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Although the placenta has robust defense mechanisms that protect the fetus

from a viral infection, some viruses can manipulate or evade these mechanisms

and disrupt physiology or cross the placental barrier. It is well established that

the Zika virus is capable of vertical transmission from mother to fetus and can

cause malformation of the fetal central nervous system (i.e., microcephaly), as

well as Guillain-Barre syndrome in adults. This review seeks to gather and

assess the contributions of translational research associated with Zika virus

infection, including maternal-fetal vertical transmission of the virus. Nearly 200

inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic

properties against the Zika virus are summarized in this review. We also review

the status of current vaccine candidates. Our main objective is to provide

clinically relevant information that can guide future research directions and

strategies for optimized treatment and preventive care of infections caused by

Zika virus or similar pathogens.

KEYWORDS
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Introduction

The Zika virus (ZIKV) was first isolated from a rhesus monkey in 1947 in the Zika

forest during the surveillance of yellow fever disease in Uganda. Only 14 human cases of

ZIKV had been confirmed prior to 2007, when 49 confirmed cases and 59 probable cases

of infection occurred in the Yap Islands of the Federated States of Micronesia, marking
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the first known ZIKV outbreak (1, 2). Larger outbreaks followed

in French Polynesia (3, 4) and elsewhere in the Pacific (5),

eventually reaching Brazil by 2015 (6, 7). In early December of

2015, the Pan American Health Organization (PAHO) and the

World Health Organization (WHO) reported a possible

association between ZIKV infection and sudden increase in

microcephaly and Guillain-Barre syndrome cases (8), leading

the WHO to declare a Public Health Emergency of International

Concern (PHEIC) for ZIKV in 2016 (9). An estimated 700,000

individuals in the Americas were infected with ZIKV by 2016.

Although the ZIKV epidemic has since subsided, the virus

continues to circulate in the Americas and other regions of the

world (10, 11). As of 2019, active transmission has been reported

globally in 87 countries and territories (12). And in 2021, an

outbreak of at least 231 cases was reported in a region of

southwest India where ZIKV had not been seen previously

(13, 14).

Transmission of ZIKV occurs primarily through Aedes

mosquitoes that are native to Asia and Africa but have spread

globally (15, 16). ZIKV is the first flavivirus known to be

transmitted from human to human through sex (17–20) and

transmission has also been documented through blood

transfusion (21–24). Evidence of vertical transmission of the

ZIKV from mother to fetus across the placental barrier was first

reported in French Polynesia cases from 2013-14 (25).

Additional evidence established this as a mode of transmission

emerged during the Brazil epidemic of 2015-16, as the presence

of ZIKV antigen and RNA was identified in placental tissue and

amniotic fluids of women infected with the virus and also in the

brain tissue from fetuses and newborn babies with microcephaly

(who were deceased following birth) (26–29).

These events highlight the additional risks that pregnant

women face when infected with a pathogen due to outcomes that

may affect the health of the fetus. Birth defects, congenital

disabilities, and a host of other serious complications have

been associated with infections of several pathogens during

pregnancy (30, 31). Although the placenta is a remarkably

sophisticated barrier that protects the fetus during most

maternal infections, some pathogens can cross the placental

barrier and reach the fetus by evading or manipulating placental

defense mechanisms. Such pathogens, including toxoplasma

gondii, rubella virus, cytomegalovirus (CMV), and herpes

simplex virus (commonly referred to as TORCH pathogens in

clinics), can result in vertical transmission from mother to the

fetus (32). These perinatal infections contribute to 2-3% of

the overall congenital anomalies, including disabilities of the

neurological or cardiovascular system and, in some cases, even

the death of the fetus (33). Because it is now established that

ZIKV infection during pregnancy is associated with

malformation of the fetal central nervous system and can

result in microcephaly (34), it has been reasonably suggested
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that the ZIKV be added to the group of TORCH pathogens that

are designated to be of significant concern to pregnant

women (35).
ZIKV-Induced microcephaly and
associated mechanisms

The placenta acts as a protective barrier against most

pathogens. However during a ZIKV infection, it can instead

serve as a mediator for the transmission of the virus frommother

to fetus. The virus can cause damage to the human placenta

during infection, leading to a condition known as chronic

placentitis (28), in which the virus targets macrophages (36)

and trophoblast cells (37). Findings from mouse model

experiments suggest that infection during pregnancy via a

subcutaneous route causes damage to the placenta and fetal

demise (38) via an intravenous route that restricts intrauterine

growth and via intraperitoneal injection that leads the infection

to the fetal brain (39). Infection also induces apoptosis of the

trophoblast cells and vascular damage that disrupts the placental

barrier allowing the direct passage of ZIKV to the fetus (38).

ZIKV replicates in the host by overcoming the interferon (IFN)-

mediated host immune response that induces the degradation of

the interferon-regulated transcriptional activator STAT2 (40,

41), leading to impairment of IFN induction and downstream

IFN stimulated genes (41).

Previously, microcephaly and other neurological

abnormalities have been associated with maternal-fetal vertical

transmission of TORCH-designated pathogens, including CMV,

the rubella virus, and herpes simplex virus (35). Association of

Guillain-Barre syndrome with ZIKV was first reported in 2013-

2014 during the French Polynesia outbreak (4, 42). Following the

continued spread of ZIKV in Brazil and nearby territories (6,

43), an increase was observed in newborn cases of microcephaly,

and association of these cases with ZIKV was suspected due to

the documented presence of the virus in amniotic fluids and fetal

tissues (34, 44). In 2016, the United States Centers for Disease

Control and Prevention (CDC) reported that ~10% (24/250) of

pregnancies with laboratory-confirmed ZIKV infection in the

U.S. resulted in a fetus or newborn with infection-related birth

defects (45).

Microcephaly can generally be classified as either congenital

(present from birth) or postnatal (developed in the first two

years) (46–49). Congenital microcephaly can result from

aggressive environmental factors during intrauterine brain

development, including the vertical transmission of viral

infections, exposure to toxic substances or radiation, or

nutritional deficiency (46, 47, 50). Biological factors such as

chromosomal abnormalities and the impairment of a specific

gene’s expression also influence the development of congenital
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microcephaly (48, 51–53). Postnatal microcephaly is an acquired

condition that can result from external environmental factors

such as brain injury, encephalitis, hemorrhage, and

malnutrition, or may also occur as the result of several genetic

disorders that affect brain development (46, 49).

After ZIKV-associated microcephaly was first reported in

Brazil in 2016, further investigation established the tropism of

the virus to human neural precursor cells (NPCs) and found

evidence that the virus induces apoptosis, cell cycle perturbation,

and defects in the differentiation process in the developing

nervous system (54–57). Studies using a modeled culture

system for blood-brain barrier (BBB) in adult mice revealed

that ZIKV could penetrate the BBB, although the complete

mechanism is unclear (58, 59). In microcephaly-associated

tissues , many genes have been identified that are

downregulated during ZIKV infection (55, 60, 61). ZIKV

infection perturbs the cell cycle that regulates these genes,

which decreases their expression levels (54, 60). Many of these

genes encode proteins that are localized at the centrosome and

have essential roles in cell cycle regulation (62), suggesting a

molecular level mechanistic association between ZIKV infection

and the progression of microcephaly. The cell cycle

dysregulation caused by ZIKV can also lead to impaired

neurogenesis (63). The in vitro experimental evidence suggests

that this impaired neurogenesis might be due to impaired gene

expression and mitosis (64, 65). The mitotic dysfunction

increases the chance of cell cycle defects, chromosomal

abnormalities, impaired NPC proliferation, and even cell death

(65, 66).

Cell death contributes to ZIKV-induced microcephaly

detected in the infected human fetal brains (26, 34).

