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The burden of malignancy related to viral infection is increasing in Sub-Saharan

Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were

attributable to infection. Prevention or treatment of these infections could

reduce cancer cases by 23% in less developed regions and about 7% in

developed regions. Contemporaneous increases in longevity and changes in

lifestyle have contributed to the cancer burden in SSA. African hospitals are

reporting more cases of cancer related to infection (e.g., cervical cancer in

women and stomach and liver cancer in men). SSA populations also have

elevated underlying prevalence of viral infections compared to other regions.

Of 10 infectious agents identified as carcinogenic by the International Agency for

Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV,

respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus

(HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi’s sarcoma

herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human

immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is

associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are

associated with hepatocellular carcinoma; KSHV causes Kaposi’s sarcoma;

HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the

oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the

greatest global burden, has been linked to increasing risk of malignancy through

immunologic dysregulation and clonal hematopoiesis. Public health approaches

to prevent infection, such as vaccination, safer injection techniques, screening of

blood products, antimicrobial treatments and safer sexual practices could reduce

the burden of cancer in Africa. In SSA, inequalities in access to cancer screening

and treatment are exacerbated by the perception of cancer as taboo. National

level cancer registries, new screening strategies for detection of viral infection

and public health messaging should be prioritized in SSA’s battle against

malignancy. In this review, we discuss the impact of carcinogenic viruses in

SSA with a focus on regional epidemiology.
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GRAPHICAL ABSTRACT

Oncogenic Viruses in Sub-Sahara Africa. The outer circle shows the six viruses classsified as oncogenic by the international Agency for Research
on Cancer plus Human Immunodeficiency Virus, which potentiates oncogenesis. Examples of malignancies attributable to each virus are shown in
the inner circle.
Introduction

According to the World Health Organization (WHO),

approximately six of every 100 cancer deaths in developed countries

are linked to infection (1). Malignancies related to infection are a

much more serious problem in developing regions, particularly

Africa. For example, cervical cancer and non-Hodgkin lymphoma

associated with human papillomavirus (HPV) and Epstein-Barr virus

(EBV) infections, respectively, are disproportionately common in

Africa (2). Malignancy due to infection is preventable. Thus,

oncogenic viruses are an important cancer control target.

Africa hosts tremendous genetic diversity (3, 4) in conjunction

with high infectious disease burden and socio-cultural diversity.

This combination presents great opportunity for understanding

epidemiology and pathogenesis of oncogenic viruses, but also

presents challenges for prevention and control of associated

malignancy. Yet the study of viral oncogenesis specific to SSA

(West, Central, Eastern and Southern Africa) is relatively young.

The earliest arguments linking viruses and cancer have their official

origins in the discovery of two bird viruses. The first, avian leukemia

virus, was discovered by Vilhelm Ellerman and Olaf Bang, two

biologists at the University of Copenhagen in 1908 (5, 6). Leukemias

were not considered malignancies at that time, so this discovery was

overshadowed by contemporaneous work by Francis Peyton Rous

in the United States. In 1911, Rous described a form of avian

sarcoma, a well-known tumor, and demonstrated its association

with Rous sarcoma virus (7). These earliest oncogenic viruses were
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retroviruses (8), the study of which laid the foundation for our

current understanding of cancer.

Cancer is the second leading cause of death worldwide (after

ischemic heart disease). As of 2020, the global burden of cancers

caused by infection was estimated at 15.4%. The estimate is over

30% for SSA, making infections amongst the most important causes

of cancer in the region (9, 10). Cancer-causing infections are

responsible for approximately 30% of cancer cases in low- and

lower-middle-income countries. Infection as an etiology of cancer

may be increasing, as only 13% of cancers diagnosed in 2018

globally were considered attributable to carcinogenic infections,

including Helicobacter pylori, HPV, HBV, HCV, and EBV (2, 11).

Characterizing the link between infection and cancer is an

active area of research, particularly in Africa. Elucidating the

relationship in SSA is exceptionally challenging due to a high

frequency of co-infections. Furthermore, seroprevalence estimates

are difficult due to regional heterogeneity of patient populations,

size of studies and serodiagnostic methods employed. Temporal

uncertainties also complicate the picture, as infections detectable at

time of cancer diagnosis may differ from those which played a

causal role. Additionally, oncogenic viruses appear to be the

etiology of malignancy in a minority of cases, with genetics and

lifestyle factors playing a key role.

We will discuss the oncogenic viruses HBV, HCV, EBV, HPV,

HTLV-1, HHV-8, HIV, and their impact in SSA in this review.

While we will focus on epidemiology, pathogenesis, socio-cultural

contributors, and suggestions for additional investigation will also
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be addressed. Understanding these viruses and their respective

malignancies will facilitate effective public policy and

advancement of prevention and treatment programs in SSA.
Hepatitis B virus

HBV genomic organization and
protein products

HBV is the smallest human DNA virus with 3,200 base pairs. Its

double-stranded circular genome contains four overlapping open

reading frames (ORFs) and encodes 4 genes: C, S, P and X. The C

gene, with a pre-C zone, encodes the 21 kDa core (HBc) antigen

(Ag) and HBeAg. The S gene, with a pre-S1 zone and a pre-S2 zone,

encodes the surface antigen (HBsAg) (12). HBsAg exists in small 24

kDa, medium 33kDa, and large 39 kDa forms depending on

whether it derives from expression of S, pre-S2 + S, or pre-S1 +

pre-S2 + S genes. The P gene encodes the 90 kDa DNA polymerase,

which serves as a classic DNA-dependent DNA polymerase, a

retrotranscriptase, and has RNase H activity. The X gene encodes

X protein (HBx), which performs transactivating functions,

regulates the viral lifecycle and is required for replication (13).

HBx is likely involved in HBV carcinogenesis (14, 15). The HBV

genome also includes four promoters, two enhancer elements (EN1

and EN2), a polyadenylation site for viral RNA transcription, and

several cis-acting signals for DNA replication.

To optimize its limited capacity, HBV’s genes overlap. The P

gene, the longest of the four, comprises three-quarters of the

genome and overlaps entirely with the S gene and partially with

the C and X genes (16). All HBV RNA transcripts terminate at the

same polyadenylation site located in the C ORF (17). A

posttranslational cis regulatory element (PRE), which overlaps

with part of the X ORF, promotes nuclear export of unspliced

HBV RNA to the cytoplasm (18).

This strictly human Hepadnavirus consists of an envelope

bearing HBsAg with an interior nucleocapsid. HBV viral

glycoproteins (HBsAg) constitute the envelope surrounding the

viral capsid in mature virions; HBsAg contains the main HBV

antigenic domains and the attachment site to target hepatocytes

(19). HBcAg forms the core or capsid and is expressed on the

surface of hepatocytes, where it induces cytolysis via CD8+ T

lymphocytes. Unlike HBsAg, it does not appear in serum.

Conversely, the smaller HBeAg is present in the serum during

active viral multiplication (20). Expression of 10 amino acids from

the pre-C region on HBeAg enable its passage through the

reticuloendothelial system and excretion in serum (21). HBsAg,

HBcAg and HBeAg and their respective antibodies are markers of

HBV infection status.

HBsAg has at least 5 main antigenic sites. The major

determinant (a) is common to all strains and corresponds to

production of HBsAb. There are also two pairs of mutually

exclusive subtype determinants which define 4 subtypes of

HBsAg: adw, ayw, adr and ayr (22). The HBsAg subtypes have

geographical specificity. For example, adw predominates in

northern Europe, North and South America, and Australia, while
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ayr is found in northern and eastern Africa, the eastern

Mediterranean, eastern Europe, northern and central Asia, and

India. HBV genotyping now allows distinguishing genotypes from

A to H by PCR. Characteristics of HBV genotypes and subtypes

have been used to investigate maternal transmission, familial

clustering, and geographic distribution of HBV strains (23).

HBV was identified in 1967. Since then, it has come to be

recognized as a cause of hepatitis, cirrhosis, and hepatocellular

carcinoma. HBV is a leading cause of malignancy in SSA.
HBV prevalence and distribution in SSA

Approximately 296 million people worldwide are living with

HBV and 820,000 die annually from related complications (24).

Though effective vaccination has reduced incidence, HBV affects 8%-

18% of the SSA population, with 5-10% of the adult population being

chronically infected (25). Propensity for chronicity (~2%) makes it

the leading cause of cirrhosis and hepatocellular carcinoma in the

region. Most chronic HBV infections result from perinatal

transmission (26). The epidemiology of HBV in Africa is also

intertwined with that of HIV/AIDS, given the overlap in risk factors.

HBV genotypes A, D and E are circulating in Africa. Genotype

A is predominant in southern Africa. African subtypes A1 and Aa

are associated with early HBe seroconversion and lower viral loads

compared to European subtypes A2 and Ae. Genotype D prevails in

North Africa. Genotype D is also associated with early HBe

seroconversion and high rates of HBeAg negative active hepatitis.

Genotype E is observed in the West and Central African regions of

SSA (27).

HBV is transmitted via bodily fluids parenterally, sexually, and

perinatally. Vertical infection is the most common route of

transmission in high endemicity areas, including in SSA. Perinatal

transmission is associated with greatest risk of chronic carriage and

is more common the later a woman is infected during pregnancy

(28, 29). Despite availability of accurate testing and an efficacious

vaccine, access to affordable diagnostics and vaccination coverage

remain suboptimal in SSA (30, 31). Regional awareness of HBV

infection status remains very low, further fueling spread of infection

and unchecked disease progression (32).

HBV has a broad spectrum of clinical manifestations including

asymptomatic disease, fulminant hepatitis, and hepatocellular

carcinoma (HCC). Disease can be acute or chronic, though acute

disease is typically self-limited (33). Chronic disease is much more

common after perinatal transmission versus acquisition in

adulthood. When left untreated, HBV infection can engender

liver fibrosis, cirrhosis, and eventually liver cancer. Low rates of

detection in SSA result in untreated infections and higher rates of

HCC. The confluence of pathogenic mechanisms and epidemiologic

risks have made HBV the leading cause of HCC in SSA.
HBV-associated malignancies

HBV leads to HCC typically after many years of infection and in

the setting of fibrosis. Longitudinal studies of untreated people with
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chronic HBV show a 5-year risk for developing cirrhosis of 8-20%

(34–38). Amongst those with cirrhosis, the annual risk of hepatic

decompensation is approximately 20% and the annual incidence of

HBV-related HCC ranges from <1%-5% (39). Untreated

decompensated cirrhosis carries a poor prognosis, with survival of

15-40% at five years (38–40). Several host and viral factors,

particularly co-infections with HIV, HCV and hepatitis D virus

(HDV), as well as alcohol consumption and underlying liver

disease, increase the rate of disease progression and the risk of

developing HCC (35–38, 41). Other risk factors include age, sex,

serum alanine aminotransferase (ALT) levels, serum HBV DNA

levels, and HBeAg levels (42).

Integration of HBV DNA into host chromosomes has been

found in >80% of HBV associated HCC (43, 44). Specific

integration hotspots have been identified (45), particularly within

the X gene (46–48). HBV DNA integration occurs early in infection

(49), persists, and can activate or disrupt gene expression to

promote chromosomal instability and development of cancer,

metastases, and angiogenesis (50).

Low engagement in routine preventive care in SSA means that

disease progression typically goes unchecked. Approximately 80% of

newly diagnosed HBV in Africa is linked to chronic disease (51), and

hence risk of HCC. Males with HBV are 5-7 times more likely than

females to progress to HCC (52), which is in part attributable to

positive feedback through the androgen receptor (53, 54) and

differing levels of chronic liver inflammation. Further epidemiologic

characterization of the HBV epidemic in SSA is needed to determine

if HCC associations will reflect those seen in other populations.
Future directions

The true extent of HBV infection in the African region has not

been fully characterized. National and subnational level data is

lacking; hepatitis surveillance programs are performing poorly; and

thus (55), priorities are difficult to determine for targeted measures

and resource allocation (56, 57). Several approaches for prevention

and control of viral hepatitis, integration of HBV vaccination into

national immunization programs, and routine vaccination of
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healthcare workers have been proposed (58, 59). With increasing

accessibility of HBV vaccines, more affordable diagnostics, and

effective antiviral drugs, control of SSA’s HBV epidemic is

becoming more feasible.

Addressing the interplay between HBV and HIV co-infection

will continue to be important, as both infections impact SSA and

risk factors overlap (60). Co-infection can accelerate progression of

both infections and inhibit HBV clearance via effects on the host

immune response, thus contributing to increased rates of cirrhosis

and hepatocellular carcinoma (61–71). All people with HBV should

be screened for HIV and vice versa. Accurate assessment of

infection will enable appropriate use of antivirals. For example,

HIV/HBV co-infected people should be treated with two anti-

retrovirals that suppress HBV as part of the HIV treatment

regimen to minimize progression and transmission of both

infections (72). Detection and management of co-infections

should be integrated into current public health systems.

