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The host tRNA
epitranscriptome: A new
player in RNA virus infections

Marc Talló-Parra, Elena Muscolino and Juana Dı́ez*

Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra,
Barcelona, Spain
Viruses completely depend on the host translation machineries to express the

viral proteins. Recent data reveal an unprecedented interaction of positive

strand RNA ((+)RNA) viruses with the host tRNA epitranscriptome to favor viral

protein expression via a specific reprogramming of codon optimality that

ultimately favors decoding of the viral codons. We propose that this feature

is shared by multiple RNA viruses and that the involved tRNA modifying

enzymes represent promising novel targets for the development of broad-

spectrum antivirals.
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Introduction

All steps of viral life cycles require factors from the host they infect. However, unlike

replication and transcription where viral proteins direct these functions, viruses

completely depend on the host translation machinery to express the viral proteins.

This dependence is particularly apparent for positive strand RNA ((+)RNA) viruses.

Since they do not carry their polymerases in the virions, upon release of their genomes

into the cytoplasm, (+)RNA viruses first need to translate their genomes to express the

viral replicases (1). To maximize viral protein expression, they display different strategies

to take control of the host translation machinery. In turn, the host reprograms this

machinery in an attempt to repress virus infection in an ever-evolving race to gain

control of it (2). The translation process requires three major steps: initiation, in which

the ribosomes are recruited to the initiation codon; elongation, in which the amino acids

are brought to the ribosomes by transfer RNAs (tRNAs) and linked together to form a

chain; and termination, in which the finished polypeptide is released. Most of our

knowledge on the strategies used by (+)RNA viruses to efficiently translate their genomes

relate to events affecting the translation initiation step. The involvement of the other steps

of the translation process has been almost unexplored. We have recently uncovered an

unprecedented interplay of (+)RNA viruses with the host tRNA epitranscriptome to
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favor translation elongation of the viral RNA genomes to

maximize viral protein expression (3). These results place the

tRNA epitranscriptome as a novel key regulatory point of (+)

RNA virus infections. tRNAs are adapter molecules of the

translation machinery that convert the transcriptome into the

proteome. They carry specific amino acids to the ribosome

according to complementary base pairing between positions

34, 35 and 36 of their anticodon and positions 3, 2 and 1,

respectively, of the codon in mRNAs (4) (Figures 1, 2). tRNAs

are heavily modified with a plethora of chemical modifications

that comprise from simple addition or substitution of functional

groups to complex structures whose biosynthesis involve

multiple enzymes (4). This set of modifications is known as

the tRNA epitranscriptome. From the around 200 modifications

described to occur in RNA molecules, half of them are present in

tRNAs (5). On average, tRNA molecules contain 13

modifications located throughout the tRNA molecule

(Figure 1) (6). This represents around 1 modification every 5

residues. The high number of chemical modifications in tRNAs

implies a major role in tRNA function. Most of the tRNA
Frontiers in Virology 02
modifications are located at the anticodon loop. For example,

in Homo sapiens 41 types of modifications are found in

cytoplasmic tRNAs, of which 29 are located at the anticodon

loop. In agreement with these variety and abundance,

modifications at the anticodon loop have been shown to play

fundamental roles in the regulation and accuracy of multiples

steps of the translation elongation process, including decoding,

aminoacylation and translocation (7). Modifications outside of

the anticodon loop affect proper tRNA folding and stability (8).

The effect of tRNAmodifications on decoding results mainly

from two hot spots of modification located at position 37 and 34.