Experimental evidence in ZIKV-infected human NPCs reveals

that the genes associated with apoptosis-related pathways are

upregulated (60, 61). ZIKV-induced apoptosis may also be due

to the activation of the immune response, leading to the

upregulation of viral response genes associated with toll-like

receptor (TLR) signaling, IFN signaling, and TNFa signaling

pathways (61). In addition to the damage to the NPC, ZIKV

infection can also cause axonal damage, gliosis, calcifications in

the cortical plate, and microglial nodules, contributing to

microcephaly phenotypes (26, 29, 34). Glial cells, microglia,

and astrocytes are reported to be the primary targets of ZIKV

infection (28, 67–69). Strikingly, ZIKV entry of ZIKV into glial

cells is facilitated by AXL receptor expressed on the cell surface

(68), resulting in the activation of AXL kinase activity, which

further induces oxidative stress and triggers the innate immune

response and inflammation, and upregulates the expression of

TLRs, RIGI-like receptor (RLR) and NOD-like receptors (NLRs)

(67, 68, 70). In contrast, imbalanced inflammation is associated

with microcephaly and other neurological abnormalities related

(and unrelated) to ZIKV infection (71–74). Thus, anti-

inflammatory drugs might help reduce the neurological

complications that arise in congenital Zika syndrome (75, 76).
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Structure, function, and genome

ZIKV structure

The Flaviviridae family includes ZIKV, which shares many

physical characteristics with other flaviviruses such as the dengue

virus (DENV) and West Nile virus (WNV). The flavivirus particle

exists as an immature non-infectious particle and a mature

infectious particle (77). Initially, the virus particle assembles at the

endoplasmic reticulum in its “spiky” non-infectious state.

Afterward, the maturation of the virus particle occurs in the late

Golgi, where low pH-mediated conformational changes take place

in the viral surface glycoproteins, and the host furin protease cleaves

the precursor membrane (prM) protein into the pr peptide and

mature membrane (M) protein. The mature flavivirus surface

comprises 180 copies each of envelope (E) and membrane (M)

proteins, which exist as E-M heterodimers arranged in icosahedral

symmetry. The E protein consists of domains I, II, and III and stem

transmembrane domains (78). The M protein has a loop at the N

terminus, stem, and transmembrane regions (79). The prM cleavage

exposes the fusion loop on the E protein, which mediates the

endosomal fusion at low pH during entry (80). ZIKV RNA is

synthesized within the virus-induced replication vesicles derived

from the modified endoplasmic reticulum of the host (78, 81, 82).

The first cryo-EM solved structure for a mature ZIKV (H/

PF/2013 strain) at 37 °C was reported with an atomic resolution

of 3.8 Å in 2016 (PDB ID: 5IRE) (79). A thermally stable virus

structure was reported later the same year with a resolution of

3.7 Å at 40 °C (PDB ID: 5IZ7) (78). The surface structure has

glycosylation at Asn154 on the E protein. The E protein

arrangement exhibits a characteristic herringbone pattern of

the flavivirus surface with 90 envelope-membrane protein (E-

M)2 dimeric heterodimers (83, 84), including one (E-M)2
dimeric heterodimer positioned on each of the 30 vertices and

60 (E-M)2 dimeric heterodimers generally positioned within the

icosahedral symmetry (79).

The cryo-EM structure of an immature ZIKV was reported

in 2017 with 9 Å resolution (PDB ID: 5U4W), and the map

showed the expected (85) spiky surface appearance resulting

from the formation of 60 trimeric heterodimer “spikes” of the E

and precursor M proteins (E-prM) (86). This trimeric form is

held together at its tip via interaction between the pr domain of

prM and the fusion loop of E proteins. The base of the prM-E

spike is stabilized by the interaction between the amino acid

residue of the EIII domain of E protein in one spike and EII

domain of E protein from an adjacent spike (86).
ZIKV-host interactions

Since the identification of the ZIKV in 1947 and the isolation

of the MR766 prototype strain, many additional strains have
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been identified with sequence and structural changes (87, 88).

Some of these changes may have contributed to the evolution of

increased virulence in the ZIKV strains that have caused a series

of more recent epidemics in many territories and countries

(2007-2016) (88). The various modes of ZIKV transmission so

far reported indicate that the virus has broad tissue tropism, and

reports confirming the presence of infectious ZIKV particles in

various human tissue and body fluids (89) provide supporting

evidence of that. ZIKV enters the multiple host cell types via

initial interaction of its envelope glycoprotein with various cell

surface receptors shown to facilitate ZIKV entry (90). These

receptors include AXL, TYRO3, DC-SIGN, and TIM1, where

AXL is found to be the key receptor that plays the most

significant role (91). The TAM ligand Gas6 acts as a cofactor

to recruit the ZIKV particle to the ALX receptor, and then it is

internalized by clathrin-mediated endocytosis (68). Afterward,

the endocytic vesicles containing ZIKV move to the endosomes

where transcription of several cellular genes is induced, such as

DDX58, IFIH1, TLR3, and IFN stimulating genes. This results in

suppression of the immune response and enhanced infection

(68, 69, 91).
Genome and polyprotein

The ZIKV genome is ~10.7 kb positive-sense single-stranded

RNA released into the cytoplasm of host cells after the E protein-

mediated fusion of viral membrane to the host endosomal

membrane. Then, translation of the RNA into a single

polypeptide chain occurs at the ER. This polypeptide chain

includes a sequence of all the viral proteins from the N to C

terminus as C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-

NS5. The polypeptide is further hydrolyzed by viral and host

proteases into three structural and seven non-structural

proteins. The structural proteins include the capsid (C),

precursor membrane (prM), and envelope (E), while the non-

structural proteins include NS1, NS2A, NS2B, NS3, NS4A,

NS4B, and NS5 (92, 93).

Structural proteins
X-ray crystal structures of dimeric E proteins (PDB ID:

5LBV and 5JHM) revealed that each monomer consists of three

domains DI, DII, and DIII, where DI is the central domain

linking the DII to DIII (94, 95). Domain DII includes a fusion

peptide with a conserved amino acid sequence that interacts with

the host endosomal membrane during the fusion of virus

particles. Additionally, many residues of the DII domain are

also critical in forming hydrogen bonds and electrostatic

interactions necessary for stabilizing the E protein dimers (94).

Domain DIII is involved in the primary interaction of the virus

with the host cells and includes the receptor binding site. Thus,

DIII plays a vital role in the fusion of viruses during cell entry
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(96–98). In flaviviruses, the flexible DI-DII hinge allows the

fusion loop to be exposed during fusion events. Previously it was

believed that the DI-DIII hinge is rigid, and conformational

changes occur with fusion of E protein in its trimeric state (97,

98). In 2018, an improved 3.1 Å resolution cryo-EM map of the

mature ZIKV (PDB ID: 6CO8) showed that E protein has three

b-barrel domains corresponding to DI, DII, and DIII, which are

anchored in the membrane by two transmembrane helices via

three stem helices (99). The ZIKV E DI domain consists of three

helices and nine b-strands, glycosylation on Asn154. The DII

domain has two helices and nine b-strands with a fusion loop on

residues 98-109 that is hydrophobic and highly conserved

among flaviviruses, and the DIII domain has only seven b-
strands (99).

The membrane (M) protein is divided into regions MH1,

MH2, and MH3, where MH2 and MH3 are transmembrane

helices. A loop is formed by N-terminal residues of the M

protein, which interacts with the DII domain of E protein

(99). An ordered nucleocapsid core is not detected in ZIKV or

other mature flavivirus cryo-EM maps (100, 101). However, the

9 Å resolution immature cryo-EM structure of ZIKV has

revealed a partially ordered capsid protein shell (86).

Furthermore, a more recent 8 Å resolution cryo-EM map of

immature ZIKV (102) has shown that the capsid protein

interacts with the transmembrane regions of M and E

proteins. The crystal structure of the ZIKV capsid protein

shows that it has a stable dimeric conformation with an

extended loop at the N-terminus, with a few amino acid

residues at N-terminal and C-terminal are unresolved in the

structure (103). The capsid protein plays an important role in

the maturation of the virus particles (104) and the packaging of

the genomic RNA in the virus core (103). However, the

functional mechanisms of RNA packaging and release are yet

to be explored in great detail for ZIKV or other flaviviruses.

Non-structural proteins
NS1 and NS2A: The crystal structure of NS1 shows three

domains, namely N-terminal b-roll, an epitope-rich wing, and a

C-terminal b-ladder (105). The membrane-bound NS1 forms a

homodimer which is stabilized by an interaction between b-
ladder and b-roll and secreted as a hexamer. A hydrophobic core

is formed by the b-roll and the greasy finger motif on the inner

face of the homodimer. NS1 interacts with the membrane via

this hydrophobic core. The outer face is polar, where residues at

positions 130 and 207 have been identified as glycosylation sites

(105, 106). NS1 is translocated into the ER lumen during

translation, where the host cell signal peptidase hydrolyzes the

NS1 N-terminus, and the junction between NS1 and NS2A is

cleaved by an unknown host protein. Hydrolysis of the NS1-

NS2A junction is believed to be a good target for inhibitor

development (107). Additionally, the hydrophobic core of the

NS1 is thought to be a good target due to its ability to mediate
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the interaction between NS1 and host cell lipids (108). NS1 is

secreted as a lipoprotein hexamer from host cells and interacts

with adaptive and innate immune system components. Thus, it

may modulate the host immune response and viral

pathogenesis (108).