HBV prevention activities in Africa are improving but remain

limited. Full implementation of perinatal HBV vaccination has been

slow in SSA (73). HBV vaccination is a safe and effective HCC

prevention method and must be prioritized (33, 74). Scalable

screening programs are also lacking in SSA, where <5% of people

with chronic hepatitis are aware of their HBV status (30, 55, 75, 76).

Broad implementation of screening should be accompanied by

improved access to indicated follow up and management when

infections are detected (77, 78). Training of healthcare providers

and overcoming structural barriers that perpetuate vulnerability,

marginalization of affected populations and inequitable access to

services will be critical. Although many SSA countries do not screen

or only partially screen donated blood products, transfusion

surveillance (79) indicates that broader screening of blood

products will be needed to reduce transfusion associated

transmission (80, 81–83).

SSA countries should establish a rigorous viral hepatitis

surveillance system. Research on prevention and management

strategies that consider SSA biology and socio-economic structure

should be expanded to complement surveillance. Table 1 shows key

information on factors related to acquisition of infection, disease

course, and prevention strategies for HBV.
TABLE 1 HBV.

Transmission Risk Factors Disease Course Vaccine Target Populations Other Control
Strategies

• Perinatal
• Parenteral
• Sexual

• Maternal
HBV infection
• High
endemicity area
• Risky sexual
practices
• Injection
drug use
• Healthcare
worker
• Skin piercing
and tattoos

• Acute infection, which may self-
resolve
• Chronic infection, which can
progress to cirrhosis or liver cancer
• Asymptomatic disease

• Infants and children
• Health care workers
• Other high-risk groups including drug users, HIV+
individuals and those with underlying liver disease

• Safe sex practices
• Skin piercing and
tattooing safety
• Blood product
screening
• Needle exchange
• Education of
healthcare workers
• Treatment of HBV
infected patients
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Hepatitis C virus

HCV genomic organization and
protein products

Hepatitis C Virus (HCV) is single positive stranded RNA virus

in the family Flaviviridae (84). It contains a 5’ non-translated region

(NTR), a long open reading frame encoding a polyprotein, and a 3’

NTR. The polyprotein is cleaved by host enzymes and viral

proteases into >10 products. Core (C) is an RNA binding protein

which forms the nucleocapsid. E1 and E2 are highly glycosylated

type 1 transmembrane proteins which comprise stable heterodimers

embedded into the lipid envelope around the viral nucleocapsid. P7

is a small hydrophobic peptide which may be a virioporin involved

in release of virions from infected cells. The nonstructural proteins

NS2 - NS5B are primarily required for multiplication of viral RNA.

NS2 and the amino terminal domain of NS3 constitute the NS2/3

autoproteinase responsible for NS2/3 junction cleavage. NS3 has

three different enzymatic functions (85). The amino-terminal

domain forms a serine-type proteinase responsible for processing

at the carboxy terminal of NS3 and the carboxy terminal domain

carries NTPase/helicase activities.

While hepatocytes are the primary host cell, replication also

occurs in peripheral blood mononuclear cells (PBMCs) and B and T

cell lines. When HCV binds the host cell, viral RNA is released from

the nucleocapsid into the cytoplasm, the genome is translated, and

the resulting polyprotein is cleaved into individual proteins. These

proteins form a higher-order multi-protein complex tightly

associated with intracellular membranes. Within this complex, the

positive strand RNA genome is copied into a negative strand RNA

intermediate that serves as a template for synthesis of positive

strand progeny (84). These positive strands may be used for

synthesis of new negative strands, translated, or encapsulated

into virions.

HCV has six major genotypes, though other lesser contributors

have been identified. Each genotype can have multiple subtypes, for

example 1a, 1b, 2a and 2b (85, 86). There is high variability of

genotypes across SSA, particularly in g4 and g7 strains (87).

Furthermore, the DG frame shift allele which encodes an open

reading frame of IFN-l4 is a major variant in Africans and

influences clinical outcomes through modulation of IFN

stimulated gene expression (88). Though initially studied with

relation to IFN-based treatment, this allele is also associated with

delayed response to currently used DAAs (89). Genotypic

predominance not only varies geographically but is also

temporally dynamic in association with population interactions.
HCV prevalence and distribution in SSA

Prevalence of chronic HCV varies from 0.2% to 26% across

countries globally (56). HCV prevalence on the African continent is

estimated to be 6.1%; SSA boasts the largest number of infections at

78 million (55, 90). Within SSA, Central Africa has the highest adult

prevalence of chronic HCV at 9.7%, followed by West Africa with a
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prevalence of 8.3%. Within Central Africa, Burundi and Cameroon

have the highest prevalence of 11.3% and 13.8%, respectively.

Eastern and Southern SSA have chronic HCV prevalence of 5.5%

and 3.8%, respectively (91). Prevalence of chronic HCV is lowest in

North Africa at 2.8% (92). An estimated 71.1 million people

worldwide are chronic HCV carriers, including approximately 18

million in Africa (76, 91). HCV prevalence increases with age, with

the highest rate being reported amongst those >40 years. Chronic

carriers are at risk of developing HCC with increasing age.

Like HBV, transmission of HCV is multi-modal. The most

common route of transmission in SSA is parenteral. Although

injection drug use is not as common in Africa as in many other

parts of the world, it does present a major route of transmission.

Historically an inadequately screened blood supply and reuse of

needles in the medical setting also led to many infections (93, 94).

In conjunction with high rates of sickle cell disease, blood

transfusion has been a major route of acquisition (95). Vertical

transmission is low, but more significant in the setting of

coinfection with HIV. Prevalence of pediatric HCV varies from

0.05% to 0.36% in developed countries and from 1.8% to 5% in the

developing world (96). Incidence of HCV vertical transmission has

been shown to be 3% - 10% (97–99) and higher in infants born to

mothers coinfected with HIV.

While multiple genotypes are present in SSA, genotypes 1 and 4

predominate. Prevalence of specific genotypes also varies by route

of transmission and demographic characteristics (100). Treatment

of HCV is guided by genotype and presence of cirrhosis. Thus,

understanding genotype epidemiology is critical for planning of

management programs in SSA. Although a vaccine for HCV is not

yet approved, highly effective treatment has been available since

2014 when the first direct-acting antiviral (DAA) therapy

ledipasvir/sofosbuvir was approved (101). Most of the DAAs

available inhibit the HCV NS3/4A protease, NS5A protein, and

NS5B polymerase. Prior to availability of DAAs, treatment with

ribavirin and interferon-a was standard and had much lower cure

rates. Provision of DAAs for treatment of HCV is critical for

prevention of hepatocellular cancer and should be supported by

national programs. Selection of DAAs for programs in SSA must be

guided by local epidemiology.
HCV-associated malignancies

Chronic HCV is a well-established risk factor for HCC,

increasing the risk by 10–20 fold. HCV is the second major risk

factor for HCC in Africa after HBV (102). HCC is the fourth most

common cancer in Africa and has varying regional epidemiology

(103). While HCV promotes hepatic (104, 105) and B-cell

lymphoproliferative diseases (106, 107), it may not be the primary

driver of tumorigenesis because it does not integrate into the host’s

genome. HCV likely promotes tumorigenesis through repetitive

damage, regeneration, and fibrosis seen during progression of

cirrhosis (108). Annual incidence of HCC in persons with HCV-

related cirrhosis ranges from 0.5–10% (109). The epidemiology of

HCV disease progression to HCC in SSA has not yet been well-
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characterized but may follow trends seen elsewhere, which suggest a

current increase in HCV associated HCC cases (109).

Risk factors for progression from chronic HCV to HCC have

not been thoroughly characterized in the African population.

Broader studies have shown an association with male sex,

Hispanic ethnicity, HCV genotype 3, longer duration of infection,

co-infection with HBV or HIV, markers of fibrosis, insulin

resistance, obesity, diabetes, tobacco, and alcohol (51, 109) (110).

HCV treatment with achievement of sustained virologic response

(SVR) has the greatest impact on reducing progression (111).

Several large studies of DAAs and meta-analyses (112) have

demonstrated that HCC risk, while not eliminated, is reduced by

50–80% among persons who achieve SVR (113, 114). While HCC

risk is reduced with SVR, the rates do not revert to baseline,

especially among persons with cirrhosis. Long term follow-up of

HCV infected patients who achieved SVR with DAAs has shown

cumulative 1, 2, and 3-year risks of HCC of 1.1%, 1.9% and 2.8%,

respectively. These incidence rates are at or below the threshold for

cost-effective HCC surveillance (115).
Future directions

HCV-associated HCC is a major public health problem in

Africa. SSA health systems should anticipate an increasing

number of HCC patients over the next several years. It remains

unclear when the epidemic will peak, though its dynamics will likely

trail that of HCV-associated HCC in more developed regions.

National screening and prevention programs have been

implemented and should be further expanded. International

organizations should support local efforts through training and

establishment of regionally sustainable facilities. Policy makers

must prioritize control of viral hepatitis and its sequelae on the

African continent.

The high prevalence of HCV infection in Africa necessitates

augmentation of primary prevention efforts including vaccine

development, as well as new approaches to reduce the burden of

chronic liver disease. Vertical transmission of HCV in SSA must

also be addressed. Mother-to-child transmission contributes to the

SSA epidemic proportionally more than in other regions, where

IDU tends to be the leading cause of infection. Standard screening

of the blood supply must also be enforced.

While DAAs are highly effective for treatment of HCV infection,

an estimated 95% of HCV infections remain undiagnosed world-

wide (116, 117). Furthermore, prior HCV infection does not protect
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against HCV re-infection (118). Thus, development of a preventive

HCV vaccine is essential to managing the epidemic; therapeutic

vaccines to treat existing infection may also offer advantages of

DAAs. Development of new assay methodologies and animal models

facilitated discovery of partially effective antibody based vaccines in

the eighties (119). Trials of viral vector vaccines were initiated in the

nineties (120, 121). More recently studied vaccine platforms include

HCV-like particles, recombinant proteins, DNA constructs,

peptides, and novel viral vectors (122–124) (125) An effective

HCV vaccine will likely need to induce robust neutralizing

antibodies as well as multi-specific cellular immune responses.

Advances in understanding of HCV pathogenesis in conjunction

with innovative technologies have given rise to candidate vaccines

currently in clinical trials (126). Deployment of an effective vaccine

will be integral to HCV control in SSA.

Education programs targeting healthcare providers and high-

risk populations should increase awareness about HCV infection,

sequelae, prevention, and treatment. Societal knowledge expansion

will be critical for engaging affected populations and breaking the

cycle of disease transmission. Future research on interruption of

vertical transmission, HCV vaccines and effective use of DAAs in

the SSA context will be helpful. Table 2 shows key information on

factors related to acquisition of infection, disease course, and

control strategies for HCV.
Epstein-Barr virus

EBV genomic organization and
protein products

Epstein-Barr virus (EBV) is a Herpesviridae whose tropism for

lymphocytes has led to it being classified in the subfamily

Gammaherpesvirinae (127). It was discovered in malignant B-

lymphocyte proliferations of children’s jaws by Epstein and Barr

in 1964 (128), consistent with its now established propensity for

infection of the oropharynx and B cells (129). EBV is an

approximately 172 kb double-stranded DNA virus composed of

an icosahedral capsid surrounded by a cell membrane derived

envelope into which viral glycoproteins are inserted. The genome

encodes approximately 100 proteins that regulate gene expression,

DNA replication, and immune responses; roles of several EBV

proteins are still being characterized (130). The genome is divided

by 0.5 kb terminal direct repeat (TRs) and internal repeat (IR)

sequences into short and long sequence domains.
TABLE 2 HCV.

Transmission Risk Factors Disease Course Control Strategies

• Perinatal
• Parenteral
• Sexual

• Maternal HCV infection
• High endemicity area
• Injection drug use
• Risky sexual practices
• Healthcare worker
• Skin piercing and tattoos

• Acute infection, which may self-resolve
• Chronic infection, which can progress to cirrhosis or liver cancer
• Asymptomatic disease

• Treatment of HCV infected patients
• Education of healthcare workers
• Blood product screening
• Needle exchange
• Safe sex practices
• Skin piercing and tattooing safety
• No vaccine available
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Several strains of EBV have been sequenced (131–134).

However, open reading frames (ORFs), genes, and transcription

or RNA processing sites are frequently referenced to specific BamHI

fragments, from A to Z in descending order of fragment size,

because the first sequenced EBV strain B95-8 was sequenced from

a cloned library of EBV DNA BamHI fragments (135). Sequence

analysis has been essential for characterizing EBV. This has enabled

identification of four previously unrecognized ORFs whose

functions are still being elucidated: BFRF1A is likely involved in

DNA packaging by homology with other herpesviruses; BGLF3.5

may be an integumental protein; functions of BVLF1 and BDLF3.5

are less apparent (133).