Modifications at position 37 enhance translation fidelity

preventing frame shift events (9). Modifications at position 34

of tRNA (wobble position) increase the flexibility of base pairing

and contribute to the decoding capacity. The redundancy of the

genetic code allows amino acids to be encoded by more than one

codon. The frequency of these synonymous codons is universally

biased and specific for each organism. For a given organism, the

tRNA concentration is adapted to the codon usage. Thus,

optimal codons speed up translation rate and rare codons slow
FIGURE 1

Representation of tRNA modifications. tRNA are 70-100 nucleoside in length and fold into a cloverleaf secondary structure. The structure is
characterized by a 5’ phosphate group, a 3’ acceptor stem that contains the CCA terminal group required to attach the amino acid, the D-loop,
the TYC-loop (where Y is a pseudouridine), a Variable loop and the anticodon loop. Changes occurring in specific nucleotides of human
cytoplasmic tRNAs are indicated [as reviewed in (4)]. These modifications have fundamental roles in tRNA biology and they have been shown to
affect stability, folding, ribosome interaction, tRNA fragments (tRF) biogenesis, accurate aminoacylation, stabilizing codon-anticodon interaction,
pairing and decoding. Created with BioRender.com.
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it down because the cognate tRNAs are lowly abundant in

comparison to those tRNAs used for optimal codons (10–12).

Modifications at the wobble positions affect their base pairing

with the third position of the codon ultimately expanding or

restricting the decoding efficiency of certain synonymous

codons. Well-studied examples include the mcm5 and mcm5s2

modifications at uridine 34 (U34) of cytoplasmic tRNAs. In the

tRNA anticodon, position 35 and 36 follow the base pairing rules

defined by Watson and Crick. However, when an unmodified U

is located at position 34 (wobble U34), U recognizes both

adenine (A) and guanine (G) in the third position of the
Frontiers in Virology 03
codon. Modifications at this position might favor base pairing

with A (A-ending codons) or G (G-ending codons). For

example, the Glutamic acid (Glu) amino acid is encoded by

two synonymous codons GAA and GAG. When the U34

position of the cognate tRNA is not modified, the tRNA

decodes both GAG and GAA codons (Figure 2A). However,

when U34 is mcm5/mcm5s2 modified, the tRNA favors decoding

of the GAA codon (13, 14) (Figure 2A). The fact that U34 is

modified in practically all organisms implies a strong

evolutionary pressure and a major role in translation

regulation (15). Indeed, it is now established that tRNA
A

B

FIGURE 2

Modifications in the wobble uridine changes the reading. (A) In the anticodon of a tRNA coding for Glu (GAG/A), unmodified U34 base pairs with
G or A in the third position of the mRNA codon (left). Following modifications promoted by KIAA1456 or ALKBH8 enzymes, U34 is favored to
pair with an A (right). (B) Working model: the host tRNA pool is enriched toward host mRNAs containing optimal codons, while the CHIKV
genome is enriched in suboptimal codons. CHIKV infection triggers a DNA damage response that promotes the expression of the tRNA-
modifying enzyme KIAA1456. This ultimately results in a reprogramming of codon optimality that favors translation of suboptimal codons,
enriched in both the host mRNAs encoding DNA damage response genes and the CHIKV RNAs. Created with BioRender.com.
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modifications are highly dynamic and their prevalence varies in

response to levels of cellular metabolite and environmental

stresses (4, 16). Moreover, global analyses have demonstrated a

coordinated interplay between changes in the modifications of

the wobble position, including U34, and selective translation of

stress-dependent gene expression enriched in synonymous

codons which decoding is favored by the induced

modifications [reviewed in (16)]. Together, this indicates a

coordinated interplay between the tRNA epitranscriptome and

the codon bias to adapt translation during stress responses (17).

The genomes of numerous and diverse (+)RNA viruses,

including SARS-CoV-2, dengue (DENV), zika (ZIKV) or

chikungunya (CHIKV) viruses, are enriched in rare codons.