NS1 is also involved in forming the replication complex at

the ER together with NS4A and NS4B (108), and it interacts with

the prM and E structural proteins (107). The NS2A protein plays

a central role in viral RNA replication and virion assembly,

where NS2A has been shown to orchestrate virion

morphogenesis by recruiting viral RNA, structural protein

prM and E, and the NS2B/NS3 protease to the virion assembly

site (109).

NS2B and NS3: The ZIKV NS2B is a membrane protein (130

residues long) consisting of transmembrane domains and a

cytosolic domain like other flaviviruses (110–113). The

cytosolic domain is hydrophilic and acts as a co-factor for NS3

protease activity. In contrast, the transmembrane domain is

hydrophobic and tightly associated with ER membrane,

providing a membrane anchor for NS3 protease (113–115). It

was recently reported that serial passaging of ZIKV in mosquito

cells and mice produced the emergence of the ZIKV strain with

an I39V point mutation in NS2B that conferred enhanced

transmissibility and pathogenicity to the virus. Similarly, an

I39T mutation has been detected in mosquito isolates, and

both mutations at the 39th position were shown to increase

replication of ZIKV in human NPCs and mosquitos (116). Thus,

NS2B could be an essential protein of interest in efforts to

prevent the emergence of a more transmissible ZIKV variant

in the future.

NS3 is a larger protein of 617 amino acids, where the N-

terminal region from residues 1 to 170 has protease activity

required for polyprotein hydrolysis (117), while the C-terminal

region of this protein from residues 171 to 617 has helicase

activity and NTPase activity (118). Given that NS3 is both a

protease and a helicase, it is considered an excellent target for

developing antiviral drugs due to its multifunctional role in virus

replication (119, 120).

NS3 protease domain: NS3 protease activity is vital for the

proteolytic processing of the single polyprotein encoded by the

ssRNA genome (121–123). For functional activity, this enzyme

requires NS2B as a co-factor, and together these two proteins

form the NS2B-NS3 protease complex (117). NS2B recruits NS3

to the ER membranes and is essential for the folding and

catalysis of the protease complex (124, 125). The NS2B-NS3

protease cleaves the polyprotein at six sites, including a peptide

bond within the capsid and the five peptide bonds between

NS2A/NS2B, NS2B/NS3, NS3/NS4A, and NS4B/NS5 (126).

Many high-resolution crystal structures of the NS2B-NS3

protease have been solved to understand the structural

properties (117, 125, 127). The NS2B-NS3 protease structure

(PDB ID: 5LC0) includes the hydrophilic region of NS2B, with

residues 49–95 fused via a Gly4–Ser–Gly4 linker to the NS3
Frontiers in Virology 05
protease N-terminus (117), which shows that NS2B wraps

around the NS3 protease in such a way that the C-terminal

residues of the hydrophilic region of NS2B form a b-hairpin
lying near the S2 pocket of the NS3 protease (117, 128, 129).

The NS2B-NS3 protease forms an unusual dimer with two-

fold symmetry stabilized by a Cys143 disulfide bond on the NS3

protease. It also forms nine hydrogen bonds (Asp83, Ser81,

Asp79, and Asp50 of NS2B; Asn158, Asp129, Thr27, and Leu30

of NS3 protease) at the dimerization interface and hydrophobic

contacts (by Leu30 and Leu31 of NS3 protease) between

opposing monomers (117). The NS3 protease active site

possesses a catalytic triad of Ser135-His51-Asp75 conserved in

other flavivirus members such as WNV and DENV.

Additionally, the 83rd residue from co-factor NS2B plays an

essential role in protease activity as mutation at this position

decreases the activity of the NS2B-NS3 protease compared to the

wild type (117). Thus, the NS3 protease enzyme activity depends

on the interaction of the substrate with the key amino residues

from both the NS3 protease and NS2B. Depending on the

binding of substrates, the NS2B-NS3 protease can adopt two

conformations. In the presence of substrate, NS2B forms a b-
hairpin that lies near the substrate-binding site of the NS3

protease and exists as a closed conformation, and in the

absence of substrate, NS3 exists as an open conformation (117,

129–131). Besides the proteolytic processing of the single

polyprotein, the NS2B-NS3 protease complex could play other

functional roles, including involvement in the replication

complex formation, interaction with other viral proteins NS4B

and NS5, and in the modulation of host immune response and

thus pathogenesis (117, 132–134). The NS2B-NS3 protease also

suppresses the cGAS/STING signaling pathway and inactivates

the antiviral defense. Due to its multiple roles in viral replication,

the protease domain is considered an excellent target for

identifying potential drug candidates (135–137). So far, many

crystal structures of the NS2B-NS3 protease in complex with

inhibitors and other compounds have been determined (117,

125, 132, 138–141) which will further help in guiding the

development of ZIKV inhibitors. Figure 1 illustrates the

interactions of a few compounds with the NS2B-NS3 protease,

which are capable of inhibiting its protease activity. By inhibiting

the activity of the NS2B-NS3 protease, these molecules may also

inhibit the cleavage of the polyprotein into individual proteins

and thus ZIKV replication. The potential of such inhibitors to

work against ZIKV will require additional investigation in

mammalian cells (117, 132, 141). In this regard, a few

inhibitors have been identified that have the potential to

inhibit NS2B-NS3 protease activity along with inhibition of

ZIKV replication (142–145).

NS3 helicase domain: The NS3 helicase domain is

responsible for unwinding the RNA structure during the viral

RNA synthesis in coordination with NS5 polymerase.

Meanwhile, the NTPase activity of the NS3 helicase provides

energy to unwind RNA intermediates during replication (134,
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146). Many high-resolution crystal structures have been

determined for the NS3 helicase domain of flaviviruses to gain

insight into its function (147–152). ZIKV NS3 helicase shows

70% primary sequence identity with DENV2 NS3, and it is

observed to be a monomer in solution with three major regions:

DI (residues 175-332), DII (residues 333-481), and DIII

(residues 482-617) (152, 153). Crystal structure analysis reveals

that residues 193-202 and 249-255 showed a high B-factor,

suggesting higher flexibility in these regions. Additionally, the

priming loop adopts varying conformational states among

flaviviruses when not bound with ATP/Mg2+ (152, 153). An

ATP/Mg2+ binding site is found in the cleft between the NS3

domain DI and DII, where residues G197, K200, T201, R202,

E286, N330, R459, and R462 are involved in the binding

interaction (152, 153). The binding site of ss-RNA is located in

the tunnel from DII to DI and maintains a continual positive

charge (152, 153). There are eight structural motifs on the ZIKV

NS3 helicase domain. Their functions include involvement in

ATP hydrolysis, communication between the binding sites, and

RNA binding (134, 150, 152). NS3 helicase residues involved in

the catalytic activity are conserved among flaviviruses,

suggesting that the functions of this protein are preserved in

the flavivirus (153). The structural characterization of the NS3

helicase suggests that the substrate-binding site, the RNA
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binding site, and ATP/Mg2+ binding site would be important

targets for inhibitor design (152). Previously, some small

molecules and nucleoside analogs have been identified that

possess inhibition potential to the helicase activity of the HCV

(154–156). Similarly, small molecules which contain

benzothiazole and pyrrolone scaffolds have been reported to

inhibit the NTPase and helicase activities of NS3 helicase in

DENV (157).

NS4A and NS4B: The flavivirus NS4A protein plays a vital

role in recruiting and assembling the replication complex to the

ER by inducing membrane alteration of the host (158–160).

NS4A is also believed to control the NS3 helicase activity (161,

162) and interacts with the NS1 protein to control viral

replication (163). In ZIKV, NS4A and NS4B deregulates Akt-

mTOR signaling pathways and induce autophagy to promote

viral replication (164). The NS4B in Dengue virus interacts with

the NS3 helicase to dissociate the helicase from ssRNA (165,

166). The ZIKV inhibitors, such as indole alkaloid derivatives,

can target NS4B protein (167).