EBV’s lifecycle starts with primary infection, then proceeds

through latent and lytic phases. The virus enters a new host

oropharyngeally and then infects naïve B lymphocyte by binding

between the major viral envelope glycoprotein gp350/220 and the

CD21 receptor (136) (137) Alternatively, CD35 can serve as

receptor for EBV in the absence of CD21 (138). Viral

glycoproteins gHgL and gp42 interact with HLA on the target cell

surface to facilitate membrane fusion (138, 139). Infection of naïve

B cells engenders polyclonal lymphoblastoid proliferation and

expression of activation markers such as CD23, CD30, CD39 and

CD70. The virus then enters “latency III” (cell proliferation), during

which it expresses the antigens of the latency cycle: the 6 EBNAs

(Epstein-Barr nuclear antigens): EBNA-1, EBNA-2, EBNA-3A,

EBNA-3B, EBNA-3C and EBNA-LP; the 3 LMPs (latent

membrane proteins): LMP-1, LMP-2A and LMP-2B; two non-

polyadenylated non-coding RNAs, EBER1 and 2 (EBV-encoded

RNA transcribed); and transcripts of the BamH1 A region of the

genome, BARTS (139, 140). Details of these protein functions have

been published (139, 141–144). Of note, the LMP-1 region has been

an attractive locus to characterize EBV’s biological, genetic, and

epidemiological properties (145, 146). LMP-1 has been linked to

biological changes that influence transmission, transformation, and

tumor microenvironment (147).

As “latency III” progresses, B lymphocytes differentiate into

memory B cells with somatic hypermutation of immunoglobulin

(Ig) genes and form a germinal center. This marks the beginning of

“latency II” (cell differentiation). When the B lymphocyte divides,

episomal EBV will also replicate. It will then be in “latency I” and

expressing EBNA1. A healthy immune system will control these

lifecycle events such that the virus will enter “latency 0” during

which B cells become long-lived resting CD27+ memory cells. Gene

expression, with the possible exception of some EBNA1, ceases

(139, 140, 148). EBV persists for life in B lymphocytes as a few

copies of closed circular genomic DNA, or episomes, which

duplicate with each mitosis due to EBNA1 (130, 140). It is

estimated that 1 to 50 cells per million B cells are infected with

EBV (140).

The lytic phase is divided into three phases by regulated gene

expression: immediate-early, early, and late. Emergence from

latency involves simultaneous expression of the immediate-early

genes BZLF1 and BRLF1 (149–151). These genes encode the

transactivating proteins ZEBRA (152) (also known as EB1 (153),

Zta (154), and BZLF1) and RTA [also known as BRLF1 (155)],

respectively. Both proteins can be expressed from a 2.9 kb R-Z RNA
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bicistron and a 3.8 kb minor R-Z RNA bicistron transcribed from

the promoter R (Rp). ZEBRA is also expressed from a smaller 0.9 kb

mRNA from the downstream Z promoter (Zp). In addition, another

0.9 KB message encoding putative fusion protein RAZ, which is

composed of parts of RTA and ZEBRA, is transcribed at a low level

(156). RAZ may be a ZEBRA inhibitor, though its role is still under

investigation (157, 158). Synergy between ZEBRA and RTA

suggests that low levels of both proteins can trigger the lytic

cascade. The BRRF1 gene product has recently been shown to

activate Zp and cooperate with RTA to induce lytic infection

(159).Transcription of immediate-early genes does not require de

novo protein synthesis, implying that physiological signals from the

host may activate the lytic cycle (160). Early gene products include

enzymes necessary for viral DNA replication. DNA amplification

marks the beginning of the late phase, during which viral structural

proteins are expressed and assembled into viral particles. DNA is

packaged into these particles before release of infectious virions to

infect new naïve B lymphocytes and new epithelial cells. Healthy

asymptomatic people perpetuate the infection cycle by reactivating

and excreting virus abundantly in their saliva (130, 140, 142).
EBV prevalence and distribution in SSA

EBV is a globally ubiquitous virus. Spread of the virus through

saliva means that exposure is nearly inevitable. Most people are

infected at some point in their lives, often during childhood. Timing

of primary infection is related to hygiene, socioeconomic and

demographic factors. Infection is thought to occur later in more

developed countries (161). Primary infection during early

childhood is common in SSA, which is consistent with the role of

EBV in childhood malignancy there.

Although most of the population is infected with EBV,

manifestations vary across geographic regions. The high impact of

EBV in SSA is reflected by its discovery in the region. In 1964, Denis

Burkitt identified a tumor that was the most common childhood

malignancy in equatorial Africa (162). The tumor, which

subsequently became known as endemic Burkitt lymphoma, was

found to harbor herpesvirus particles later recognized as EBV (128,

163). Endemic Burkitt is mainly found in areas of Africa and Papua

New Guinea with increased malaria prevalence. Risk of progression

to endemic Burkitt lymphoma may be related to severity of past

malaria infection (164). The annual incidence of Burkitt lymphoma

is 4-5/100,000 amongst children less than 18 years old from

equatorial Africa, where 50% of tumors diagnosed during

childhood and 90% of lymphoma cases are attributable to Burkitt

lymphoma (165) (166).

As immunodefic i ency re l a t ed Burk i t t l ymphoma

predominantly affects HIV-infected populations, it is most

common where HIV prevalence is highest. Diffuse large B-cell

lymphoma, for which up to 90% of cases in HIV-infected patients

are associated with EBV infection, also follows HIV epidemiology

(167). Such malignancies tend to occur in more advanced HIV.

Given that SSA has the highest global prevalence of HIV and has

been unable to control the HIV epidemic thus far ,

immunodeficiency related Burkitt lymphoma, diffuse large B-cell
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lymphoma (DLBCL), and other malignancies facilitated by

immune-suppression will be more common in the region.

Of the 83,087 cases of Hodgkin lymphoma reported in 2020,

10,815 (13%) were in Africa. The region accounted for 4,315

(18.5%) of the 23,376 attributable deaths. Age-standardized

incidence and mortality rates were close to the global average

(168). A study using EBV-encoding RNA in situ hybridization

found an EBV prevalence of 54% in Hodgkin lymphoma in

Rwanda. Prevalence did vary across subtypes (169).

Geographic distribution of EBV subtypes is highly variable, as

has been shown for other viral carcinogens, including HPV (170,

171) and HBV (27). These patterns are important for public health,

biology, and diagnosis. They also reflect underlying immunological

pressures that drive diversification through host-pathogen

adaptations in disparate populations. Variation in EBNA-2 and

EBNA-3 genes that underly classification of EBV into types 1 and 2

(133, 172) highlight geographic diversity, though Burkitt lymphoma

and nasopharyngeal carcinoma (NPC) exhibit geographic

distributions and age-specific patterns unexplained by simple

EBV epidemiology (173–175). For example, NPC occurs with

high incidence in Eastern and South-Eastern-Asia and in some

areas of the Middle East and North Africa (176).

Lack of effective EBV infection control strategies and healthcare

infrastructure requirements for effective management mean that

SSA will continue to shoulder a significant burden of EBV

associated malignancy. To further complicate matters, an

individual can be infected with multiple EBV variants based on

LMP-1 sequencing (177). The most practical approach for SSA may

be to control risk factors, including HIV and malaria infection, that

contribute to progression of EBV disease.
EBV associated malignancies

Epstein–Barr virus (EBV) is a ubiquitous human lymphotropic

herpesvirus with a well-established causal role in several cancers. It

is associated with two general types of cancer: lymphoproliferative,

which is mainly B-cell but may also affect T and NK cells; and

epithelioproliferative, which is mostly nasopharyngeal but also

includes certain gastric, mammary and pulmonary carcinomas

(130). We will focus on malignant presentations in this paper, but

one should also be aware of non-malignant presentations. For

example, primary infection in healthy children <5 years old is

typically asymptomatic, whereas 50% of adults and adolescents

may develop infectious mononucleosis (IMN) (140, 178).

Association of EBV with other conditions such as rheumatoid

arthritis, multiple sclerosis, myasthenia gravis, and chronic fatigue

syndrome remains under investigation (130).

Burkitt lymphoma is one of the most concerning EBV associated

malignancies due to its rapid doubling time. It occurs when one of

three translocations dysregulates the c-myc oncogene and is

associated with proliferation of CD19+, CD20+, CD21+, CD10+,

CD77+ and BCL6+ B cells whose origin is the germinal center

(127). There are three types of Burkitt lymphoma: endemic,

sporadic, and HIV related (140, 178). The endemic or “African”

Burkitt preferentially affects bones of the face, most commonly the
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jaw. Endemic Burkitt lymphoma is most common in children 4 to 7

years old and is found in areas with high malaria endemicity (127).

90–95% of cases are EBV positive. Sporadic Burkitt affects young

adults and is localized to the gastrointestinal or respiratory tract. It is

associated with EBV in 15% of cases. HIV-related Burkitt localizes to

the lymph nodes and bone marrow and it is associated with EBV in

30-40% of cases (179). Approximately 20% of lymphomas in PLWH

are attributed to Burkitt and the risk of developing Burkitt has been

estimated to be 200 to 1,000 times higher in PLWH compared to the

general population (179). Treatment of Burkitt lymphoma is

chemotherapy. Since EBV is in latency I in Burkitt lymphoma,

expressing only EBNA1 and EBERs, adoptive immunotherapy is

ineffective because CTLs do not recognize EBNA1 (180).

The role of EBV in Hodgkin’s disease had long been suspected

based on increased incidence of Hodgkin’s in the setting of elevated

anti-EBV antibodies, within 5 years of IMN, and in patients with

IMN (179). The link was confirmed by identification of EBV DNA

in Reed Sternberg cells (HRS). HRS are germinal center B cells that

have undergone functional rearrangement of Ig genes but lack Ig

transcription. Survival of HRS depends on presence of EBV (179).

There are four histological types of Hodgkin’s lymphoma: nodular

sclerosing, mixed cellularity, lymphocyte depleted and

predominantly lymphocytic. Hodgkin’s lymphoma is associated

with EBV in 40 to 65% of cases depending on histological type,

age, and geography (181). Cells are in type II latency with

expression of EBNA1, LMP1 and LMP2A proteins. The NF-KB

pathway is activated due to presence of LMP1 in HRS or

inactivation of NF-KB inhibitors when HRS cells are EBV-

negative (140, 143, 178). Clinically, Hodgkin’s disease presents

with fever, night sweats, asthenia, weight loss, lymphadenopathy,

and hepatosplenomegaly.

Undifferentiated nasopharyngeal carcinoma (NPC) is an

epithelial tumor responsible for approximately 50,000 deaths per

year. The annual mortality rate in Southeast Asia and North Africa

is 4 to 8/100,000 compared to 25/100,000 in Southern China where

it is the leading cause of cancer regionally and amongst those who

emigrate to other areas (127). Genetic and dietary factors

(carcinogen ingestion) have been implicated in development of

the disease in the setting of EBV infection. Malignant NPC

epithelial cells uniformly contain the EBV genome. Peter Clifford

demonstrated this association in Kenyan children in 1972 (182),

though EBV was not classified as a group 1 carcinogen until 1997

(183). In NPC, the virus is in latency II, with expression of EBNA1

proteins and EBERs, and less consistently LMP1 and 2A (140, 143).

MicroRNAs from the BART cluster are also found in plasma of

patients with NPC. These microRNAs may play a role in the

pathogenesis of NPC and have been proposed as a prognostic

marker independent of EBV viral load (184).

Burkitt lymphoma, Hodgkin’s disease and nasopharyngeal

carcinoma are examples of EBV associated malignancies seen in

SSA. EBV can additionally cause several other malignancies. All

have associations with specific phases of EBV latency. Diagnosis

typically occurs after symptomatic clinical presentation; screening is

not standard. Management may include radiation, chemotherapy,

biologics, and immune reconstitution. EBV related malignancies

present a significant burden across age groups in SSA.
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EBV future directions

High global prevalence of EBV in combination with elevated

risk of progression to malignancy in SSA make EBV associated

malignancies a public health priority for the region. Both

prevention of infection and progression to malignancy need to be

addressed. Unfortunately, exposure to EBV is almost unavoidable as

it is transmitted by bodily fluids, particularly saliva. With no EBV

vaccine currently available, most of the population will be infected.

Effective strategies for preventing progression to malignancy are

also lacking, though control of malaria could reduce incidence of

endemic Burkitt lymphoma and control of the HIV epidemic could

reduce incidence of immunosuppression associated Burkitt.

Further elucidation of the relationship between EBV-associated

cancer and malaria will likely reveal prevention and mitigation

opportunities. Epidemiologic associations have long been

recognized, including high geographic correlation between Burkitt

lymphoma incidence and intensity of P. falciparum transmission;

correlation of Burkitt lymphoma incidence by age with age of

acquisition of peak malaria immunoglobulin levels; decreased

incidence of Burkitt lymphoma where malaria mortality has

decreased; and older age of onset amongst people who migrated

from low to high-intensity malaria areas compared to those born in

high-intensity areas (185, 186). Such associations gave rise to

discovery of EBV as a human oncogenic virus (187, 188) (189).

