CoV-2
and other CoVs, counteracts virus mediated BiP downregulation,
activates IRE1α and outweighs coronavirus mediated inhibition
of global protein synthesis, thus becoming an attractive antiviral
drug candidate (278, 280).

The Interactions of SARS-CoV-2 With Adhesion

Molecules
The enigmatic envelope (E) protein is the smallest among
SARS-CoV-2 structural components acting as a viroporin and
a virulence factor proposed to affect assembly, budding and
envelope formation (29). Other than assisting virus replication,
the E protein was also observed to interfere with the control
of cell polarity and cell-cell junction integrity in epithelial cells.
For both SARS-CoV and SARS-CoV-2, the E protein was shown
to bind PALS1 PDZ domain, via the C-terminal DLLV motif
(281–283). PALS1 is part of the CRUMBS3-PALS1-PATJ polarity
complex, which is crucial for the establishment and maintenance
of epithelial polarity. Accordingly, in cells infected with SARS-
CoV, PALS1 was shown to relocalize to virus assembly sites
resulting in the disruption of tight junctions. Disruption of tight
junctions could also be the result of an interaction between
the C-terminal domain of SARS-CoV-2 E protein and the PDZ
domain of Zona Occludens-1 (ZO1), known for its pivotal role in
tight junction formation (283). At the same time, the E protein
was shown to also cause disruption of adherens junctions by
impairing E-cadherin cell surface delivery (281, 282, 284). The
impairment of both types of junctions could therefore explain
the alveolar desquamation observed in SARS-CoV infection and
the disruption of the epithelial barrier eventually favoring viral
dissemination through systemic circulation and the amplification
of the inflammatory response (281). Based on the genomic
differences with SARS-CoV, a stronger interaction with PALS1
was predicted in silico based on two polymorphic residues at the

C-terminus domain, postulating a crucial pathogenic role of the E
protein of SARS-CoV-2 (282). Accordingly, the complex between
SARS-CoV-2 E protein and PALS1 was characterized by cryo-EM
indicating a possible target for novel peptide and small molecule
inhibitors (285).

Virus Interaction With Cellular Innate
Immunity
Upon infection, SARS-CoV-2 pathogen associated molecular
patterns (PAMPs) can be recognized by several host pathogen
recognition receptors (PRR), predominantly including Toll-
like receptors (TLRs), retinoic-acid inducible gene I (RIG-I)
and melanoma differentiation-associated 5 (MDA-5). Receptors
intercepting SARS-CoV-2 can be found either in the endosomal
compartment, where TLR-7 and TLR-8 can recognize the ssRNA
viral genome, or in the cytoplasm, where RIG-I and MDA-5
initiate a signaling cascade in response to the ssRNA genome
and the replication-intermediate dsRNA, respectively (Figure 9).
RIG-I and MDA-5 signal through the same cascade: upon
target RNA recognition, the CARD domain of these sensors
recruit E3 ligases (TRIM25 and Riplet) that form a K63-linked
polyubiquitin scaffold, allowing RIG-I and MDA-5 to interact
with mitochondrial antiviral signaling protein (MAVS) on the
outer mitochondrial membrane and form MAVS aggregates.
These aggregates will in turn recruit TRAF family E3 ubiquitin
ligases, which form new K63-linked polyubiquitin that activate
TANK binding kinase 1 (TBK1) and interferon regulatory
factor 3 (IRF3), eventually leading to the production of type
1 interferons (IFNα/β) and activation of NF-κB [for a review
see (286)].

Interferon production is pivotal for the induction of an
antiviral state and the activation of adaptive immunity in both the
infected cell and the surrounding cells, as it has both autocrine
and paracrine effects. Interferon molecules, upon binding to
their corresponding receptors IFNAR1/IFNAR2 on cells surfaces,
activate a signaling cascade mediated by the Janus kinase 1
(JAK1), Tyrosine kinase 2 (TYK2) and signal transducer and
activator of transcription (STAT1 and STAT2) (213). Upon
phosphorylation, these mediators undergo dimerization and
nuclear translocation, ultimately leading to the activation of
several IFN-stimulated genes (ISGs) and contributing to the
establishment of the antiviral state (287).

SARS-CoV-2 Interaction With the RIG-I Signaling

Pathway
Several SARS-CoV-2 proteins have been shown to inhibit IFN-
β promoter activation (54). Screening evidence reports that 11
viral proteins, both structural and non-structural, can antagonize
the RNA-dependent IFN-β induction by targeting different
components of the intracellular antiviral response triggered
by RIG-I.