NS5: The largest protein encoded by the flavivirus genome is

NS5. It has a crucial function in flavivirus replication and is thus

a potential target for inhibitor development. Various crystal

structures of NS5 are reported, showing two structural domains

that perform a specific function in replication: the methyl
B

C

D

E
A

FIGURE 1

Crystal structure of ZIKV NS2B-NS3 protease in complex with inhibitors. These inhibitors reduce the protease activity and may block polyprotein
cleavage in the host cells and could be potential inhibitors of ZIKV if tested in mammalian cells. Examples include the X-ray crystal structures of
the NS2B-NS3 protease in complex with (A) the boronate inhibitor cn-716 (PDB ID: 5LC0); (B) 4-guanidinomethyl-phenylacetyl-Lys-Lys-Arg-H
(PDB ID: 5ZMS); (C) 4-guanidinomethyl-phenylacetyl-Arg-Arg-Arg-4-amidinobenzylamide (PDB ID: 5ZOB); (D) Thr-Gly-Lys-Arg, tetrapeptide of
NS2B C-terminal (PDB ID: 5GJ4); and (E) dipeptide inhibitor (PDB ID: 5YOF). Residues with an asterisk are from NS2B (red-colored ribbon), and
residues without an asterisk are from NS3 protease (purple-colored ribbon). Inhibitors are represented in green color.
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transferase (MTase) domain in the N-terminus and the RNA-

dependent RNA polymerase (RdRp) domain in the C-terminus.

The MTase domain of NS5 methylates the mRNA cap at

different positions, which enables the virus to evade detection

by the host’s innate immune response system, and is thus

essential for viral replication (168). This makes the MTase

domain a promising target for inhibitors (169). Crystal

structures of the ZIKV MTase domain have been determined

in free form or complex with substrates and cofactors (170–173),

showing that the structure consists of a Rossmann fold, as seen

in other flaviviruses. Four conserved residues, K61, D146, K182,

and E218, have been identified as a catalytic tetrad, which forms

an active site on the ZIKV MTase domain of NS5 (174). Given

that flavivirus MTase structures possess a high sequence identity

with highly conserved residues in the binding site of S-adenosyl-

L-methionine (SAM) and mRNA and nearly identical structures,

this region is an excellent target for potential inhibitors that

could be effective against all flaviviruses (173, 175).

The RdRp domain of NS5 carries out viral replication, and

negative-sense RNAs are synthesized from the viral positive

sense RNA template within the host cells. Subsequently, the

negative-strand RNA is used as a template to make new copies of

positive-sense RNA. The newly synthesized positive-strand

RNAs are either used for translation or packing to form

nascent virus particles. NS5 interacts with the viral NS3

protein and other host proteins (146, 178). It also acts as an

antagonist for the IFN response (175–177). Diversity in the

functional roles of NS5 makes the RdRp domain a key target for

antiviral therapeutics against ZIKV and other flaviviruses.

Several structures of the ZIKV NS5 RdRp domain have been

reported, providing key information that can be used to compare

ZIKV NS5 with that of other flaviviruses (175, 179, 180). The

ZIKV RdRp adopts a right hand-shaped structure conserved

structurally among flaviviruses. The RdRp of ZIKV consist of

finger (321-488 & 542-608), thumb (715-903) and palm (489-

541 & 609-714) subdomains (179). A catalytic site on the RdRp

is located at the intersection between the finger domain and

thumb domain. Two aspartic acids positioned at residues 535

and 665 are associated with the binding and positioning of the

two zinc ions (Zn2+) in the catalytic site that catalyzes the

nucleotidyl transfer (179), which has also been reported in

other flaviviruses (181). These two ions make coordinate

bonds with the residues of the finger subdomain (G439, H443,

C448, and C451) and thumb subdomain (H714, C730, and

C849) (179). Another important region is the priming loop

(V785-D810) required for the allosteric placement of the RNA

3’-terminus into the active site (179). Additionally, it contains

the nuclear localization signal (NLS) distributed between the

thumb and finger subdomain, which mediates the transport of

NS5 to the nucleus (175). Also, the NLS region is believed to

facilitate interactions with the viral NS3 protein and host

proteins (146, 178). Sequence comparison of the ZIKV NS5

RdRp with other flavivirus sequences has revealed that the
Frontiers in Virology 07
priming loop located on the thumb subdomain, the Zn2+

pocket site, and the RNA binding tunnel located beneath the

flexible loop of the finger subdomain, are among the most

conserved regions (175). The RNA template entry tunnel and

the N pocket located at the thumb subdomain near the active site

of RdRp have been used as targets for inhibitors (175, 182–185).
Cellular response to ZIKV infection
with respect to drug targets

At the onset of viral infection, the innate immune system

activates an acquired immunity response. To recognize the virus,

the host innate immune system relies on pattern recognition

receptors (PRRs) (186), such as retinoic acid-inducible gene I

(RIG-I)-like receptors (RLRs), Toll-like receptors (TLRs), and

NOD-like receptors (NLRs) (186, 187). These receptors

recognize genomic and protein components that originate

from an infecting virus (187, 188), which in turn triggers

inflammation and the antiviral immune response. The

recognition of these viral components by RLRs and TLRs

induces the secretion of various cytokines, chemokines, and

type I IFNs, while NLRs are involved in regulating interleukin-

1b (IL-1b) maturation. Type I IFNs regulate the expression of

various sets of genes by activating the intracellular signaling

pathway (188, 189) whereas Type III IFNs (IFN-l1, IFN-l2, and
IFN-l3) are important in inducing antiviral responses,

specifically during ZIKV infection (37). It has been reported

that the primary human trophoblasts (PHT) cells act as a barrier

to ZIKV infection. Simultaneously, the uninfected PHT cells also

have a protective role for the non-placental cells. Findings

suggest that the constitutive release of IFN-l1 from the PHT

cells protects both non-trophoblast and trophoblast cells against

ZIKV infection (37). Further investigation in a mouse model and

human epithelial cells from the cervix and vagina revealed that

IFN-l1 protects against ZIKV infection by inducing host

defense transcriptional signature that controls infection, thus

protecting the female reproductive tract and possibly reducing

sexual transmission of ZIKV in women (190).

During abnormal congenital ZIKV syndrome (CZS),

increased expression of IFIT5 occurs in the placenta and acts

as an important enhancer for type I IFN (191, 193). A mouse

model study demonstrated that dysregulation of the type I IFN

response leads to CZS, suggesting that an optimal type I IFN

response contributes to healthy pregnancy during ZIKV

infection (38, 192). In addition, there is evidence that severe

outcomes of CZS can be mitigated by the balanced production of

host type I and type III IFN responses that protect against ZIKV

infection in the placenta during pregnancy (193). While the

host’s innate immune response has evolved several mechanisms

to eliminate a virus, viruses are also constantly evolving with

counter-mechanisms to evade and antagonize the host’s
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immune response (194). The functional role of flavivirus non-

structural proteins contributes to the manipulation of different

host signaling pathways that antagonize the immune response,

thus enabling the progression of the infection (195, 196). ZIKV

non-structural proteins NS1, NS4A, and NS5 interfere with the

induction of type I IFN by downregulating NF-kB and IRF3

signaling (41). More specifically, NS5 inhibits the type I IFN

signaling by targeting the transcriptional activator, STAT2,

resulting in its degradation in the proteasome (40, 41). NS5

activates the type II IFN signaling by inducing STAT1-STAT1

homodimer formation that promotes inflammation (197). NS5

also acts as a potent suppressor of Type III IFN signaling (197).

The ZIKV NS2B-NS3 complex inhibits type I IFN

production by promoting Jak1 degradation downstream of

JAK-STAT signaling (198). Additionally, it also acts as an

inhibitor for the virus-induced apoptosis that may be helpful

in the replication of the virus (198). The non-structural proteins

NS4B and NS1 are also involved in the suppression of type I IFN

production by blocking the oligomerization of TBK1 (198).

ZIKV antagonizes type I IFN (189, 190) in dendric cells by an

NS1-dependent CD303 signaling mechanism (199). The

association of ZIKV with neurological disorders may be linked

to the inhibition of RIG-I required to initiate the innate immune

response of the host (200). The ZIKV NS2A and NS4A proteins

play an important role as antagonists of IFN-b by suppressing

IFN-b promoter activity through downregulation of RIG-I-like

receptors and the downstream MDA5/RIG-I signaling pathway.