As EBV is not transmitted by mosquitoes, molecular

mechanisms underlying the relationship between P. falciparum

and EBV are of great interest. One study demonstrated that the

cysteine-rich interdomain alpha region (CIDR1a) of P. falciparum
membrane protein 1 acts as a polyclonal activator of B cells. CIDR1a
increases B cell survival, preferentially activates the memory

compartment where EBV persists, and induces virus production in

latently infected primary B cells from healthy carriers and children

with endemic Burkitt lymphoma (190). Studies have also shown that

EBV can be activated by P. falciparum via cytidine deaminase-

induced activation (AID) (191), which increases risk of DNA

damage and lymphoma in murine models (192). This activation

may facilitate preservation of B-cells with dysregulated c-myc

expression that would normally undergo apoptosis (193). Thus, P.

falciparum appears to be a risk factor for endemic Burkitt lymphoma

through AID activation facilitating DNA damage and persistence of

c-myc translocations. Additional research on mechanisms

underlying the association between malaria and Burkitt lymphoma

should be performed to identify disease intervention targets.
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Research on the drivers of latency and its transitions in non-

malaria endemic settings will also be useful. Analyses using

recombinant forms of EBV may facilitate a better understanding

of the role specific viral genes play in the EBV life cycle. Such

information might lead to recognition of new vaccine targets (194)

or therapeutic interventions targeting the function of essential EBV

latent genes. Drugs that prevent binding of EBNA1 to oriP or

interaction of FTTs with LMP1 could be developed (172, 195).

Development of an effective EBV vaccine should be prioritized.

A vaccine that prevents infection would be ideal, though a vaccine

that only reduces progression to malignancy would still have great

impact. In conjunction with an improved understanding of

mechanisms of EBV oncogenesis and development of an EBV

vaccine, malaria vaccines currently being deployed and

continuous improvement of the HIV prevention and care

continuum could reduce associated Burkitt lymphoma cases in

SSA. Fortunately, both malaria and HIV control efforts are

supported through local and international programs.

Further understanding of mechanisms regulating EBV cell

growth, survival and differentiation could also improve clinical

management of those with EBV-associated disease. Adoptive

transfer of EBV-specific CSF has proven useful in the treatment of

immunoblastic B-cell lymphomas; this and other treatment strategies

are currently being evaluated in patients with HD or NPC (196).

Gene therapy strategies that exploit transcriptional regulation of the

EBV genome or target the functional effects of latent EBV genes also

offer possibilities for development of therapeutic and preventive

strategies. Furthermore, continued refinement of longitudinal EBV

viral load monitoring in transplant recipients presents opportunities

for early intervention (194).

EBV genetic variation and host factors likely influence disease

course. Further study on the mechanisms underlying epidemiologic

associations may reveal risk modification strategies. Pathogenic

differences in EBV strains may facilitate prioritization of

vaccination targets. Genome deletions and polymorphisms may

also be useful as predictive biomarkers.

SSA is highly affected by EBV related malignancies.

Manifestations of EBV in the region are influenced by host

factors and other regional conditions such as malaria and HIV.

Inadequacy of healthcare infrastructure also means that cases may

be missed or present with more advanced disease. Mitigating the

socio-economic burden of EBV will require a combination of public

health approaches, clinical research, and basic science investigation.

Table 3 shows key information on factors related to acquisition of
TABLE 3 EBV.

Transmission Risk Factors Example Malignancies Control Strategies

• Saliva (primary)
• Sex
• Blood
• Organ transplant

• Geography
• Close contact
• Blood transfusion
• Organ transplant
• Immunosuppression
• Fomites

• Burkitt’s Lymphoma
• Hodgkin Lymphoma
• Nasopharyngeal Carcinoma
• Post-transplant Lymphoproliferative Disorder
• T-cell Lymphoma
• B-Lymphoproliferative Disease
• T/NK cell Lymphoma
• Primary Effusion Lymphoma
• Gastric Carcinoma

• No vaccine available
• No specific prevention strategies recommended
• No specific control strategies recommended
• Management depends on specific malignancy and patient factors
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infection, EBV associated malignancies, and control strategies

for EBV.
Human papilloma virus

Genomic organization and
protein products

HPV is a small, non-enveloped virus. There are over 120 types

that have been characterized by whole genome sequencing. These

are divided into two major types: a (mucosal infectivity) and b
(cutaneous). Not all types are oncogenic (197). Mucosal HPVs are

split into “high risk” and “low risk” depending on if they cause

potentially malignant or benign lesions. High risk types includes

HPV 16 and 18, which cause ~70% of cervical cancer (198).

Cutaneous HPVs, such as HPV 5, are associated with non-

melanoma skin cancers.

All types of HPV have a ~8 kb double-stranded DNA genome.

The genome is organized into early and late regions (including the

long control region (LCR)). Most HPV genomes encode 8 proteins,

6 in the early region and 2 in the late region. The early proteins (E1,

E2, E4, E5, E6 and E7) are highly expressed during the infectious or

replicative cycle of HPV. E proteins are essential for genome

replication, cytoskeleton remodeling, immune modulation, and

modulation of the cell cycle. Two E proteins, E6 and E7, are

oncogenic (199). However, E5 and E2/4/5 can also play a role in

early oncogenic processes and an alternative carcinogenic pathway

(200). Some HPV types have different isoforms of the E proteins

that may play important roles in modulation of the host cell cycle,

the viral lifecycle and cancer progression (201).The late proteins (L1

and L2) are essential for formation of the viral capsid and

virus assembly.

Unlike many other viruses, there is no viremia or cell-death

with HPV and most infections are asymptomatic; replication is

exclusively intraepithelial and depends on the on the state of

differentiation of the epithelial cell that the virus infects (202).

Thus, most individuals may not know they are infected, which

contributes to HPV being one of the most common sexually

transmitted infections (203). Almost all adults have had at least

one HPV infection; multiple types may integrate into the human

genome (204). Given the asymptomatic nature of HPV infections,

cancer may be the initial clinical presentation.
HPV prevalence and distribution in SSA

SSA has a very high burden of HPV related cancers; 15.8% of all

cancers for men and women can be attributed to HPV in the region

(205). SSA is estimated to have the highest prevalence of cervical

cancer rates in the world (age standardized incidence rate of 31.0

per 100,000 women) (206, 207). While HPVs are found both in men

and women, women are disproportionally affected by HPV cancer

(208). Data on HPV cancer trends in SSA is limited, with cervical

cancer being best characterized. Incidence rates or HPV-associated

oropharyngeal cancer, anal and penile cancer vary across the region;
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penile cancer rates are rising in some parts of Africa while the

incidence of anal and oropharyngeal cancer seems to have remained

low (209). Whether these data reflect actual incidence or changes in

screening is unclear.

Throughout much of the region, there is a general lack of

education about the risks of sexual activity and lack of resources for

screening programs (such as cytology) or early treatment. For

instance, in Mali, only 4.8% of women of reproductive age have

been screened for HPV and cervical cancer. Lack of screening has

resulted in a roughly 80% mortality rate for those diagnosed with

cervical cancer (206). One study from the Democratic Republic of

Congo showed that the highest risk group was women under the age

of 30, particularly those who were HIV-positive (210). HIV-positive

individuals in general have a higher risk for any type of HPV than

HIV-negative individuals (211).

The distribution of HPVs is not uniform in SSA (208, 212). The

high-risk HPV 16 is consistently found across SSA; predominance

of other types varies regionally (212). Moreover, distribution may

also be impacted by HIV status. In one study of women attending a

clinic for cervical cancer screening in Sikasso, Mali, 63% of women

were infected with high-risk HPVs (213). Interestingly, distribution

of types differed by HIV status: HPV35/31/51-52-56 were

associated with HIV-positive women while HPV31/56/52 were

associated with HIV-negative women.
HPV associated malignancies

It has been estimated that roughly 30% of infection-associated

cancers are caused by HPV (214). Most HPV cells are cleared by the

immune response. If the response fails, HPV infection becomes

chronic, and the viral genome can replicate. As this occurs, early

proteins E6 and E7 increase expression (199). E6 and E7 induce

immunosuppression so infected cells are not cleared. Moreover, E6

and E7 are oncogenic proteins that result in genomic instability,

disruption of the cell cycle, cell proliferation, immortalization, and

malignant transformation (215).

Of the mucosal HPVs, 14 cause malignancies, with the majority

being caused by HPV 16 and 18 (198). There are several different

malignancies, the most common being cervical cancer in females.

Females can also experience vulvar and vaginal cancer. Males can

experience penile cancer. Both males and females can experience

anal, oropharynx, and other head and neck cancers. It should be

noted that some types of HPV only cause non-malignant warts,

which will not be addressed in this topic on malignancies.

As cervical cancer is the fourth most common cancer amongst

females globally and a leading cause of death (216), it is the-HPV

associated malignancy that has garnered the most attention. HPV

16 is linked to approximately 50% of cases, while HPV18 is linked to

another 20%. HPV 31, 33, 45, 52, and 58 are responsible for an

additional 19% (217, 218). Additional HPV types are also classified

as high-risk due to their role in cervical cancer, though they cause a

much smaller proportion of disease (219). Additionally, men who

have sex with men are at high-risk for anal infections and cancers;

incidence of these cancer types has been increasing in this

population (220) (221). PLWH also represent a unique
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population when it comes to HPV. PLWH clear the virus less

efficiently than the general population and the overall incidence of

HPV derived-invasive cancer is higher (222). They can also be

infected with multiple HPV types (223). Further, in PLWH, the

distribution of affected anatomical sites, HPV-types (224), and HPV

derived cancers differs from that of the general population (225).

With increasing HPV vaccination coverage, the epidemiology of

cervical cancer and other HPV associated malignancies may shift.
Future directions

Currently, the best protection against high-risk cancer causing

HPVs is vaccination (203). Widespread vaccine coverage, especially

in areas where screening and early treatment programs are lacking

could be an overall public health benefit and could lead to decreased

incidence. Currently, it is estimated that only 20% of girls in SSA is

vaccinated (226), which is one of the lowest rates in the world (227).

Moreover, access to the nonavalent HPV vaccine is extremely

limited, with the mono- and bivalent vaccines being most

available. Furthermore, HPV related malignancy can be caused by

HPV types not covered by the vaccines and HPV vaccination is not

often prioritized as part of national vaccination programs in SSA

(228). One study estimated that 90% vaccine coverage would reduce

peak prevalence by 82% for Mali (229). HPV vaccines have evolved

from bivalent products active only against HPV 16 and 18 to the

current nonavalent vaccine. Current vaccines are effective against

HPV 16 and 18 (206) and low-risk HPV 6 and 11 that cause the

majority of anogenital warts. In addition to the aforementioned

HPV types covered by the quadrivalent vaccine, the nonavalent

vaccine also protects against HPV types 31, 33, 45, 52 and 58. The

nonavalent product is indicated for prevention of cervical, vulvar,

vaginal, anal, oropharyngeal and other head and neck cancers,

genital warts, and some precancerous lesions caused by HPV (230).

While there are many different HPVs prevalent in the region,

especially in Sub-Saharan Africa, the majority of cervical cancer is

still caused by HPV 16 and 18, which means broader vaccination

could have a major impact on HPV associated cancer and warts

(211). Nonetheless, distribution of high-risk HPV types and

associated malignancies could change with pressure from vaccines

and societal factors. It is also likely to be different than the

distribution seen in other geographic locations. Thus, ongoing

regional characterization of HPV epidemiology will be needed to

guide public health efforts.

Given the burden of cervical cancer in SSA, the WHO launched

a campaign to increase vaccination coverage and eliminate cervical
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cancer (231). Following an educational program on HPV, it was

found that vaccine acceptance was high in Bamako, Mali for both

men and woman (206). However, disruptions to educational efforts

and social mobilization have impacted such campaigns, resulting in

disruptions to vaccine coverage, vaccine doses, and a downward

trend in acceptability (231). It is important to reinvigorate such

efforts. Combining these with related endeavors on primary and

secondary prevention would further increase the impact (232).

Additionally, secondary screening for cervical cancer could help

decrease incidence (233). Secondary screening can be performed by

visual assessment in resource limited settings such as SSA; when

more resources are available, genotyping and cytology can be used

to guide follow-up (234). The recommended frequency of

screening, which varies with age and comorbidities, would be

difficult to fully implement in the current SSA setting. Therefore,

a multi-pronged approach is especially important given that HPV

distribution is not uniform and current vaccines do not protect

against all types of high-risk HPVs present in SSA (208, 212).

Communication regarding the safety of vaccines is also essential.

Given the challenges to vaccination and that vaccination does

not cover all types of HPV, there are many opportunities for

research. For instance, we need to better understand how most

HPVs are spontaneously cleared and to develop immunomodulatory

vaccines or small molecule inhibitors that would be effective across

all types (235). Additionally, vaccination is only effective prior to

infection with HPV so development of immunomodulatory vaccines

that could clear previous infections would be highly desirable.