SARS-CoV-2 ORF9b was shown to localize on mitochondrial
membrane and elicit the suppression of type I IFN response
through association with TOM70, one of RIG-I mitochondrial
interacting proteins besides MAVS, TRAF3 and TRAF6 (288)
(Figure 9). In particular, upon viral RNA recognition, TOM70
mediates the interaction between MAVS and Hsp90-bound
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FIGURE 9 | Interactions of SARS-CoV-2 with cellular components of the immune system. Left: SARS-CoV-2 triggers several mechanisms that hinder type 1

interferon production by preventing both viral RNA detection and activity of the IRF3 transcription factor. ORF9b interacts with TOM70 on the mitochondrial surface

and prevents K63-polyubiquitination of NEMO. The M protein prevents MAVS aggregation and interaction with downstream proteins. Nsp13 blocks TBK1

phosphorylation by inhibiting its interaction with MAVS, while Nsp6 binds TBK1, and N protein prevents IRF3 phosphorylation. Nsp5, Nsp12, Nsp14, Nsp15, ORF6,

ORF8, and N are reported to impair nuclear localization of phosphorylated IRF3. Right: Mechanisms that impair the response to type I interferons: Nsp14 induces

lysosomal degradation of type 1 IFN receptor. Nsp6, Nsp13, ORF3a, ORF7a, ORF7b, and N prevent STAT1 and STAT2 phosphorylation. ORF6 and N protein hamper

phosphorylated STATs nuclear translocation. In addition, Nsp10 and Nsp16 are responsible for 2’O-methylation of viral mRNA cap, limiting IFITs activation and

translation.

TBK1 and IRF3 (289). ORF9b can prevent the interaction of
TOM70 with Hsp90, thus impairing this signaling pathway.
The residues found to be crucial for the interaction between
TOM70 and ORF9b are TOM70 E477 and ORF9b S53, and
the interaction is facilitated by the binding between TOM70
R192 and the ORF9b EEVD motif (74). Since SARS-CoV-2 is
detected mainly by RIG-I (76), the inactivation of this pathway
strongly affects the host immune response. Consequently, the
development of molecules inhibiting the interaction between
ORF9b and TOM70 represents a possible therapeutic approach.
Besides interacting with TOM70, ORF9b interrupts the K63-
linked polyubiquitination of NEMO, hence preventing IKK
activation and IKKβ phosphorylation, ultimately blocking NF-κB
activation (76). In addition, ORF9b has been suggested to act at
the convergence point among the RIG-I/MDA-5-MAVS, TLR3-
TRIF, cGAS-STING pathways, that is TBK1, and inhibit them
all. This protein also interacts with STING preventing TBK1

phosphorylation and TRIF interaction with TBK1. The presence
of anti-cGAS-STING pathway proteins in SARS-CoV-2, despite
it being an RNA virus, suggests that this pathway is involved in
SARS-CoV-2 clearance (75).

Recent results also suggested that the M protein inhibits the
RIG-I mediated antiviral response by interacting with the MAVS
modulator. Mechanistically, the M protein impairs the MAVS
aggregation in particular by disrupting MAVS self-association
and its association with SNX8, thus altering the recruitment of
downstream TRAF3, TBK1, and IRF3 which are required for an
efficient innate antiviral response (31).

Additional proteins interfere with IFN-β induction by
interacting with TBK1, which is essential for the phosphorylation
and subsequent activation of IRF3. Indeed, Nsp6 has been shown
to reduce the activity of genes driven by the IFN-β promoter
in vitro (44) by binding TBK1 and reducing phosphorylation of
IRF3. Interestingly, the naturally occurring L37Fmutation of this
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protein is associated with amilder outcome of the infection (290),
although the impact of this mutation on RIG-I signaling has not
yet been directly documented.

Nsp13, the SARS-CoV-2 helicase, is another inhibitor of
the type I IFN response (54). Nsp13 binds and blocks TBK1
phosphorylation, thus resulting in decreased IRF3 activation and
IFN-β production. Recent results suggest that Nsp13 suppresses
type I IFN production by disrupting the association of TBK1
with MAVS (52). Furthermore, Nsp13 hijacks the deubiquitinase
USP13, which deubiquitinates and therefore stabilizes Nsp13.
Interestingly, knockout of USP13 or treatment with USP13
inhibitor mitigates the Nsp13 inhibition of type I IFN response
and suppresses viral replication. Therefore, USP13 inhibitors
could be used to suppress virus replication by targeting Nsp13
for degradation (52).