ZIKV NS1 also reduces IFN-b production by downregulating

MDA5 and active RIG-I (201). Additionally, NS4A and NS4B

appear to be involved in the deregulation of the Akt-mTOR

signaling pathways leading to the inhibition of neurogenesis and

induction of autophagy in fetal neural stem cells (164). Thus, the

deregulation of the Akt-mTOR pathways could be implicated in

ZIKV-associated microcephaly of the fetus (202).

Neurona l progeni tor ce l l (NPC) pro l i fe ra t ion ,

differentiation, and organ size have been shown to be under

control of the Hippo signaling pathway (203), leading to the
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hypothesis that the dysregulation of Hippo signaling pathway

during ZIKV infection could have an adverse effect on the

developing eye and brain. It has been shown that during ZIKV

infection, the Hippo signaling pathway is involved in the

regulation of immune response and the process of

inflammation. Thus, this pathway could be another

therapeutic target for controlling ocular and neuronal

inflammation. There is also data indicating that ZIKV

infection could initiate a cross-talk between AMP-activated

protein kinase–Hippo–TBK1 pathways, thus regulating

antiviral and energy stress responses in oculo-neuronal

inflammation (204).
Therapeutics

Vaccine development. Recent epidemics of ZIKV have

created a demand for the development of effective

therapeutics. In response, many ZIKV vaccine approaches

have been in development, with several candidates now at

different phases of clinical trials for safety and efficacy (205–

208). Among several vaccine candidates, the inactivated vaccine

ZIKAVAC and VRC 705, a DNA vaccine, are in phase 2 clinical

trials. The current status of a few promising vaccine candidates is

given in Table 1. However, the development of these candidates

is facing challenges. The co-existence of other flaviviruses that

share structural and genetic similarities with ZIKV can lead to a

poor neutralizing effect and the possibility of antibody-

dependent enhancement (ADE) of infection and disease

severity, as there is some evidence of this for DENV (207).

Additionally, the waning of the ZIKV epidemic in recent years

has made it challenging to gather ongoing support for further

clinical trials and evaluation of the effectiveness of the vaccine

candidates (222). Considering the safety concern related to ADE,

engineered vaccines (AdC7-M/E-MutB & AdC7-M/E-MutC)

have been recently developed (223) by incorporating a few

point mutations into the conserved fusion loop residues (98-
TABLE 1 A summary of the ZIKV vaccine candidates under different phases of human clinical trials.

Vaccine candidate Developer/sponsor Clinical trial status Type of vaccine Ref.

ZIKAVAC Bharat Biotech Phase 2 Inactivated vaccine (209)

ZPIV Walter Reed Army Institute of Research Phase 1 Inactivated vaccine (210, 211)

VLA1601 Valneva Austria GmbH Phase 1 Inactivated vaccine (212)

rZIKV/D4D30-713 NIAID’s Laboratory of Viral Diseases Phase 1 Live attenuated vaccine (213)

VRC 705 NIAID’s Vaccine Research Center Phase 2 DNA vaccine (214)

VRC 319 NIAID’s Vaccine Research Center Phase 1 DNA vaccine (215)

GLS 5700 GeneOne life science;Inovio Pharmaceuticals Phase 1 DNA vaccine (216, 217)

mRNA 1325 Moderna Therapeutics Phase 1/2 mRNA vaccine (218)

ChAdOx1 Zika University of Oxford Phase 1 Live adenovirus recombinant (219)

MV-ZIKA-RSP Themis Bioscience Phase 1 Live measles recombinant (220)

AGS-v SEEK, hVIVO, and NIH Clinical Center Phase 1 Synthetic proteins vaccine (221)
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109) of the ZIKV. The MutB vaccine construct possesses D98N,

N103T, G106F, L107K & F108W mutations, and MutC vaccine

construct possesses D98N, N103T, G106L, L107E & F108W

mutations. Both these candidates induce protective immunity in

the mice model and can nullify the effect of ADE. In addition,

they are also able to provide fetal protection from the challenges

that arise due to the vertical transmission of ZIKV infection in

pregnant mice (223). Therefore, similar strategies could also

apply to other vaccine development platforms such as DNA,

RNA, subunit protein, or virus vector vaccine candidates (223).

The recent development of a maternal vaccine (live

attenuated 3’UTR-D10-LAV) has been reported to prevent

ZIKV-induced congenital syndrome of the fetus in pregnant

mice with no adverse effect on pregnancy and fetal development

(224). Despite the promising result, it may cause a subtle adverse

effect on fetal development, and further investigation needs to be

carried forward before the trials in humans. Still, it could be a

basis for designing strategies to develop a maternal vaccine for

pregnant women. In this context, the first DENV vaccine,

‘Dengvaxia,’ for treating secondary dengue infection (225)

could be used as a standard for developing the ZIKV vaccine.

Due to these challenges with vaccine development, parallel

efforts to discover new inhibitor molecules that can function

as therapeutics becomes more critical for the ZIKV-

infected patient.

Drug screening: No novel drugs have been developed and

specifically approved to treat ZIKV infection, so repurposing the

existing drugs already approved for use in a diseased condition

has been considered a useful, cost-effective, and expeditious path

to finding effective therapeutics. In this review, we have

summarized nearly 200 inhibitors, including many already

approved by the U.S. Food and Drug Administration (FDA),
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that represent promising candidates for further investigation as

repurposed therapeutic approaches to managing the

pathogenesis of ZIKV infection. These compounds inhibit the

ZIKV by targeting both the viral and host proteins/factor. The

most common viral protein targets for those inhibitors are

NS2B-NS3 protease, NS5, and E or other entry-related

proteins (Figure 2). The list includes several inhibitors with

activity that suggests they may prevent vertical transmission of

the virus (Table 2).

Additional compounds with potentially beneficial properties

include natural products, nucleoside analogs, peptides, small

molecules, antibiotics, and other compounds that have been

identified as possible inhibitors of ZIKV in both in vivo and in

vitro studies (Supplementary Table 1) or only in vitro studies

(Supplementary Table 2). Some of these inhibitors have

demonstrated the ability to inhibit entry of the virus by targeting

the envelope protein and entry related steps (Figure 3), while

others inhibit the replication or assembly of the virus by targeting

the non-structural proteins (Figure 4). The effectiveness and safety

of these drugs and molecules deserves further evaluation in the

pregnant mouse model to begin addressing questions about

potential human use during pregnancy.

We present a brief overview of select drugs that show

promise for preventing vertical transmission of ZIKV as well

as inhibiting infection.

Chloroquine (CQ) is an FDA-approved antimalarial drug

that has been repurposed to treat other conditions with some

success (235, 236). In the COVID-19 pandemic, CQ and its

analog hydroxychloroquine (HCQ) were initially reported to

show an inhibitory effect in vitro on the SARS-CoV-2 replication

(237, 238). But additional studies later suggested that the use of

HCQ increases the mortality in the COVID-19 patient, whereas
FIGURE 2

Graphic summary of targets for potential inhibitors listed in Table 2 and Supplementary Tables 1, 2. The most common viral protein targets for
those inhibitors are NS2B-NS3 protease, NS5, and E or other entry-related proteins.
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CQ does not exert any beneficial effect (239, 240). In contrast to

the waning support related to the use of CQ or HCQ for

COVID-19, the antiviral properties of these drugs in the case

of ZIKV are more promising. Previously, CQ has demonstrated

antiviral effects in various human cell types in cell culture,

including trophoblast cells from the placenta (142), brain

endothelial cells, neural stem cells, as well as in mouse

neurosphere cells (56). In addition, experiments in fibroblast

cells (BHK-21) show that CQ inhibits the entry and

internalization of ZIKV (226). The administration of CQ to

pregnant mice also significantly reduced ZIKV vertical

transmission, with an observed 20-fold reduction in the virus

load in the fetal brain (227). It has also been demonstrated that

CQ can inhibit the early stage of ZIKV infection and provide

protection from ZIKV-associated microcephaly in fetal mice

(226). Overall, CQ shows inhibitory potential against ZIKV in

reducing the viral load both in vitro (IC50 or EC50: 1.72-14.20

µM) and in vivo (56, 142, 226, 227), suggesting that this drug is a

promising candidate for use as prophylaxis and in the treatment

of patients with ZIKV infection (227).

Hydroxychloroquine (HCQ) is another FDA-approved

antimalarial drug, similar to CQ, that has also been proven

safe for pregnant women. This drug has been repurposed as an

antirheumatic drug (241) and for treating DENV infections
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(242). Recent evidence suggests that HCQ inhibits the ZIKV

infection in placental cells and limits the vertical transmission in

pregnant mice by inhibiting the autophagy pathways (142).