Table 4 shows key information on factors related to acquisition of

infection, disease course, and prevention strategies for HPV.
Human T-lymphotropic virus type 1

HTLV-1 genomic organization and
protein products

Human T-lymphotropic virus type 1 (HTLV-1), also called

Human T-cell leukemia virus type 1, is a single stranded RNA

retrovirus. Study of HTLV-1, the first oncogenic human retrovirus

described, began in 1977 (236) (237) (238). Like HIV, the most

common retrovirus, HTLV-1 targets T cells and reverse transcribes

its RNA to make double stranded DNA that integrates into the host

genome as a provirus. Unlike HIV, its primary mode for

maintaining copy number during natural infection is clonal

expansion as opposed to infection of new cells (239, 240).

Analogous to HIV, the HTLV-1 genome contains gag, pol and
TABLE 4 HPV.

Transmission Risk Factors Disease Course Vaccine Target Populations Other Control Strategies

• Sexual
• Skin Contact

• Sex – vaginal,
anal, and oral
• Skin contact

• Asymptomatic infection
• Can clear spontaneously (immune response)
• Can progress to cervical, vulvar, vaginal, penile,
anal, or oropharyngeal cancer

• Males and females prior to sexual
debut
• Given at older ages in some risk
populations
• Recommended at ages 9-14 for
females by WHO (451)

• Safe sex practices
• Screening programs
• Monitoring of detected
abnormalities
• Treatment of pre-malignant
and malignant lesions
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env genes and is flanked by long terminal repeats (LTR) at the 5’ and

3’ ends. It has additional genes, particularly tax and HBZ, which

regulate persistence and expansion of HTLV-1 infected cells.

Activity varies depending on the balance of sense and anti-sense

transcription (241). At this time, genomic variation is not fully

characterized and association of mutations with specific clinical

phenotypes is unclear (242). While pathogenic mechanisms of

HTLV-1 remain under investigation, induction of cellular

proteins that induce transformation plays a role; pure insertional

mutagenesis or capture of a cellular proto-oncogene are

unlikely (243).

Tax is a transcriptional activator/repressor capable of

modulating expression of multiple cellular genes. It also interacts

directly with diverse proteins, is antiapoptotic and promotes cell

proliferation (244, 245). The tax protein can immortalize cells in

vitro and forced expression in transgenic mice leads to development

of leukemia/lymphoma (246, 247). The primary mechanism of tax

transformation is related to cell cycle reprogramming and

inhibition of DNA repair (248). Tax also induces NFkB activity,

which stimulates expression of cytokines and their receptors,

including those of IL-13, IL-15, IL-2, IL-2Ra and co-stimulatory

surface receptors (OX40/OX40L) (249–251). This activity mimics

the chronic inflammatory process, which promotes oncogenic

progression of many cancers, and triggers proliferation of T-cells

to amplify the pool of HTLV-1 infected cells. Unlike other cancers

in which the inflammatory process is mediated by immune cells in

response to an oncogenic insult, HTLV-1 progression is directly

induced by Tax. In addition to NFkB promoters, Tax also regulates

expression of cellular transcriptional promoters through interaction

with cyclic response element binding protein-AMP (CREB) and

serum response factor (SRF) (252).

HBZ is located on the minus strand of the HTLV-1 provirus. It

encodes a Basic Leucine Zipper Domain (bZIP) protein called

HTLV-1 bZIP factor (HBZ). HBZ regulates 5’LTR transcription

and modulates several cellular signaling pathways involved in cell

growth, immunologic responses, and T-cell differentiation. It has

been known to promote leukemic cell proliferation and induce T-

cell lymphoma and systemic inflammation (253).

Compared to other retroviruses, HTLV-1 is genetically

conserved and evolves slowly via accumulation of point

mutations and recombination (254). Molecular studies suggest an

evolutionary rate between 5.6 x10−7 and 1.5 x 10-6 substitutions/

site/year. This slow rate has been attributed to persistence by clonal

expansion as opposed to new infectious cycles using reverse

transcriptase (255).

Phylogenetic analyses of the LTR region have demonstrated

several HTLV-1 genotypes and subgroups which reflect geographic

distribution (256–259). The three major molecular genotypes are:

Cosmopolitan a-genotype, Central African b-genotype, and

Australo-Melanesian c-genotype. The minor genotypes d, e, f, and

g have also been characterized in Central Africa (260, 261),

particularly in local pygmies (257, 262, 263). The Cosmopolitan

genotype HTLV-1a can be subdivided into geographically related

subgroups: Transcontinental (a-TC), Japanese (a-Jpn), West-

African (a-WA), North-African (a-NA), and Senegalese (a-Sen).

Genetic diversity is low within subgroups. Genotype HTLV-1b is
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found in Central Africa, and is the major genotype in Gabon,

Cameroon, and Democratic Republic of Congo. Strains from the

HTLV-1d genotype constitute a few percent of strains in Central

African countries; genotypes e, f, and g have been sporadically

reported in Cameroon, Gabon, and the Central African Republic.

HTLV-1c, the most divergent genotype, is only in Australo-

Melanesia (255).
HTLV-1 prevalence and distribution in SSA

WHO estimates that 5-10 million people worldwide are infected

with HTLV-1 (238), though this is probably an underestimate due

to inadequate data (264, 265). While HTLV-1 has spread globally,

its geographical distribution is not uniform. The virus is endemic in

Africa (266, 267) and is frequently found in Melanesia, Papua New

Guinea (268), Solomon Islands and Australian aborigines (264).

The greatest genetic diversity is observed in SSA, where six of the

seven genotypes have been found; five of these are mainly in Central

Africa (261).

Studies representing a total of 42,297 participants have shown

seroprevalences of 4.16% (95% CI 2.43-6.31%), 2.66% (95% CI 1.80-

3.68%) and 1.56% (95% CI 0.48-3.15%) in Central, West and

Southern Africa, respectively. Of note, prevalence varied

significantly by year (269, 270). In terms of specific populations,

seropositivity rates range from 1 to >5% of West African blood

donors and pregnant women in Ghana (271), Benin (272, 273),

Mali (274) and Guinea-Bissau (275). One serologic survey in

Guinea-Bissau in 2000 showed a prevalence of 9.3% amongst

blood donors and 3.6% in the general population (276); a prior

survey showed a prevalence of 3.3% of pregnant women (264).

Although serologic data has been the foundation for prevalence

estimates, it may be confounded by antibody cross-reactivity with

malaria antigens (277–279).

HTLV-1 is transmitted primarily through infected body fluids,

including blood, breast milk and semen. Risk factors include

unprotected sex, injection drug use, and transplantation of tissue,

blood, and blood products (280–282). Transfusion of HTLV-

infected blood is the most effective mode of transmission due to

presence of infected lymphocytes. Estimated seroconversion rates

range from 27% to 63% after exposure to seropositive cellular blood

components. Fortunately testing of blood donations for HTLV-1 in

several high-income countries has greatly reduced transfusion-

transmitted HTLV-1 (283). Expansion of blood product

screening, particularly in SSA, presents an opportunity for

improving control of HTLV-1 and its sequelae.

Interruption of mother-to-child transmission is also an

in t ervent ion targe t . The es t imated mother - to-ch i ld

transmission rate is 18-30% (284, 285), which occurs primarily

through breast-feeding as opposed to before or during birth.

Breastfeeding longer than 6 months has been associated with

transmission, leading to the hypothesis that shortening the

duration of breastfeeding may reduce HTLV-I transmission.

However, vertical transmission is more likely multi-factorial as

approximately 3% of children who were not breastfed still

became infected in intervention studies (286–289). As breast-
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feeding is nearly ubiquitous in SSA, control of vertical

transmission will be extremely difficult in the region.

Of HTLV-1 infected patients, an estimated 6.6% of males and

2.1% of females develop adult T-cell leukemia/lymphoma (ATL)

(264). There is also a potential association of both HTLV-1

infection and its sequelae with familial clusters, with up to seven

people in a family affected (290, 291). ATL and HTLV-1-associated

myelopathy/tropical spastic paraparesis (HAM/TSP) were the most

frequently reported sequelae within families. Clustering may be

related to familial transmission of HTLV-1, though other factors

may be involved (292). Characteristics of gender and family

dynamics may hold clues to HTLV-1 associated malignancy in

Sub-Saharan.
HTLV-1-associated malignancy

Approximately 10% of HTLV-1 infected individuals develop

associated disease; most people remain asymptomatic (261, 293).

The virus is best known for causing ATL and HAM/TSP, though it

is also associated with infectious dermatitis, uveitis, crusted scabies,

inflammatory rheumatoid conditions, peripheral neuropathies,

myositis, and atherosclerosis (264, 294, 295). This section will

focus on ATL because it is the only malignancy associated with

HTLV-1.

ATL was the first identified HTLV-1 associated disease, hence

the virus’ name. It is a form of leukemia/lymphoma that derives

from clonal expansion of infected CD4 T cells. These CD4 cells are

presumably part of a long-lived pool of memory T cells with stem

cell properties, though tumors express other T-cell associated

antigens (296). ATL cases do not have distinct molecular or

karyotypic abnormalities. Nonetheless, all cases have clonally

integrated HTLV-1, with the most clinically aggressive variants

manifesting the most extensive chromosomal alterations (297).

Peripheral blood cells may have distinct hyperlobulated nuclei

(298). ATL is classified into four clinical subtypes: acute (60%),

lymphomatous (20%), chronic (10%) and smoldering (10%);

primary cutaneous is an additional provisional subtype. Bone

marrow infiltration, lymphadenopathy, skin involvement,

hypercalcemia and immunosuppression occur to varying degrees

(299, 300). Progression from chronic and smoldering forms to acute

disease can occur (301). Diagnosis is based on immunophenotype,

cell morphology, clinical features and presence of HTLV-1 (302).

Treatment of ATL depends upon clinical subtype. Intervention

may be deferred for non-unfavorable chronic and smoldering

subtypes, thought patients should remain under surveillance.

Acute, lymphomatous, and unfavorable chronic ATL should

undergo chemotherapy. Patients are at risk for hypercalcemia,

tumor lysis syndrome and opportunistic infections during

treatment. Allogeneic hematopoietic cell transplantation can be

considered for those with an appropriate donor; this strategy may

engender a beneficial graft-versus-leukemia effect (303). Regardless

of treatment, prognosis is guarded.

Regions with highest prevalence of HTLV-1 infection have

higher incidence of ATL. This includes Japan, intertropical Africa,

the Caribbean, Central and South America, Romania, and northern
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Iran (304). Japan has the highest regional incidence, with annual

rates approaching 60/100,000 HTLV-1 carriers and an estimated

lifetime risk of 6-7% amongst men and 2-3% amongst women

(305). Most cases stem from HTLV-1 contracted by breast-feeding

and during early childhood (306). It has been estimated that the risk

of ATL in perinatally infected people approaches 25% and that 2-

4% of people will develop ATL within 30 years of HTLV-1

infection (307).

Although not a malignancy, the HTLV-1 associated condition

HAM/TSP merits mention here. This is a chronic and progressive

condition of adults in equatorial areas. It causes weakness, muscle

stiffness and spasms, sensory disturbances, and sphincter

dysfunction. The lifetime risk of HAM/TSP in HTLV-1 carriers is

approximately 0.25-3%, which is lower than the risk of developing

ATL (308, 309). There is no specific treatment, and the condition is

associated with high morbidity and mortality (310, 311). As noted

above, HTLV-1 is also associated with several other non-

malignant manifestations.
Future directions

There is currently no effective and scalable prevention or cure

for HTLV-1 infection. Asymptomatic infection is not treated, and

management of associated disease is suboptimal. Transmission can

occur from asymptomatic carriers through contact and organ or

blood donation. The severity of HTLV-1-associated diseases and

limited treatment options highlight the need for preventative

vaccines and new therapeutic interventions (312). Unfortunately,

no HTLV-1 vaccine candidate has yet progressed to efficacy studies

in humans. Screening of blood and organ donations is helpful but

does not address other major modes of transmission; parenteral,

sexual, and vertical transmission must also be interrupted. Public

health entities should support community-based strategies to

increase awareness and reduce viral transmission.

While research on prevention of HTLV-1 infection and

management of associated diseases is ongoing, clinicians can

focus on early detection, particularly of ATL and HAM/TSP. This

will be a challenge in SSA, where HTLV-1 infection is endemic and

healthcare resources are severely limited. As with many medical

conditions in SSA, people often rely on scarce public health

resources which they access infrequently. Consequently, cases

commonly present in advanced stages. Strategies for risk

prediction should thus be developed. While proviral load has

been suggested as a potential indicator, no single biological

correlate of progression has been identified. In addition to

proviral load, age, family history of ATL and HTLV-1 testing

were identified as risk factors for development of ATL in a

prospective study in Japan (313). Additional investigation can

facilitate optimization of screening approaches.