Several proteins have been shown to impair either
phosphorylation or nuclear translocation of IRF3. Nsp5
counteracts RNA-dependent IFN-β induction by acting
downstream of IRF3 cytoplasmic phosphorylation mediated
by TBK1 and IKKε. Indeed, Nsp5 was shown to impair the
nuclear localization of phosphorylated IRF3 rather than its
stabilization or phosphorylation (42). Nsp12, an RNA dependent
RNA polymerase, was also reported to inhibit the IFN signaling
(54), by suppressing the nuclear translocation of IRF3 which
is essential for the promotion of production of IFN-α/β. The
mechanism was shown to be independent from its polymerase
activity (50), though results from a recent report confuted this
activity (291). Nsp14 and Nsp15 have also been reported to block
IRF3 nuclear translocation (57), SARS-CoV-2 Nsp15 being less
potent in counteracting both IFN-β induction and signaling
than the SARS-CoV analog, perhaps contributing to the more
favorable clinical outcome of SARS-CoV-2 (292).

ORF6 and ORF8 are also reported to inhibit the nuclear
translocation of IRF3. Two of the genotypes of ORF8, ORF8L,
and ORF8S, were shown to be capable of down-regulating
IFN-β, interferon-stimulated genes (ISGs) ISG15 and ISG56
production, and impaired IRF3 nuclear translocation in response
to poly (I:C). This down-regulating effect was found at the level
of both protein abundance and mRNA levels, but it remains
unclear whether SARS-CoV-2 ORF8 physically interacts with
transcription factors involved in IFN-β regulation (71). The
ability of ORF6 to inhibit IRF3 nuclear translocation is conserved
between SARS-CoV-1 and SARS-CoV-2, depending on the
sequence DEEQPMEID found at its C-terminus, which could
indicate another possible therapeutic target for anti-COVID-19
therapy (54).

Finally, the N protein co-localizes with RIG-I by
interacting with its DExD/H domain and, with still undefined
mechanisms, impairs both IRF3 phosphorylation and nuclear
translocation rather than IRF3 production, thus impacting IFN-β
production (293).

SARS-CoV-2 Interaction With Interferon Signaling
Interferon signaling is inhibited in host cells by a number of
SARS-CoV-2 proteins that generally modulate STAT1 or STAT2
phosphorylation, thus preventing their nuclear translocation
(Figure 9). So far, the viral proteins that have been reported to

have such activity include N, ORF3a, ORF6, ORF7 (including
both ORF7a and ORF7b), Nsp6, Nsp13, and Nsp14. The
nucleocapsid (N) protein antagonizes IFN-I signaling by
preventing STAT1 and STAT2 phosphorylation and interfering
with the interaction of STAT1 with JAK1 and of STAT2 with
TYK2, suggesting a competitive binding to STAT molecules with
the respective downstream kinases. In addition, the interaction
between SARS-CoV-2N and STAT1/STAT2 prevents their IFN-
induced nuclear translocation. The N-terminal 361 amino acids
of N were found to be sufficient for its activity, including
cytoplasmic localization, suppression of phosphorylation and
interaction with STAT1/STAT2 (25).

ORF6 exerts its immune escape activity by inhibiting both
IRF3 activation and STAT1 nuclear translocation. Nuclear
translocation of STAT proteins is known to occur upon
their phosphorylation and dimerization and to depend on
the activity of the KPNA1-KPNB1 complex, which docks the
import complex to the nuclear pore complex (NPC) (294).
The formation of an ORF6-Nup98-Rae1 complex leads to
the inability of the cargo-KPNA1-KPNB1 complex to dock
at the NPC, and thus promotes cytoplasmic accumulation
of phosphorylated STATs (68). ORF7a marginally inhibits
STAT1 phosphorylation, while the effect of ORF7a and ORF7b
on STAT2 is more pronounced and ORF7b is active also
against STAT1 (44). Further analysis found the phosphorylation
antagonizing effect of ORF7a to be mediated and enhanced
by K63-linked polyubiquitin chains at lysine 119 (52). ORF3a
contributes to the inhibition of STAT1 phosphorylation and
marginally suppresses STAT2 phosphorylation (44). Nsp6 and
Nsp13 act similarly on interferon signaling by suppressing
STAT1 and STAT2 phosphorylation. Instead, Nsp14 acts
upstream of STAT1 and STAT2 phosphorylation by inducing
the lysosomal degradation of the type I IFN receptor IFNAR1,
thus preventing the activation of STAT1 and STAT2 transcription
factors (295).