Additionally, a cell-based study suggests that HCQ reduces the

burden of ZIKV in infected placental cells (80 µM significantly

reduces Paraiba/2015 infection) due to the inhibition of the

NS2B-NS3 protease activity (143).

Sofosbuvir (SOF) has been clinically approved for the

treatment of hepatitis-C virus (HCV) (243). Because this is a

class B FDA-approved drug safe for pregnant women and the

fetus, several research groups have pursued it as a repurposed

inhibitor drug candidate for ZIKV. So far, there is evidence that

SOF targets the ZIKV RdRp (232) and inhibits replication of the

virus in various cell systems (IC50 or EC50: 2.1-30.9 µM),

including neural stem cells, human hepatoma cells,

neuroblastoma, human liver cells, placental cells, and human

brain organoids (229–232). Oral absorption or intraperitoneal

administration of SOF was shown to reduce the death of the

ZIKV-infected mice (228, 229). Further evidence suggests it

plays a role in preventing short- and long-term behavioral

changes sequelae in infected mice (228). Treatment with SOF

also reduced the viral burden and increased the percentage and

time of the survival of the infected animals (228, 231) while also

preventing acute neuromotor abnormalities (228). A recent
TABLE 2 ZIKV inhibitors that have the potential to inhibit vertical transmission from mother to fetus in a mouse model.

Compound Cell line (anti-ZIKV activity of compound, ZIKV
strain)

In vivo model (dose
of compound; ZIKV

strain)

Mechanistic
insight

Description
of compound

Ref.

Chloroquine (CQ) hfNPCs (90 % inhibition at 6 µM, ZIKVBR), BHK-21 (10 µM, GZ01/
2016), Huh-7 (IC50: 1.72 µM, GZ01/2016; IC50: 2.72 µM, FSS13025),
Vero (IC50: 4.15 µM, GZ01/2016; EC50: 9.82 µM, MR766; at 25 µM,
16-fold reduction in ZIKVBR RNA), hBMEC (EC50:14.20 µM,
MR766), hNSC (EC50: 12.36 µM, MR766), Neurosphere (12.5 µM,
decreases MR766 infection)

AG129 (50 mg/kg/day;
ZIKV BR), SJL (30 mg/kg/
day; ZIKV BR), BALB/c (100
mg/kg; GZ01/2016), A129
(100 mg/kg; GZ01/2016)

Inhibit viral
entry to host
cell.

FDA approved
drug

(56,
226,
227)

Hydroxychloroquine
(HCQ)

JEG3 (80 µM, reduces Paraiba/2015 infection) C57BL/6 (40 mg/kg/day;
Paraiba/2015)

Inhibitor of
NS2B-NS3
protease (in
vitro & in silico).

FDA approved
drug

(142,
143)

Sofosbuvir (SOF) hNPCs (IC50 : 13.6 µM, IbH-30656), Vero (IC50 : 30.9 µM, IbH-
30656), Huh-7 (IC50 : 3.9µM, H/PF/2013; IC50 : 4 µM,
ZIKVNL00013; EC50: 1.37 µM, PRVABC59; EC50: 3.8 µM, Paraiba/
2015; EC50: 4.6 µM, Senegal 1984 ), Jar (EC50: 4.95 µM, PRVABC59;
EC50: 2.1 µM, Paraiba/2015; EC50: 3.79 µM, Senegal 1984), NSCs
(EC50: 32 µM, Praiba), SH-Sy5y (EC50:1.1 U/ml; Brazilian ZIKV),
BHK-21 (EC50:1.9 U/ml; Brazilian ZIKV), brain organoids

NOD/SCID (50 mg/kg/day;
IbH-30656), SJL mice (50
mg/kg/day; Asian ZIKV
strain 259459), Swiss albino
mice (20 mg/kg/day;
MR766), C57BL/6 (30 mg/
kg/day; ZIKV Senegal 1984)

Inhibitor of
RdRp (in vitro
& in silico).

FDA approved
drug

(228–
232)

Ouabain Vero (IC50: 48.39 nM, H/PF/2013; 49-784 nM, inhibit MRS
infection), Huh-7 (24.5-784 nM, inhibit H/PF/2013 infection; 12.25-
784 nM, inhibit MRS infection), U251 (24.5-784 nM, inhibit H/PF/
2013 infection; 12.25-784 nM, inhibit MRS infection)

Ifnar1−/− (2 mg/kg; H/PF/
2013), C57BL/6 (3 mg/kg/
day; H/PF/2013)

Targets Na+/K+-
ATPase.

FDA approved
drug

(233)

E Protein Peptide Z2 BHK-21 (IC50: 1.75 µM, SZ01; IC50: 4.04 µM, FLR; IC50: 13.91 µM,
MR766) and Vero (IC50: 3.69 µM, SZ01)

A129 or AG6 (10 mg/kg;
GZ01), C57BL/6 (10 mg/kg;
SZ01)

Interacts with E
protein and
disrupts virus
membrane (in
vitro).

Peptide (stem
region of ZIKV E
protein)

(234)
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report also suggests its role in preventing ZIKV transmission

from mother to fetus in pregnant mice (231).

Ouabain is an FDA-approved steroid hormone that has

shown some potential as a ZIKV inhibitor candidate in a

mouse model. Ouabain blocks the ZIKV infection (IC50: 48.39

nM for H/PF/2013) by targeting Na+/K+-ATPase at the

replication stage and thus reduces the ZIKV load in adult mice

and the placenta. Furthermore, it can penetrate the placental

barrier and provide protection to fetal mice from ZIKV-induced

microcephaly (233). The safety profile of this drug for pregnant

women has not yet been demonstrated.

E protein peptide (Z2) has also demonstrated the ability to

inhibit the ZIKV transmission from mother to fetus in mice. Z2

is a small peptide derived from the stem region of the ZIKV E

protein (residues 421-453), and it interacts with the viral E

protein resulting in disruption of the ZIKV membrane integrity.

It is safe to use in pregnant mice and also inhibits the vertical

transmission of ZIKV in C57BL/6 mice (234).

The following are other notable examples of drugs from

Supplementary Table 1 that show promise for preventing

ZIKV infection:

Methacycline is a type of tetracycline antibiotic that

reportedly reduces ZIKV load in the brain and the severity of

motor deficits in a mouse model (244). Additionally, it also
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inhibits the activity of ZIKV protease and reduces ZIKV

infection (IC50: 7.3 µM for French Polynesian_2013) in NSCs.

Fidaxomicin is another antibiotic that is used clinically to

treat infection of Clostridium difficile (245) and has shown

inhibition potential against ZIKV both in vitro (EC50: 6-14.5

µM) and in vivo (246). It targets the ZIKV RdRp, which inhibits

the RNA synthesis, and thus it reduces the ZIKV load in the

brain and testes of infected mice (246).

Ribavirin is a drug used to treat Hepatitis C virus infection

(247), which exerts its antiviral effect by inhibiting RdRp activity

(248). It also inhibits ZIKV replication in mammalian cells (10-

80 µg/ml inhibits MR766 growth) and prevents ZIKV-induced

death and apoptosis in cell culture. Ribavirin was also shown to

abrogate the viral load in blood samples from STAT-1-deficient

mice infected with ZIKV (249).

Emetine has been used as a potent amoebicide agent (250) and

has also shown the ability to act as an antiviral candidate against

many viruses (251, 252). Emetine has demonstrated the ability to

inhibitZIKVinfectionboth invitro (IC50: 8.74-52.9nM)and invivo

(253). It inhibitsNS5 polymerase activity of ZIKVand accumulates

in the lysosome, where it disrupts lysosomal function and leads to

the inhibition of viral entry (253).