In addition to research on prevention and management

strategies, further epidemiologic characterization should be

conducted. Understanding of subtype distribution, transmission

patterns and factors that influence risk of progression will enable

targeting of resources where impact will be greatest. A

multipronged approach will provide the best prospect for SSA to
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mitigate HTLV-1 infection and its consequences. Table 5 shows key

information on factors related to acquisition of infection, the

associated malignancy, and control strategies for HTLV-1.
Human herpesvirus-8 or Kaposi
sarcoma-associated herpesvirus

HHV-8 genomic organization and
protein products

HHV-8 is a double-stranded DNA virus of approximately 140

kilobases. Its genome is structured like other herpesviruses, with a

single long unique region flanked by GC-rich terminal repeats at

both the 3’ and 5’ ends (314). While the central region of the

genome is highly conserved, both ends demonstrate significant

variability. Sequencing has revealed 86 genes, 22 of which encode

immunomodulatory proteins (315). ORF-K1 at the 5’ end encodes a

glycosylated transmembrane protein with roles in signal

transduction, viral reactivation, endothelial cell immortalization,

and host immunity (316, 317). High variability of the ORF-K1

distinguishes the six main HHV-8 clades, which are A, B, C, D, E

and F (317–319). The K15 gene at the 3’ end encodes and integral

membrane protein and gives rise to the P (predominant), M

(minor), and N genotypes. Nine additional loci with less

variability than K1 and K15 can be used for subtype

characterization (320, 321). Although the HHV-8 gene map has

changed little since it was first characterized in 1996 (322),

additional evaluation of HHV-8 genotype nomenclature based on

evolving methodology is underway (323).

Consistent with other herpesviruses, the HHV-8 life cycle

includes lytic and latent phases. Latency is the default pathway; it

has been seen in nearly all tissues (324, 325). During this phase, the

viral DNA constitutes a non-integrated plasmid and has limited

expression. One critically expressed gene used for diagnosis of KS

and Primary Effusion Lymphoma (PEL) is latency-associated

nuclear antigen (LANA) from ORF73 (326–328). LANA can

repress transcription of lytic genes and recruit other

transcriptional repressors (329). Lifelong latency is established

primarily in B lymphocytes that reside in tissues, with genomes

being difficult to detect in plasma or PBMC (330).

Reactivation of HHV-8 from latency is initiated when

expression of the replication and transcription activator (RTA)

protein is stimulated. RTA is known as the master lytic switch

protein (331). It competes with LANA for binding to suppressive
Frontiers in Virology 14
co-factors, leading to transactivation of 34 lytic genes (332).

Transactivation of the RTA promoter creates a feed-forward loop

to overcome repression and further increase lytic gene expression

(333). Environmental stimuli such as hypoxia and calcium signaling

can promote RTA activation, which may influence anatomic

localization of associated lesions (334, 335).

Entry of HHV-8 to the lytic phase engenders oncogenesis. Thus,

addressing HHV-8 infection and associated disease is essential for

prevention of morbidity and mortality.
HHV-8 prevalence and distribution in SSA

While HHV-8 causes significant morbidity and mortality, most

infections remain latent. Thus, prevalence is much higher than

reflected by cases of associated malignancy. Estimates based on

seroprevalence in adult populations in Africa or of African origin

suggest that 36-90% of people have been infected. Some studies

showed increasing seroprevalence with age (336–339). In Gabon,

where seroprevalence based on plasma anti-LANA antibodies was

only 36%, locality, age, sex and ethnic group were not correlated

(340). The generally high prevalence of HHV-8 infection in SSA

means that a large proportion of the population is at risk of HHV-8

associated disease.

Within SSA, HHV-8 genotypes A and B predominate, along

with a lower proportion of F (341). Within genotype A, clade A5 is

most prevalent (342). Phylogenetic analyses indicate that circulating

strains are dynamic, with those circulating today being distinct from

those circulating at the height of the HIV epidemic. However,

unavailability of banked samples makes it difficult to elucidate

temporal evolution in Africa (314).

As HHV-8 genotype influences risk of disease progression, it is

important to understand the regional epidemiology of underlying

infection. Analysis of ORF K1-VR1 sequences in blood, serum, and

saliva of 38 patients with Kaposi Sarcoma (KS) found that genotype

A was associated with rapid progression (12/17 cases) and that C

was most common in slow progressors (6/7 cases). Genotype A was

also associated with higher viral load in the blood (343). A South

African study that performed ORF-K1 subtyping of tissue biopsies

from 86 KS patients, 81 of whom had AIDS and 5 of whom had

African endemic-KS, showed that subtypes A5 (38 AIDS + 4

African endemic/86) and B2 (16 AIDS/86) predominate. A5 and

B were found in African blacks and individuals of mixed ancestry.

62/86 (72%) had >10 lesions at presentation; A5 was associated with

>10 KS lesions in patients with AIDS. Thus HHV-8 subtypes A5

may be associated with more extensive disease (318).
TABLE 5 HTLV-1 infection in humans.

Transmission Risk Factors Malignancies Control Strategies

• Vertical, esp. breastmilk
• Sex
• Blood
• Organ transplant

• Geographic
• Breast-feeding
• Close contact
• Blood transfusion
• Organ transplant
• Intravenous drug use

• Adult T-cell Leukemia/Lymphoma (ATL) • No vaccine available
• Screening of blood and organ donations
• Management of ATL depends on clinical status
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Genomic polymorphisms impact disease presentation and may

vary by anatomic site. Whole genome sequencing of Zambian

KSHV revealed phylogenetic segregation from Western

sequences, including polymorphisms in the more conserved

genes. Such geographic diversity may engender differences in

pathogenesis (319). Conversely, analysis of KSHV genomes from

patients and controls in Cameroon revealed that recombination is

common, suggesting multiple KSHV infections can occur. Yet

sequence variation did not correlate with disease risk (344). A

Ugandan study of KSHV genomes from tumors and oral swabs

found that genomes were identical at the point mutation level

within individuals but intra-host tumor-associated KSHV

mutations and genome sequences impacting protein coding were

present (345). On the host side, an association likely exists between

HLA polymorphisms and susceptibility to KSHV infection and

related diseases (346).

Given the high seroprevalence of HHV-8 subtypes associated

with more severe disease in SSA, prevention, screening, and

management strategies are critical. Saliva serves as the main mode

of transmission and infection is common within families. Mother to

child transmission and sex also contribute to varying degrees in

different populations (347). Screening for HHV-8 is not standard,

with infection typically being evaluated only after someone presents

with a disease manifestation. Management varies from

reconstitution of the immune system to multiple cycles of

chemotherapy. Public health strategies to address HHV-8 in SSA

must balance the challenge of prevention, cost of disease

management and socioeconomic context.
HHV-8 associated malignancies

Major malignancies associated with HHV-8 include KS, PEL and

Multicentric Castleman’s Disease (MCD) (348). HHV-8 positive

diffuse large B-cell lymphoma and germinotropic lymphoproliferative

disorder also occur. These cancers are usually found in

immunodeficient patients, but can affect immunocompetent

individuals (349) Manifestations typically arise many years after

acquisition of infection and only in a subset of those who are infected.

Primary HHV-8 infection is usually asymptomatic (350), with

most people seroconverting without progression to malignancy.

However, manifestations vary amongst populations by age and risk

factors (351, 352). Immunocompromised people can develop more

generalized manifestations as well as rapid onset KS (353).

KS is the most common and well-studied malignant

manifestation of HHV-8 infection. It remains one of the most

frequent cancers amongst HIV-infected patients (354) and children

from endemic regions, including Central, Eastern, and Southern

Africa (355). There were 34,270 new cases of KS and 15,086

associated deaths reported worldwide in 2020. Actual morbidity

and mortality are probably greater. Africa shouldered the greatest

burden, with 25,010 (73%) of the cases; 15,457 of those were in the

Eastern Africa region. 13,066 (87%) of the deaths occurred in

Africa, with 9,121 of them in the Eastern Africa region (356).

KS is an angioproliferative, cytokine-driven neoplasm which

frequently presents with peripheral skin lesions (357). Lesions also
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affect the mucosal membranes and viscera, where manifestations

may be due to mass effect or obstruction. Pediatric KS in endemic

regions is known to present in lymph nodes and without skin

findings (358, 359). Four types of KS are recognized. Classic KS is a

slowly progressive cutaneous disease mainly seen in elderly

Mediterranean and Jewish males (360). Endemic KS affects all

ages and is particularly common in SSA (361). This form is not

immunosuppression-associated and is more aggressive,

disseminating to lymph nodes, bone and skin (362). Solid organ

transplant-associated KS occurs post-transplant and may be due to

HHV-8 transmission during transplant. Disease duration is usually

related to immunosuppression, with regression occurring when the

immune system reconstitutes (363). Epidemic KS, also known as

AIDS-related KS, is >20,000 times more common in AIDS patients

compared to the general population. It can also occur in other

immunosuppressed hosts, but is still much more common in AIDS

patients (364).

KS-immune reconstitution inflammatory syndrome (KS-IRIS)

can occur when the immune system of an immunosuppressed

patient with KS recovers. Symptoms such as increase in lesions,

fever, inflammation, and pain occur when the immune system

suddenly recognizes antigens to which it was previously not

responding. KS-IRIS is typically seen in advanced HIV patients

who initiate ART and had KS, though lesions may have been

subclinical (365). It is associated with significant morbidity and

mortality, particularly in Africa where adjunctive therapies may be

less available (366). A study of 58 KS IRIS patients in SSA and the

UK found that KS associated mortality was 3.3 fold higher in SSA

compared to the UK and was predicted by KS-IRIS, lack of

chemotherapy, pre-ART CD4 <200 cells/mL, and detectable

baseline KSHV DNA. All 19 study deaths occurred in the SSA

cohort (367).

KS-Associated Herpesvirus Inflammatory Cytokine Syndrome

(KICS) is a consequence of HHV-8 seen in HIV+ patients with

elevated plasma HHV-8 viral loads. It entails systemic

inflammatory manifestations and high levels of IL-6 and IL-10

(368, 369). KICS overlaps somewhat with other HHV-8 associated

conditions and has high mortality rate.

MCD is an uncommon lymphoproliferative disorder that can

present with generalized lymphadenopathy, hepatosplenomegaly,

and constitutional symptoms including fever, night sweats, weight

loss, and fatigue. Patients are typically cytopenic and can have

hypoalbuminemia, polyclonal hypergammaglobulinemia and

elevated inflammatory markers. MCD often occurs in the setting

of HIV or other etiologies of immunosuppression. It involves

multiple areas of lymphadenopathy that is histopathologically on

the spectrum of hyaline vascular to plasmacytic (370, 371). HHV-

8 causes approximately half of the MCD cases (372). It should be

noted that the unicentric form of Castelman’s Disease, which

affects a single anatomic region, is not associated with HHV-

8 infection.

Although specific diagnostic criteria are not available, MCD is

usually identified through histopathologic examination of lymph

node biopsy. Fluorodeoxyglucose positron emission tomography

(FDG-PET) combined with computed tomography (CT) will reveal

activity at multiple sites, though activity is lower than seen with
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aggressive lymphomas (373). This diagnostic approach is not

broadly feasible in resource limited settings. It is likely that many

cases of MCD go unrecognized in SSA. Management of MCD

depends on the presence of concomitant KS, extent of organ

involvement and underlying immunosuppression. Patients with

HIV will use ART. Rituximab can be used for simple MCD

without organ failure or KS. Chemotherapy is used in more

extensive cases. 5-year survival is >90% with proper management,

though patients remain at risk for developing non-Hodgkin

lymphoma (374).

MCD in the African context has unique features and

management challenges. Characterization of MCD in SSA has

been limited due to incomplete case recognition. Underdiagnosis

of MCD in SSA was suggested by immunohistochemistry positive

LANA and viral IL-6 in 3/64 reactive appearing lymph nodes from a

Ugandan study (375) and identification of only 35 cases in South

Africa from 1990-2014 (376). The first case of MCD in Malawi was

reported in 2014 (377). The same group subsequently reported on a

Malawian cohort of MCD, lymph node KS and NHL. MCD was

typically diagnosed late and associated with high mortality (378).

Building on this study, the first well-characterized prospective

cohort of MCD in the context of HIV SSA revealed only HIV+

KSHV+ MCD, which differs from the heterogenous epidemiology

of MCD in high-income settings where cases can be HIV- and

KSHV-. This is not surprising given the high regional prevalence of

both HIV and KSHV (376).

PEL is a rare and aggressive B-cell lymphoma that typically

occurs in HIV-infected patients, though it can occur in other

immunosuppressive conditions (379, 380). Tumor growth

depends on HHV-8 infection, and sometimes co-infection with

EBV (381, 382). In addition to containing HHV-8 genetic material,

the malignant monoclonal B cells express surface CD38 (383). PEL

tends to occur on serosal surfaces in body cavities such as the

peritoneal, pleural, and pericardial spaces, which is why it is also

known as body cavity based lymphoma. Clinical presentation is

usually due to fluid accumulation, though presentation with solid

tumors is possible (384). Treatment is chemotherapy with ART and

prognosis is generally poor, with survival being approximately 3-6

months (385). The burden of PEL in SSA remains unclear, as cases

are likely much more frequent than recognized in this endemic area

(386, 387).
Future directions

SSA’s confluence of high HHV-8 infection prevalence, high

proportion of more aggressive HHV-8 genotypes, burden of HIV

and lack of healthcare infrastructure have made HHV-8 associated

malignancy a major cause of morbidity and mortality in the region.