SARS-CoV-2 Suppression of the Inflammasome and

Pyroptosis
Pyroptosis has been determined to play a critical role in
establishing an early antiviral response. The process is dependent
on the activation of the inflammasome, a multiprotein complex
consisting of pro-caspase-1, ASC and inflammasome nucleators
such as NOD-like receptors (NLRs), AIM2 and pyrin. Of the
many NLRs described so far, NLRP3 is strongly induced by viral
infection, thus leading to inflammasome formation (296). NLRP3
inflammasome activation leads to pro-caspase-1 auto-cleavage
and generation of active caspase-1 that, in turn, will process
pro-IL-1β and pro-IL-18 into IL-1β, and IL-18, respectively.
The secretion of these cytokines is pivotal for the recruitment
of effector immune cells to the site of infection and for the
establishment of an adaptive immune response. In addition to
the processing of pro-IL-1β and pro-IL-18, active caspase-1 also
cleaves Gasdermin D (GSDMD) (296), releasing a N-terminus
fragment which interacts withmembrane lipids for the formation
of transmembrane pores, that cause the release of cytokines
and danger signals and ultimately lead to cell death (297).
SARS-CoV-2 nucleocapsid protein can interact with GSDMD
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FIGURE 10 | Additional mechanisms for immune evasion. Left: impairment of pyroptosis. The interaction of the N protein with the linker peptide of GSDMD prevents

cleavage of GSDMD by inflammasome-activated caspase-1, thus preventing N-GSDMD from assembling pores in the cell membrane and triggering pyroptosis.

Center: impairment of Stress Granules. Binding of N protein to G3BP1 prevents G3BP1 interaction with other stress granules proteins, hampering formation of new

stress granules and disassembling those already formed. Right: MHC-I degradation. SARS-CoV-2 ORF8 induces MHC-I lysosomal degradation, thus reducing

antigen presentation on host cells.

and prevent caspase-1-mediated cleavage (Figure 10). Because
NLRP3 inflammasome formation is unaffected by SARS-CoV-
2 nucleocapsid protein, the natural consequence of GSDMD
protection is the intracellular accumulation of IL-1β and IL-18
that cannot be released. This mechanism could therefore delay
the initial antiviral response and contribute to the asymptomatic
phase of COVID-19 infection (298). Opposing this evidence,
multiple studies have in contrast shown that the inflammasome
is activated in COVID-19 patients, linking this activation to a
more severe disease (299–301). It was proposed that this can
trigger a feedback loop of IL-1β signaling that also induces
interleukin-6 (IL-6) production [reviewed in (302)]. Since high
levels of IL-6 are found in severe COVID-19 cases, this step may
provide a crucial contribution to the cytokine storm observed in
patients (303).

Other Interactions Contributing to Immune Evasion

by SARS-CoV-2
Besides the mechanisms employed by SARS-CoV-2 to evade
the action of the innate immune system, SARS-CoV-2 adopts
additional strategies to escape the multifaceted immunity of
infected cells (Figure 10). As we have described earlier, SARS-
CoV-2 non-structural protein 1 (Nsp1) binds to the 40S subunit
of the ribosome and shuts off host RNA translation (304),
a mechanism that was also observed in other coronaviruses
including SARS-CoV [reviewed in (214, 305)], and which limits
the ability of the host cells to express antiviral activities.

An additional mechanism is provided by Nsp16, which has
been identified to be responsible for viral mRNA cap 2’O-
methylation in other coronaviruses (306). 2’O-methylation of
mRNA cap allows viruses to avoid restriction by IFN-induced
proteins with tetratricopeptide repeats (IFIT) by mimicking the
structure and post-transcriptional modifications of endogenous,
eukaryotic mRNA (307). Nsp10 has been observed to associate
with Nsp16 and to be required to achieve mRNA capmethylation
in SARS-CoV (308). The same complex with the same
methyltransferase activity is found in SARS-CoV-2 (309).