Memantine is used for the treatment of Alzheimer’s disease in

which it acts as an NMDR receptor antagonist (254). It has been
FIGURE 3

Inhibition of ZIKV entry and post entry steps into host cells. ZIKV initiates entry to the host cells by binding to cell surface receptors, including AXL,
TYRO3, DC-SIGN, and TIM1. The subsequent endocytosis, fusion, and release of virus particles followed by replication of the RNA genome
proceeds in the cytosol and endoplasmic reticulum (ER), respectively. Translation of the genome into a single polyprotein and processing of the
polyprotein takes place on the ER membrane. Assembled viral particles bud into the ER lumen as immature viruses and proceed to maturity at the
Golgi apparatus, then are released from the cell by exocytosis to perpetuate the cycle of infection. The potential inhibitors of ZIKV (see Table 2
and Supplementary Tables 1, 2) in mammalian cells inhibit the virus replication both at the host cell entry related steps and post-entry steps.
frontiersin.org

https://doi.org/10.3389/fviro.2022.928599
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Kumar et al. 10.3389/fviro.2022.928599
shown to prevent ZIKV-induced neuronal cell death (30 µM reduces

cell death to ~20%)without interfering with ZIKV replication in these

cells. It can reduce the neurodegeneration and microgliosis in a

ZIKV-infected mice brain and can prevent the increased intraocular

pressure as a result of ZIKV infection. As a neuroprotectant,

memantine could be a potent candidate for treating patients at

high risk of ZIKV-induced-neurodegeneration (255).

Novobiocin is an antibiotic (256) in the coumermycin family

that is known to inhibit bacterial DNA gyrase (257). The

repurposing of this antibiotic has shown anti-ZIKV activity in

Vero (IC50: 42.63 µM for PRVABC59) and Huh cells (IC50: 62.24

µM for PRVABC59), and increases the survival rate of ZIKV-

infected mice. It shows stable binding with the NS2B-NS3
Frontiers in Virology 12
protease and thus may have the potential to act as an inhibitor

of this protease in ZIKV (258).

Additional FDA-approved drugs such as hippeastrine

hydrobromide (HH) (IC50: 3.62 µM) (259), amodiaquine

dihydrochloride dihydrate (AQ) (IC50: 2.81 µM) (259),

methylene blue (MB) (1.67-15 µM) (145), and temoporfin

(0.01-3 µM) (144) have been shown to inhibit ZIKV in

human neuronal progenitor cells (hNPCs), and also suppress

virus replication in mouse models (Supplementary Table 1).

MB also stalls NS2B-NS3 protease activity by inhibiting the

interaction between NS3 protease and co-factor NS2B. Both

HH and AQ are shown to inhibit the ZIKV in fetal-like

forebrain organoids and mice brains (259), where HH
FIGURE 4

ZIKV Inhibitors targeting viral non-structural proteins. Inhibitor molecules, including FDA-approved drugs, natural products, nucleoside analogs, various
derivatives, small molecules, and others, show the potential to inhibit ZIKV replication in vitro or in vivo (see Table 2 and Supplementary Tables 1, 2).
These molecules target the non-structural (NS2B-NS3 protease, NS3 helicase, RdRp, and MTase) proteins of the ZIKV. Shown protein structures are
based on PDB X-ray crystal structures extracted from Maestro software (NS2B-NS3 protease: 5H4I; NS3 helicase: 6MH3; RdRp: 5WZ3; MTase: 5WZ1).
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inhibits ZIKV replication in the brain. MB and temoporfin

target the NS2B-NS3 protease and inhibit the protease activity,

and are shown to inhibit ZIKV at the entry and post-infection

stage (144, 145).
Concluding remarks and
future directions

Since the first ZIKV outbreak in 2007, no newly developed

therapeutics or vaccines have become broadly available

specifically for the treatment or prevention of ZIKV infection.

This has contributed to significant concerns, particularly among

pregnant women, as the association of ZIKV with neurological

abnormalities in the fetus has now been established after being

first reported in 2015 during the Brazil outbreak. In addition to a

surge of microcephaly cases, Guillain-Barre syndrome cases

increased twenty-fold at this time, sparking accelerated drug

discovery research in search of specific therapeutic regimes for

ZIKV infection. To expedite the ZIKV drug discovery process,

researchers have sought to repurpose inhibitors and other drugs

previously developed and approved for other uses. Many such

inhibitor candidates have shown the ability to target ZIKV

proteins, including the envelope, NS2B-NS3 protease, NS3

helicase, NS5 MTase, and NS5 RdRp. A detailed analysis of

the structural features revealed by several X-ray crystal

structures of ZIKV proteins has enabled ongoing structure-

based targeting efforts to identify other inhibitors. Many of

these prospective therapeutics have also shown inhibition of

ZIKV in various cell systems or mouse models. Additionally, a

few drugs, such as Chloroquine, Hydroxychloroquine,

Sofosbuvir, and Ouabain which are FDA-approved for other

uses, have also shown some ability to inhibit ZIKV transmission

frommother to fetus, or reduce the condition of microcephaly in

the mouse model. Building on these results and given the large

number of drugs with potential that we have been able to

identify for summary here, there is rationale for further

investigation of these drugs so that they can be more fully

screened, evaluated, considered for clinical testing in human

trials, and eventually advanced through the discovery pipeline.

So far, few vaccine candidates have advanced beyond the early

phases of clinical trials, and questions about demand and efficacy

remain due to the waning epidemic and the antibody-dependent

enhancement of the disease severity. These vaccine candidates

will also face the added challenge of being clinically evaluated for

their safety and efficacy in pregnant women. Although ZIKV

cases have subsided since 2016, vulnerable populations are still

affected by the persistence of the virus in some regions and the

emergence of outbreaks in new regions. To meet current

demands for treatment and prepare for the ever-present threat

of future large-scale ZIKV epidemics should more transmissible

variants emerge, research efforts must be sustained in drug
Frontiers in Virology 13
discovery along with vaccine development so that improved

strategies will become available for treating and preventing

ZIKV infections.
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Polynesia, December 2013. Eurosurveillance (2014) 19:20720. doi: 10.2807/1560-
7917.ES2014.19.9.20720/CITE/PLAINTEXT
frontiersin.org

https://www.sciencedirect.com/science/article/abs/pii/0035920352900424/
https://www.sciencedirect.com/science/article/abs/pii/0035920352900424/
https://doi.org/10.1016/0035-9203(52)90042-4
https://www.nejm.org/doi/full/10.1056/NEJMoa0805715/
https://doi.org/10.1056/NEJMoa0805715