While KS, the most common malignant manifestation of HHV-8,

may be recognized clinically, less common manifestations such as

PEL and MCD are inevitably underdiagnosed. Thus, diagnosis and

treatment strategies must be developed within the context of SSA.

For example, rapid case ascertainment, the expeditious evaluation

of a potentially rapidly fatal condition shortly after diagnosis, is

feasible for investigation KS in East Africa but is mostly used in
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resource rich settings (388). One study using rapid case

ascertainment of newly diagnosed KS amongst PLWH in Kenya

and Uganda showed that most patients had advanced disease

despite recommendations for ART for all PLWH. Advanced

disease was heterogeneous and raised questions about the possible

need for different treatment strategies in this group (389). Also, the

most effective chemotherapeutic agents are rarely used in SSA due

to high cost. Yet, modeling can reveal the impact of therapies on life

expectancy and their cost effectiveness to inform efficient allocation

of resources. Given the high prevalence of HIV in SSA, modeling for

AIDS-associated KS is particularly salient (390). In the same

context, T-cell sparing treatments of KSHV associated diseases

should be considered (391). Evaluation of treatment outcomes

with respect to epidemiology of KSHV associated conditions in

children and adolescents should also be enhanced. A study in

Southwestern Tanzania showed favorable outcomes in a varied

cohort, but generalizability of these findings is unclear (392).

As appropriate management requires evaluations of the

malignancy and host factors that may not be feasible given

available resources, prevention of HHV-8 infection would seem to

be a desirable goal. Minimization of progression to malignancy

would be another key target. Effective HHV-8 infection prevention

strategies remain unclear, particularly because routes of

transmission have not been fully elucidated. Saliva is the main

route, though transmission through sex, blood and organ transplant

also occur. Transmission via saliva in combination with high

underlying prevalence in SSA make exposure likely in the general

population. Furthermore, there is no vaccine for HHV-8.

Once someone is infected with HHV-8, likelihood of

progression to malignancy depends on host factors. The main

risk is immunosuppression, most often associated with HIV

infection. SSA has the greatest worldwide burden of HIV and

sub-optimal, though improving, rates of identification and

effective management of PLWH. Thus, prevention of progression

to malignancy will largely hinge upon controlling the HIV

epidemic. Fortunately, progress is being made in this area,

including expansion of publ ic health programs with

international support.

Considering the limited options for prevention of HHV-8

infection and progression to malignancy in those who are

infected, research should be expanded in these areas.

Development of an effective HHV-8 vaccine should be prioritized.

The vaccine would ideally prevent infection by all genotypes but

would still be helpful if it just covered the high-risk genotypes

prevalent in SSA. It should induce sterilizing antibody responses to

prevent primary infection along with T-cell responses to inhibit

cancer development in those who get infected (393). Even a vaccine

that does not completely prevent infection, but prevents

complications, would be valuable. Platforms used in the recent

rapid development of vaccines for COVID-19, and other infections

may facilitate development of an HHV-8 vaccine. Other areas of

research could include scalable strategies for diagnosing less

common HHV-8 associated malignancies, treatment for resource

limited settings, and transmission prevention techniques. These

would be enhanced by further characterization of HHV-8

epidemiology, continued investigation of pathogenesis,
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understanding of host factors including genetic and epigenetic

contributors, and environmental modifiers.

HHV-8 is a common infection in SSA, as well as a significant

cause of morbidity and mortality. Much work remains to be done

on prevention of infection, treatment of complications and novel

research to improve control. Table 6 shows key information on

factors related to acquisition of infection, associated malignancies,

and control strategies for HHV-8.
Human immunodeficiency virus

HIV genomic organization and
protein products

While HIV-1 and HIV-2 are genetically distinct, their genome,

proteins and end stage disease have many similarities. In this

section, HIV refers to both HIV-1 and HIV-2; discussion relevant

to only one type of HIV will be specified accordingly.

HIV is an RNA virus with an approximately 9kb genome

containing nine genes and encoding fifteen proteins. gag, pol and

env are the three major genes constituting most of the genome. gag

encodes the structural proteins Matrix, Capsid, Nucleocapsid, and

p6; pol encodes the enzymes Protease, Reverse transcriptase, and

Integrase; env encodes envelope proteins gp120 and gp41. The

smaller remaining genes code for regulatory proteins Tat and Rev,

as well as accessory proteins Vif, Vpr, Vpu/Vpx, and Nef (394, 395).

Infected cells have integrated DNA copies of the virus, or

proviruses, which are non-defective or defective. Viruses

produced from non-defective proviruses and proteins produced

from defective proviruses can facilitate oncogenesis.

Treatment with antiretroviral therapy (ART) targets specific HIV

proteins at key steps in the viral lifecycle, e.g., reverse transcriptase

inhibitors, protease inhibitors, and integrase inhibitors. Both HIV-1

and HIV-2 are treated similarly with ART. However, the non-

nucleoside reverse transcriptase inhibitors (NNRTI) cannot be used

in HIV-2 due to structural differences in the NNRTI binding pocket

of HIV-2 reverse transcriptase (396). Although three HIV-1 cases

have achieved sterilizing cure through stem cell transplant, lifelong

ART is generally required because there is no scalable HIV cure. If

ART is stopped, the virus rebounds from the integrated proviral DNA

reservoir (397). While ART has toxicities that engender concern

about promotion of oncogenesis, it inhibits the oncogenic effects of

HIV by reducing production of oncogenic proteins and controlling

viral load.
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HIV prevalence and distribution in SSA

Of the estimated 37.7 million people living with HIV (PLWH)

globally in 2020, approximately 25.3 million were in SSA. Most of

the infections are HIV-1, with HIV-2 accounting for an estimated

1-2 million cases (398). Eastern and Southern Africa shouldered the

greatest burden with 20.6 million PLWH compared to 4.7 million in

Western and Central Africa. Access to ART was around 78% for the

general adult population, but lower for pregnant women inWestern

and Central Africa and higher for pregnant women in Eastern and

Southern Africa. The only UNAIDS region with greater adult access

to ART is Western and Central Europe and North America, where

83% of adult PLWH have ART access. Women and girls accounted

for 63% of new HIV infections in SSA during 2020. Amongst

adolescents 15-19 years old, approximately 85% of new infections

were in females (399). Evidence suggests substantial variation in

HIV prevalence across SSA localities. A high-resolution study of

adult epidemiology showed generally higher prevalence in southern

regions, with pockets of high prevalence in other areas. Risk factors

did not consistently align with prevalence; condom use was higher

in southern areas and male circumcision was higher in northern

and central regions (400).

While HIV prevalence is decreasing in SSA, most infections

continue to occur amongst females. Heterosexual sex is the primary

mode of transmission. Populations disproportionately affected

include sex workers, men who have sex with men (MSM),

injection drug users (IDU), transgender persons and prisoners

(401). Prevalence is particularly high in areas of high economic

activity, likely related to seasonal work and commercial sex. High

prevalence areas are clustered around high traffic regions including

border crossings, major highways, ports, and areas of migration

(402). SSA’s already high HIV prevalence is exacerbated by the local

social, political, and economic climate. High levels of poverty, lower

levels of education, and poor healthcare infrastructure hinder

achievement of the UNAIDS “95-95-95” HIV cascade of care

targets, under which 95% of PLWH know their status, 95% of

those diagnosed are on ART and 95% of those on ART achieve viral

suppression by 2030 (403).

Young adults have especially inadequate access to sexual health

resources. Differences between male and female sexual debut, age

disparate sex, transactional sex, multiple partnerships, low condom

use and high background STI rates contribute to vulnerability,

particularly amongst young women (404). While HIV pre-exposure

prophylaxis (PrEP) consisting of oral ARV taken regularly or

around sexual activity is approved, uptake in SSA has been
TABLE 6 HHV-8.

Transmission Risk Factors Malignancies Control Strategies

• Saliva (primary)
• Sex
• Blood
• Organ transplant
*Routes of transmission not fully
understood

HHV-8 Infection
• Geographic
• Close contact
• Blood transfusion
• Organ transplant

Malignancy
• Immunosuppression
• HHV-8 genotype

• Kaposi Sarcoma (most common)
• KS-Associated Herpesvirus Inflammatory
Cytokine Syndrome
• Multicentric Castleman’s Disease
• Primary Effusion Lymphoma
• Diffuse Large B-cell Lymphoma
• Germinotropic Lymphoproliferative Disorder

• No vaccine available
• No specific prevention strategies recommended
• No specific control strategies recommended
• Management depends on specific malignancy
and patient factors
frontiersin.org

https://doi.org/10.3389/fviro.2023.1103737
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Diakite et al. 10.3389/fviro.2023.1103737
inadequate. Challenges including target population engagement,

use associated stigma, adherence requirements, healthcare

infrastructure, provider unfamiliarity, community awareness and

accessibility highlight opportunities for national public health

program development (405, 406). Recent approval of injectable

cabotegravir as PrEP may alleviate some barriers (407).

While HIV-1 and HIV-2 share transmission routes and cause

AIDS, it should be noted that HIV-2 has lower rates of transmission

and slower clinical progression. HIV-2 is also more geographically

localized than HIV-1. Most people with HIV-2 are in West Africa,

or countries with strong ties to the region such as France, Spain, and

Portugal (398). Furthermore, HIV-2 prevalence in West Africa

seems to be declining, likely due to lower virulence and

transmissibility (408). The lower prevalence and pathogenicity of

HIV-2 contribute to it being less well studied and underly the focus

of HIV control efforts on HIV-1.

Understanding the HIV epidemic in SSA, and control strategies,

will be key to minimizing HIV associated complications. PLWH are

at increased risk for morbidity and mortality, including

development of malignancy. Prevention of HIV and associated

cancers will reduce socio-economic burden on the region.
HIV-associated malignancies

HIV is well recognized for enabling oncogenic potential of other

viruses through decimation of immunologic function that typically

suppresses oncogenic activity. While both HIV-1 and HIV-2 are

endemic to SSA, they carry different risks for malignancy. This is

primarily due to varying rates of disease progression, as the

propensity for malignancy is mostly related to degree of

immunosuppression (409). Since HIV-2 progresses much more

slowly than HIV-1, AIDS defining conditions often take decades

to manifest even without ART. Research on HIV-1 and malignancy

has been more extensive due to greater prevalence and societal

impact. For example, the first case of multicentric Castelman’s

disease associated with KSHV in HIV-2 was not reported until

2007, well after it was identified in HIV-1 (410).

HIV associated malignancies considered AIDS defining illnesses

include Kaposi Sarcoma, select non-Hodgkin lymphomas, and

cervical cancer in certain populations. AIDS defining illnesses

typically occur at very low CD4 counts. HPV, which most

notoriously causes cervical cancer, can be oncogenic against any

immunologic backdrop, but persists longer and causes more disease

in HIV infected people. There has been uncertainty about whether

HIV-2 may be slightly more associated with high-grade lesions and

cervical cancer than HIV-1 or whether HPV type and persistence are

the determining factors (411–413). Progression of HHV-8, the

etiology of Kaposi Sarcoma, may be augmented in HIV-1

compared to HIV-2 (414).EBV underlies some types of non-

Hodgkin lymphoma, which has been better characterized in HIV-1

versus HIV-2 (415, 416). Nonetheless, mechanisms of oncogenesis

are similar and the below discussion about HIV-associated

malignancies pertains to both HIV-1 and HIV-2, except as

otherwise noted. As specific malignancies associated with EBV,

HHV-8 and HPV have been previously addressed, this section will
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focus on how HIV acts at the cellular level to potentiate oncogenicity

of these and other viruses, including evidence for direct oncogenesis.

PLWH are at increased risk of developing malignancies despite

effective ART, demonstrating that factors other than CD4 depletion

and exhaustion of lymphopoiesis contribute. Non-AIDS defining

malignancies, including hepatocellular cancer, brain cancer and

squamous cell carcinomas occur at increased frequency and/or

severity in PLWH compared to HIV-uninfected people (417–419).

These malignancies would be expected later in the course of HIV-2 due

to its slower progression. HIV facilitates development of malignancy

via dysregulation of innate immunity, persistent immune activation,

dysfunction of the inflammatory response and immunosenescence

(420, 421). Causes of abnormal immune activation and inflammation

are multifactorial, related to persistent antigen stimulation by viral

proteins and microbial translocation, inadequate generation of

memory cells, and exhaustion of effector cells (422). B and T cell

defects along with aberrant monocyte and natural killer cell function

perpetuate the dysfunction (423–425). Accordingly, CD4:CD8 ratio has

been associated with cancer risk amongst PLWH (426).