Nsp15 was shown to inhibit autophagy induction (295), while
the N protein prevents the inhibition of viral mRNA translation.
Accordingly, one of the innate mechanisms employed by
eukaryotic cells to hamper viral infection is based on the
formation of stress granules (SGs), cytoplasmic mRNA-protein
aggregates. These ribonucleoprotein complexes are capable of
trapping viral mRNA [reviewed in (310)], thus limiting their
translation. Most viruses have evolved mechanisms to escape
this inhibition by prevention of SG formation [reviewed in
(305)], and SARS-CoV-2 makes no exception. SARS-COV-2N
protein was found to bind the core protein of SGs Ras-GTPase
activating SH3-domain-binding-protein 1/2 (G3BP1/2) (262,
306). By specifically binding G3BP1/2, the N protein prevents
the formation of stress granules and disassembles already formed
granules by blocking the interaction between G3BP1/2 and
other SG-related proteins, thus facilitating viral assembly. The
N protein exerts this activity via formation of liquid-liquid
phase separation (LLPS) condensates. In particular, N protein
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intrinsically disordered region 1 (IDR1) is responsible for phase
separation with G3BP1 (307). G3BP1/2 additionally functions as
a positive regulator of RIG-I and significantly improves RIG-I-
mediated IFN-β synthesis (308, 309) and of cGAS (308). Thismay
be a potential mechanism by which the SARS-CoV-2N protein
affects IFN-β via the RIG-I signaling pathway (50).

MHC-I expression seems also to be dysregulated by SARS-
CoV-2, a unique feature not shared with other SARS-CoV strains
(72). HEK cells infected with SARS-CoV-2 were observed to
decrease their MHC-I expression after infection. A similar effect
was observed in mice, where MHC-I expression in lung epithelial
cells was lower in animals with ongoing virus replication
compared to animals that had fully recovered. ORF8 was found
the most likely culprit for this process by selectively targeting
MHC-I for lysosomal degradation via autophagy, protecting cells
from cytotoxic T lymphocytes-mediated killing. Some in vitro
evidence suggests that ORF8 may have more roles in immune
evasion as previously described. Its ectopic expression has been
correlated with a reduced expression of several IFNγ-induced
antiviral molecules with different biochemical activities in lung
epithelial cells (311). Interestingly, the same group observed
that ectopic expression of ORF8 in HEK293 cells reduced the
expression of different antiviral proteins, suggesting that the
effects of ORF8 on ISGs may be cell type specific.

CONCLUSIONS

After SARS-CoV-2 emerged in 2019, the scientific community
has engaged in an unprecedented effort to elucidate the virus
replication mechanism, decipher the host immune response and
understand the immunopathogenesis caused by the infection.
Accordingly, a clearer picture of the complex pattern of
molecular interactions of SARS-CoV-2 with host cells is now
helping to prepare novel strategies for prevention and treatment.
Here we have shown how in <2 years researchers have produced
3D structures revealing the fine details of the interaction
between viral proteins and host factors, obtained exhaustive
proteomics, transcriptomics, and interactomics profiles which
have mapped the intricate interplay of the virus with the cells,
and identified novel host factors crucial for the outcome of
the infection. All this would not have been possible in such a
short period of time without the prior knowledge built after

years of coronavirus research triggered by previous outbreaks
and epidemics, especially those involving SARS-CoV andMERS-
CoV. However, some aspects of the interaction between the virus
and the host cell require an improved understanding to unveil
the mechanisms supporting virus replication and identify novel
viral inhibitors.

The precise understanding of SARS-CoV-2 entry pathways
remain essential to identify new antiviral targets, which together
with neutralizing antibodies could prevent infection of the
host cell. Moreover, a key early event that deserves further
investigation is the specific host translation inhibition by
Nsp1, an activity which could reveal a crucial Achille’s heel
of the virus. In general, much mystery still surrounds some
ORFs and Nsps of SARS-CoV-2, which are likely to play
important roles in regulating cellular pathways and in tuning
the cellular environment for optimal virus replication while
avoiding immunity. This is for example the case of ORF3a
and its effect on the apoptotic machinery. Indeed, blocking this
viral protein could re-establish the defective autophagosome-
lysosome fusion of infected cells, thereby preventing formation
of DMVs and favoring recognition by the immune system. At
the same time, the mechanism of viral exit from the infected
cell remains uncertain and insights on this step of the infectious
cycle are pivotal to understand how spreading of the virus in
the host can be inhibited, possibly leading to the development
of new drugs.

In conclusion, while the pandemic is slowing down thanks
to the global administration of vaccines, the research should
continue in order to fully understand the mechanisms of SARS-
CoV-2 interaction with the cell, providing results that can be
translated into treatments and preparing the world for future
viral outbreaks.
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