https://doi.org/10.3201/EID2006.140138
https://doi.org/10.1016/S0140-6736(16)00562-6/ATTACHMENT/B981E8B6-F663-4C9C-B3D3-489FCD33A843/MMC1.PDF
https://doi.org/10.1016/S0140-6736(16)00562-6/ATTACHMENT/B981E8B6-F663-4C9C-B3D3-489FCD33A843/MMC1.PDF
https://doi.org/10.1016/S0140-6736(16)00562-6/ATTACHMENT/B981E8B6-F663-4C9C-B3D3-489FCD33A843/MMC1.PDF
https://doi.org/10.1128/CMR.00072-15/ASSET/8DA927B7-1E25-413B-8B91-54202156C011/ASSETS/GRAPHIC/ZCM0031625520010.JPEG
https://doi.org/10.1128/CMR.00072-15/ASSET/8DA927B7-1E25-413B-8B91-54202156C011/ASSETS/GRAPHIC/ZCM0031625520010.JPEG
https://doi.org/10.3201/EID2110.150847
https://doi.org/10.1590/0074-02760150192
https://doi.org/10.1371/JOURNAL.PMED.1002203
https://doi.org/10.1371/JOURNAL.PMED.1002203
https://apps.who.int/iris/handle/10665/204420
https://www.paho.org/en/documents/epidemiological-update-dengue-chikungunya-and-zika-context-covid-19-23-december-2021
https://www.paho.org/en/documents/epidemiological-update-dengue-chikungunya-and-zika-context-covid-19-23-december-2021
https://doi.org/10.1016/J.IJID.2021.09.074/ATTACHMENT/2998F90D-043A-4FB6-AC4C-9ACF564EEEDE/MMC1.DOCX
https://doi.org/10.1016/J.IJID.2021.09.074/ATTACHMENT/2998F90D-043A-4FB6-AC4C-9ACF564EEEDE/MMC1.DOCX
https://www.who.int/publications/m/item/zika-epidemiology-update
https://www.who.int/publications/m/item/zika-epidemiology-update
https://www.hps.scot.nhs.uk/publications/hps-weekly-report/volume-55/issue-51/zika-virus-infection-in-india/
https://www.hps.scot.nhs.uk/publications/hps-weekly-report/volume-55/issue-51/zika-virus-infection-in-india/
https://www.hps.scot.nhs.uk/publications/hps-weekly-report/volume-55/issue-51/zika-virus-infection-in-india/
https://doi.org/10.1016/0035-9203(52)90042-4
https://doi.org/10.1016/0035-9203(52)90042-4
https://www.who.int/emergencies/disease-outbreak-news/item/zika-virus-disease-india
https://www.who.int/emergencies/disease-outbreak-news/item/zika-virus-disease-india
https://doi.org/10.7554/ELIFE.08347
https://doi.org/10.1371/JOURNAL.PNTD.0005933
https://doi.org/10.1056/NEJMC1604449
https://doi.org/10.1097/QCO.0000000000000414
https://doi.org/10.1016/S1473-3099(16)00138-9
https://doi.org/10.3201/EID2102.141363
https://doi.org/10.1111/TRF.14029
https://doi.org/10.1056/NEJMC1607262/SUPPL_FILE/NEJMC1607262_DISCLOSURES.PDF
https://doi.org/10.1056/NEJMC1607262/SUPPL_FILE/NEJMC1607262_DISCLOSURES.PDF
https://doi.org/10.1093/INFDIS/JIX396
https://doi.org/10.1093/INFDIS/JIX396
https://doi.org/10.2807/1560-7917.ES2014.19.14.20761/CITE/PLAINTEXT
https://doi.org/10.2807/1560-7917.ES2014.19.14.20761/CITE/PLAINTEXT
https://doi.org/10.2807/1560-7917.ES2014.19.13.20751/CITE/PLAINTEXT
https://doi.org/10.2807/1560-7917.ES2014.19.13.20751/CITE/PLAINTEXT
https://doi.org/10.1056/NEJMOA1601824/SUPPL_FILE/NEJMOA1601824_DISCLOSURES.PDF
https://doi.org/10.1056/NEJMOA1601824/SUPPL_FILE/NEJMOA1601824_DISCLOSURES.PDF
https://doi.org/10.3201/EID2303.161499
https://doi.org/10.3201/EID2303.161499
https://doi.org/10.1590/0074-02760160085
https://doi.org/10.1590/0074-02760160085
https://doi.org/10.1016/S0140-6736(16)30883-2
https://doi.org/10.1530/REP-13-0232
https://doi.org/10.1111/AJI.12355
https://doi.org/10.1111/AJI.12355
https://doi.org/10.3389/FIMMU.2020.522047/BIBTEX
https://doi.org/10.3389/FIMMU.2020.522047/BIBTEX
https://doi.org/10.1056/NEJMOA1600651/SUPPL_FILE/NEJMOA1600651_DISCLOSURES.PDF
https://doi.org/10.1056/NEJMOA1600651/SUPPL_FILE/NEJMOA1600651_DISCLOSURES.PDF
https://doi.org/10.1038/NRMICRO.2016.125
https://doi.org/10.1016/J.CHOM.2016.05.015/ATTACHMENT/7D09EDBE-C051-4E83-B270-CE518B38A5A4/MMC1.PDF
https://doi.org/10.1016/J.CHOM.2016.05.015/ATTACHMENT/7D09EDBE-C051-4E83-B270-CE518B38A5A4/MMC1.PDF
https://doi.org/10.1016/J.CHOM.2016.03.008/ATTACHMENT/708190DF-A537-4244-824D-123A746D3132/MMC3.XLSX
https://doi.org/10.1016/J.CHOM.2016.03.008/ATTACHMENT/708190DF-A537-4244-824D-123A746D3132/MMC3.XLSX
https://doi.org/10.1016/J.CELL.2016.05.008
https://doi.org/10.1038/nature18296
https://doi.org/10.1016/J.CHOM.2016.05.009/ATTACHMENT/FFF03E0E-CD4A-4A93-897C-20A2F2EFC146/MMC1.PDF
https://doi.org/10.1016/J.CHOM.2016.05.009/ATTACHMENT/FFF03E0E-CD4A-4A93-897C-20A2F2EFC146/MMC1.PDF
https://doi.org/10.15252/EMBR.201642627
https://doi.org/10.2807/1560-7917.ES2014.19.9.20720/CITE/PLAINTEXT
https://doi.org/10.2807/1560-7917.ES2014.19.9.20720/CITE/PLAINTEXT
https://doi.org/10.3389/fviro.2022.928599
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Kumar et al. 10.3389/fviro.2022.928599
43. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, et al.
Zika virus: History, emergence, biology, and prospects for control. Antiviral Res
(2016) 130:69–80. doi: 10.1016/J.ANTIVIRAL.2016.03.010

44. Calvet G, Aguiar RS, Melo ASO, Sampaio SA, de Filippis I, Fabri A, et al.
Detection and sequencing of zika virus from amniotic fluid of fetuses with
microcephaly in Brazil: a case study, lancet. Infect Dis (2016) 16:653–60.
doi: 10.1016/S1473-3099(16)00095-5

45. Reynolds MR, Jones AM, Petersen EE, Lee EH, Rice ME, Bingham A, et al.
Vital signs: Update on zika virus–associated birth defects and evaluation of all U.S.
infants with congenital zika virus exposure — U.S. zika pregnancy registry, 2016.
MMWR Morb Mortal Wkly Rep (2019) 66:366–73. doi: 10.15585/
MMWR.MM6613E1

46. Ashwal S, Michelson D, Plawner L, Dobyns WB. Practice parameter:
Evaluation of the child with microcephaly (an evidence-based review). Neurology
(2009) 73:887–97. doi: 10.1212/WNL.0B013E3181B783F7

47. Passemard S, Kaindl AM, Verloes A. Microcephaly. Handb Clin Neurol
(2013) 111:129–41. doi: 10.1016/B978-0-444-52891-9.00013-0

48. Woods CG. Human microcephaly. Curr Opin Neurobiol (2004) 14:112–7.
doi: 10.1016/J.CONB.2004.01.003

49. Seltzer LE, Paciorkowski AR. Genetic disorders associated with postnatal
microcephaly. Am J Med Genet Part C Semin Med Genet (2014) 166:140–55.
doi: 10.1002/AJMG.C.31400

50. Tetro JA. Zika and microcephaly: causation, correlation, or coincidence?
Microbes Infect (2016) 18:167–8. doi: 10.1016/J.MICINF.2015.12.010

51. Faheem M, Naseer MI, Rasool M, Chaudhary AG, Kumosani TA, Ilyas AM,
et al. Molecular genetics of human primary microcephaly: An overview. BMC Med
Genomics (2015) 8:1–11. doi: 10.1186/1755-8794-8-S1-S4/TABLES/3

52. Hussain MS, Baig SM, Neumann S, Peche VS, Szczepanski S, Nürnberg G,
et al. CDK6 associates with the centrosome during mitosis and is mutated in a large
Pakistani family with primary microcephaly. Hum Mol Genet (2013) 22:5199–214.
doi: 10.1093/HMG/DDT374

53. Thornton GK, Woods CG. Primary microcephaly: do all roads lead to
Rome? Trends Genet (2009) 25:501–10. doi: 10.1016/J.TIG.2009.09.011

54. Brault JB, Khou C, Basset J, Coquand L, Fraisier V, Frenkiel MP, et al.
Comparative analysis between flaviviruses reveals specific neural stem cell tropism
for zika virus in the mouse developing neocortex. EBioMedicine (2016) 10:71–6.
doi: 10.1016/J.EBIOM.2016.07.018

55. Zhang N, Zhang N, Qin CF, Liu X, Shi L, Xu Z. Zika virus disrupts neural
progenitor development and leads to microcephaly in mice. Cell Stem Cell (2016)
19:120–6. doi: 10.1016/J.STEM.2016.04.017/ATTACHMENT/610C8246-3C13-
4888-B950-394B424EDE3F/MMC2.XLSX

56. Delvecchio R, Higa LM, Pezzuto P, Valadão AL, Garcez PP, Monteiro FL,
et al. Chloroquine, an endocytosis blocking agent, inhibits zika virus infection in
different cell models. Viruses (2016) 322. 8:322. doi: 10.3390/V8120322

57. Wu KY, Zuo GL, Li XF, Ye Q, Deng YQ, Huang XY, et al. Vertical
transmission of zika virus targeting the radial glial cells affects cortex
development of offspring mice. Cell Res (2016) 26:645–54. doi: 10.1038/cr.2016.58

58. Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N, Tang W, et al.
Zika virus infects neural progenitors in the adult mouse brain and alters
proliferation. Cell Stem Cell (2016) 19:593–8. doi: 10.1016/J.STEM.2016.08.005/
ATTACHMENT/01D98DB2-7754-4B9A-9004-EA118DF5AAF9/MMC1.PDF
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