While highly expressed human mRNAs are enriched in G/C-

ending codons, the genome of multiple (+)RNA viruses is

enriched in A/U-ending codons (17). How (+)RNA genomes

are able to express their proteins so efficiently in spite of their

unfavorable codon usage? To address this fundamental question,

we use CHIKV as a model system because its genome is translated

to extremely high levels. Genome-wide transcriptome and

translatome analyses together with fractionation studies showed

that CHIKV infection dramatically alters the host mRNA

translatome at the endoplasmic reticulum, the translation

compartment where CHIKV efficiently translates, while few

significant changes were observed at the cytosol, the other

major cellular translational compartment (3). The set of

translationally repressed host mRNAs were enriched for genes

related to mitochondria, ribosomes and RNA translation. The set

of translationally activated host mRNAs were enriched for genes

related to DNA damage response, cell cycle and RNA transport.

Importantly, these translationally activated mRNA, as the CHIKV

RNA, displayed a poor codon usage, mostly enriched in GAA

(Glu), AAA (Lys), CAA (Gln), AGA (Arg) and GGA (Gly)

codons. In contrast the translationally repressed mRNAs

displayed an optimal one enriched in the corresponding G-

ending synonymous codons (3). This indicates a virus-induced

reprogramming of codon optimality that favors translation of viral

RNAs. Mechanistically, it involves CHIKV-induced translational

activation of the KIAA1456 enzyme, a paralog of the ALKBH8

enzyme involved in the mcm5/mcm5s2 modifications (described

above) that favor decoding of the GAA (Glu), AAA (Lys), CAA

(Gln), AGA (Arg) and GGA (Gly) codons over the G-ending ones

(Figure 2B) (18, 19). Interestingly, the KIAA1456 mRNA is itself

enriched in these five codons, suggesting a positive feedback loop.

Importantly, DENV, whose genome is enriched in these codons,

also induces in the infected cell overexpression of the KIAA1456

enzyme and a corresponding increase in mcm5 tRNA

modification levels while hepatitis C virus, whose genome is not

enriched, does not (3). Notably, the use of KIAA1456-enzymes by

viruses seems to be conserved beyond human viruses as in

Escherichia coli the tRNALys U34 modification is required for

the phage lambda to express gpG and gpGT, two viral replication

proteins. However, in this case the tRNA modification modulates
Frontiers in Virology 04
a specific ribosomal frameshift essential for proper expression of

the gpG:gpGT radio instead of affecting global reprogramming of

codon usage (20).

The DNA damage response is a regulatory network that

detects DNA damage and mediates its repair (21). Interestingly,

in yeast, alkylation stress that cause DNA damage result in an

increase of (i) the expression of TRM9, the yeast homolog of

human ALKBH8/KIAA1456, (ii) the levels of mcm5/mcm5s2

tRNA modification and (iii) the expression of genes related to

DNA damage and cell cycle control, essential to survive

alkylation stress. These genes are enriched in GAA and AGA

codons. The similarities of these findings with the CHIKV

observations strongly suggest that CHIKV has adapted its

genome to the host translation environment under infection

conditions. CHIKV infection triggers a DNA damage response

that results in a reprogramming of codon optimality that

ultimately would favor CHIKV RNA genomes enriched in the

same codons as the DNA damage response genes. We propose

that this mechanism is shared by other (+)RNA viruses beyond

DENV and that the DNA damage response triggered by viral

infection might have played a role in the shaping of the (+)RNA

virus codon usage. This proposal is based on the next

observations. First, as CHIKV and DENV, many other (+)

RNA viruses are enriched in GAA, AAA, CAA, AGA and

GGA codons (unpublished observation). Of note, as the

genomes of some viruses outside the (+)RNA viral group are

also enriched in these codons (unpublished observation), this

mechanisms might be conserved across viral groups. Second,

growing evidence indicates a complex interplay between RNA

viruses and DNA damage responses. The activation and

manipulation of the DNA-damage response by DNA viruses

and retroviruses to optimize their replication processes is well-

studied (22–24). This activation is triggered by the incoming

viral DNA, the integration of retroviruses or in response to the

aberrant DNA structures generated upon replication of DNA

viruses among other factors. Although at present, only a few

RNA viruses have been reported to interact with the DNA

damage response, growing evidence indicates that RNA

viruses also can manipulate this pathway to their benefit (22,

24, 25). Two examples include ZIKV and Porcine Reproductive

and Respiratory Syndrome Virus (PRRSV). Two main

components of the DNA-damage response regulatory network

are the ataxia–telangiectasia mutated (ATM) and ATM Rad3-

related (ATR) kinases (26). In ZIKV infection, the induction of

the ATM signaling and corresponding S-phase arrest increases

viral replication (27). Moreover, both ATM and ATR kinases

have been described to be activated by PRRSV infection, co-

localize with the viral replication complexes and promote

replication (28). How (+)RNA viruses that replicate at the

cytosol induce the DNA-damage network remains unclear.

Putative mechanisms would include promoting inappropriate

S phase entry or direct modification or components of the DNA

damage response.
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Conclusions and remarks

Novel emerging evidence highlights the roles of tRNA

modifications in viral infections. Besides the described GAA,

AAA, CAA, AGA and GGA codons CHIKV-induced

translationally activated host mRNAs and CHIKV RNAs were

enriched in other A/U ending codons whose recognition would

depend onmodifications at the U34 position still to be identified.

Thus, it is much likely that besides KIAA1456, other tRNA

modifying enzymes play major roles in CHIKV infection. We

propose that this feature is shared by multiple RNA viruses and

that the involved tRNA modifying enzymes represent promising

novel targets for the development of broad- spectrum antivirals.

Excitingly, recent work demonstrates that the host immune

system also relies on tRNA modifications. A specific tRNA

methylation (m1A58) selectively enhances protein translation

in a codon-usage manner of a set of proteins that ultimately

drive T cell proliferation (29). Together, these findings represent

the starting study point of a previously unappreciated tRNA

epitranscriptome-virus-immune system regulatory network that

is awaiting to be deciphered and will provide novel opportunities

for therapeutic interventions.

The tRNA epitranscriptome is a growing field whose

complexity presents major challenges. First, to elucidate the

tRNA expression patterns in the different tissues and cell

types. The human genome contains around 400 genes,

including isodecoders and isoacceptors (tRNA genes that share

the same anticodon but have different body sequences and vice

versa, respectively) that are not all transcribed in the same cell

and whose expression is cell-specific. Although major advances

have been made in the tRNA sequencing methods (30–32), to

obtain and analyze a complete tRNA profile remains challenging

in comparison with RNAseq. Second, to complete the mapping

of tRNA modifications and the assignment of their roles. The

diversity, dynamic nature and low abundance of some

modifications are major challenges for their identification.

Next-generation sequence (NGS), mass-spectrometry and

nanopore-based detection are the main techniques towards the

characterization of RNA modifications. However, the current

methods have many limitations (31, 33). Moreover, only around

50% of tRNA modifying enzymes have been experimentally

validated. This hampers the study of the function of many

tRNA modifications. Thus, there is much fundamental biology

of the tRNA epitranscriptome still to be learnt. Viruses are

powerful tools to uncover cellular processes. Indeed, virus
Frontiers in Virology 05
research has identified fundamental translation features such

as capping, polyadenylation or splicing. We thus expect that the

encounter of the virology and the tRNA epitranscriptome fields

will help revealing new insights not only into viral infections and

their control but also into tRNA biology.
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Excelencia Marıá de Maeztu” funded by the AEI (CEX2018-

000792-M).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Ahlquist P. Parallels among positive-strand RNA viruses, reverse-
transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol (2006)
4(5):371–82. doi: 10.1038/nrmicro1389
2. Hoang HD, Neault S, Pelin A, Alain T. Emerging translation strategies during
virus–host interaction.Wiley Interdiscip Rev RNA (2021) 12(1):1–19. doi: 10.1002/
wrna.1619
frontiersin.org

https://doi.org/10.1038/nrmicro1389
https://doi.org/10.1002/wrna.1619
https://doi.org/10.1002/wrna.1619
https://doi.org/10.3389/fviro.2022.1073619
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
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