Chronic immune activation and dysregulation, reflected by

elevated inflammatory markers (427), enhance oncogenesis

through several mechanisms. Since HIV replicates in activated

CD4 cells, replication and spread increase. CD4 activation also

upregulates CCR5 co-receptor expression, enhancing susceptibility

to HIV infection (428). Impaired immune surveillance

simultaneously occurs due to HIV-induced CD4 lymphopenia

and ineffective CD8 responses (429, 430). CD4 lymphopenia

engenders inadequate production of high-affinity antibodies, and

is associated with high-risk HPV progression (431). T-cell

senescence reflected by reduced T-cell polyfunctionality and T-

cell receptor diversity portend poorer prognosis in certain HIV-

associated malignancies (432). Ongoing inflammation is associated

with HIV disease progression (433, 434) and non-AIDS

comorbidities (435). These mechanisms underly the role of

immunotherapy, including ART, check point inhibitors,

monoclonal antibodies to specific cell types, IL-7, IL-12, and IL-

15 in management of HIV-associated malignancies (436).

In addition to immunomodulatory effects, HIV proteins cause

direct oncogenesis through induction of oxidative stress, integration

into cancer associated and cell cycle regulatory genes, and interaction

with other oncogenic viruses. The HIV proteins tat, gp120, nef, reverse

transcriptase, and matrix protein p17 have been implicated in specific

interactions that provoke cellular transformation, tumor propagation,

and reactive oxygen species (437). For example, HCV and HIV

synergistically increase reactive oxygen species in stem cells and

hepatocytes. This promotes activation of kinases controlling cell

growth, differentiation and apoptosis, which stimulate factors

promoting inflammation and cell death, ultimately potentiating

hepatocellular cancer (438). Furthermore, proviruses in CD4 cells

from individuals on long-term ART can integrate into cell growth

regulatory genes to influence persistence and clonal expansion of HIV-

infected cells (439). A study of 534HIV integration sites and 63 adjacent

HIV env sequences from three individuals on ART for 11.3-12.7 years

demonstrated identical viral sequences integrated at the same position

in multiple cells consistent with infected-cell proliferation. Integrations

were overrepresented in cancer-associated genes (440).
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HIV may also promote oncogenesis via enhancement of age-

related clonal hematopoiesis, which is associated with hematologic

malignancies (441–443). In a prospective cohort study of 220 HIV-1

+ and 226 HIV- participants ≥55 years, clonal hematopoiesis

occurred in 28.2% of HIV-1+ participants and 16.8% of HIV-

participants (p = 0.004); the adjusted odds ratio for occurrence of

clonal hematopoiesis in HIV was 2.16 (95% CI 1.34-3.48, p = 0.002).

Clonal hematopoiesis and HIV-1 infection were independently

associated with inflammatory biomarkers, suggesting a selective

advantage for emergence of clonal hematopoiesis in the context of

chronic HIV and associated inflammation (444).

HIV not only enhances oncogenesis but may also be impacted

by malignancy. Concurrent cancers can induce cytokines that

activate cells (445) containing HIV proviral reservoirs. This may

enhance production of replication competent virus and defective

viral proteins, which stimulate the inflammatory cascade. Cancer

treatments may also interact with ART, leading to reduced efficacy

or impaired CD4 recovery and function (446, 447). Thus

malignancy and HIV act synergistically to promote both diseases.
Future directions

Preventing new HIV infections, identifying existing infections,

effectively treating PLWH and developing strategies to mitigate the

oncogenic effects of HIV will reduce the impact of HIV-associated

malignancies. These approaches require augmentation of existing

infrastructure in SSA and targeted public health programs,

including addressing differences in HIV-1 versus HIV-2. As

problem-based visits often take priority over routine health

maintenance in resource limited settings, opportunities for

prevention and screening of the general healthy population are

limited. Point of care HIV testing and education should be offered at

least once to all presenting for medical care, with regular testing for

at-risk populations. Mobile screening, education of local opinion

leaders and increasing awareness about prevention strategies could

help reduce transmission. For PLWH, cancer screening should be

standardized, and infrastructure should be developed to support

treatment. National registries to ensure continuity of care should

also be established, while protecting confidentiality.

Prevalence of HIV associated malignancies in SSA will reflect

control of the HIV epidemic. In high-income countries, the proportion
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of HIV-related deaths due to cancer is increasing but has transitioned

toward non-AIDS defining cancers in conjunction with improving

ART coverage and HIV control at cancer diagnosis. While assessment

of trends in resource limited settings is more difficult due to lack of

infrastructure and data, they will likely follow the same pattern as better

control of HIV is achieved and cancer screening expands (448). A 2020

review of clinical trials for treatment and prevention of HIV-associated

malignancies in SSA found 11 studies specific to PLWH (449). Several

trials were under the auspices of the National Cancer Institute

supported AIDS Malignancy Consortium, which continues to

expand efforts. AIDS Malignancy Consortium research areas for

Africa include hematologic malignancies, HPV, Kaposi’s sarcoma

and solid tumors (450). Expansion of such multi-national research

networks will be key to addressing the situation in SSA. Future studies

should fully characterize the epidemiology of HIV associated

malignancies, investigate pathogenic mechanisms, and evaluate

treatment, prevention, and screening strategies. Table 7 shows HIV

associated malignancies, affected populations, and approaches to

prevention and treatment of associated malignancies.
Conclusions

Malignancies related to viral infection are increasing in SSA,

where prevalence of viral infections is elevated compared to other

regions. All six viruses classified as oncogenic (EBV, HBV, HCV,

KSHV, HTLV-1 and HPV) per the International Agency for

Research on Cancer impact the region. HIV-1, for which SSA has

the greatest global burden, has also been linked to increasing risk of

malignancy. Public health approaches to prevention of infection,

such as vaccination, safer injection practices, screening of blood

products, antimicrobial treatments and safer sexual practices could

reduce the burden of cancer in Africa.

To combat viral associated malignancies in SSA, policy makers

must prioritize public health programs that increase awareness,

provide prevention resources, offer screening, and administer

treatment. Cultural nuances and socioeconomic constraints must

be considered during implementation of control programs.

Contemporary lifestyle practices, including diet and activity

patterns, will need to be addressed. Social stigma associated with

malignancy will need to be overcome to facilitate discourse and

encourage engagement with available resources. National level
TABLE 7 HIV-associated malignancies.

AIDS Defining Cancers Kaposi sarcoma (HHV-8), select non-Hodgkin lymphomas (EBV), and cervical
cancer (HPV)

Non-AIDS Defining Cancers Cancers more likely to occur in HIV+ people include liver cancer, lung cancer, anal
cancer, oropharyngeal cancer, and Hodgkin lymphoma. Besides HIV, HPV, HBV,
and HCV increase risk.

Key Affected Populations in SSA Females, Commercial sex workers, MSM, IDU, migrant workers, marginalized
populations

Prevention Strategies Prevention of new HIV infections, Early identification and suppressive treatment of
existing HIV infections, Standardization of malignancy screening in HIV care

Treatment Management depends on the malignancy. Cancer specific treatment programs
should be accessible through HIV care providers.
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infection and cancer registries will be helpful for elucidation of local

epidemiology and targeting of efforts.

We anticipate substantial increases in the burden of virally

mediated cancers will occur over the next decade. It is unclear if

this will be due to true increases in incidence or better detection

strategies. Additional research should be conducted to characterize

the dynamic epidemiology of viral oncogenesis more fully, optimize

intervention strategies and accommodate behavioral-social nuances

related to implementation of public health programs in SSA.
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epidemiology of the Epstein-Barr virus: preliminary analysis of an international study -
a review. IARC Sci Publ (1971) (1975) 11 Pt 2):3–16.

175. Hossain A. Seroepidemiology of Epstein-Barr virus infections in a developing
country. J Trop Pediatr (1987) 33(5):257–60. doi: 10.1093/tropej/33.5.257

176. Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. The extent of
genetic diversity of Epstein-Barr virus and its geographic and disease patterns: a need
for reappraisal. Virus Res (2009) 143(2):209–21. doi: 10.1016/j.virusres.2009.07.005

177. Walling DM, Brown AL, Etienne W, Keitel WA, Ling PD. Multiple Epstein-
Barr virus infections in healthy individuals. J Virol (2003) 77(11):6546–50. doi: 10.1128/
jvi.77.11.6546-6550.2003
frontiersin.org

https://doi.org/10.1016/S1773-035X(13)72223-8
https://doi.org/10.1016/S1773-035X(13)72223-8
https://doi.org/10.1016/s0140-6736(64)91524-7
https://doi.org/10.1016/s0140-6736(64)91524-7
https://doi.org/10.1126/science.276.5321.2030
https://doi.org/10.1128/CMR.00044-10
https://doi.org/10.1016/0042-6822(90)90302-8
https://doi.org/10.1016/j.virol.2006.01.015
https://doi.org/10.1016/j.virol.2006.01.015
https://doi.org/10.1038/272629a0
https://doi.org/10.1038/310207a0
https://doi.org/10.3390/ijms20235861
https://doi.org/10.1098/rstb.2000.0783
https://doi.org/10.1016/j.celrep.2013.01.023
https://doi.org/10.1038/nrc1452
https://doi.org/10.1056/NEJM200008173430707
https://doi.org/10.1158/1078-0432.CCR-10-2578
https://doi.org/10.1371/journal.ppat.1000496
https://doi.org/10.1128/JVI.00785-08
https://doi.org/10.1128/mBio.00441-15
https://doi.org/10.1128/JVI.06966-11
https://doi.org/10.1006/scbi.2001.0410
https://doi.org/10.3390/cancers13215451
https://doi.org/10.1056/NEJMra032015
https://doi.org/10.1073/pnas.82.12.4085
https://doi.org/10.1073/pnas.82.12.4085
https://doi.org/10.1128/JVI.54.1.45-52.1985
https://doi.org/10.1128/JVI.65.5.2237-2244.1991
https://doi.org/10.1128/JVI.65.5.2237-2244.1991
https://doi.org/10.1128/JVI.61.12.3672-3679.1987
https://doi.org/10.1128/JVI.63.2.607-614.1989
https://doi.org/10.1128/JVI.64.3.1143-1155.1990
https://doi.org/10.1128/JVI.64.3.1143-1155.1990
https://doi.org/10.3390/cancers12061479
https://doi.org/10.1002/j.1460-2075.1989.tb03576.x
https://doi.org/10.1002/j.1460-2075.1989.tb03576.x
https://doi.org/10.1128/JVI.68.3.1827-1836.1994
https://doi.org/10.1099/0022-1317-77-7-1529
https://doi.org/10.1073/pnas.2108631118
https://doi.org/10.1128/JVI.61.10.3120-3132.1987
https://doi.org/10.1371/journal.pone.0064921
https://doi.org/10.1002/bjs.18004619704
https://doi.org/10.1016/s0140-6736(64)92354-2
https://doi.org/10.1016/s0140-6736(64)92354-2
https://doi.org/10.1186/s12936-020-03312-7
https://doi.org/10.1007/s11912-020-0898-8
https://doi.org/10.1186/s13027-019-0236-7
https://doi.org/10.1186/s13027-019-0236-7
https://doi.org/10.1007/s00432-021-03824-y
https://doi.org/10.1002/ijc.33840
https://doi.org/10.1016/j.virol.2020.11.003
https://doi.org/10.1158/0008-5472.CAN-09-4179
https://doi.org/10.1126/scitranslmed.3002878
https://doi.org/10.1126/scitranslmed.3002878
https://doi.org/10.1073/pnas.59.1.94
https://doi.org/10.1093/tropej/33.5.257
https://doi.org/10.1016/j.virusres.2009.07.005
https://doi.org/10.1128/jvi.77.11.6546-6550.2003
https://doi.org/10.1128/jvi.77.11.6546-6550.2003
https://doi.org/10.3389/fviro.2023.1103737
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Diakite et al. 10.3389/fviro.2023.1103737
178. Tsuchiya S. Diagnosis of Epstein-Barr virus-associated diseases. Crit Rev Oncol
Hematol (2002) 44(3):227–38. doi: 10.1016/s1040-8428(02)00114-2

179. Macsween KF, Crawford DH. Epstein-Barr Virus-recent advances. Lancet
Infect Dis (2003) 3(3):131–40. doi: 10.1016/s1473-3099(03)00543-7

180. Martorelli D, Muraro E, Merlo A, Merlo A, Turrini R, Faè DA, et al. Exploiting
the interplay between innate and adaptive immunity to improve immunotherapeutic
strategies for Epstein-barr-virus-driven disorders. Clin Dev Immunol (2012)
2012:931952. doi: 10.1155/2012/931952

181. Bakkalci D, Jia Y, Winter JR, Lewis JE, Taylor GS, Stagg HR. Risk factors for
Epstein Barr virus-associated cancers: a systematic review, critical appraisal, and
mapping of the epidemiological evidence. J Glob Health Jun (2020) 10(1):10405.
doi: 10.7189/jogh.10.010405

182. Clifford P. Carcinogens in the nose and throat: nasopharyngeal carcinoma in
Kenya. Proc R Soc Med (1972) 65(8):682–6. doi: 10.1177/003591577206500809

183. Proceedings of the IARC Working Group on the Evaluation of Carcinogenic
Risks to Humans. Epstein-Barr Virus and kaposi’s sarcoma Herpesvirus/Human
herpesvirus 8. IARC Monogr Eval Carcinog Risks Hum (1997) 70:1–492.

184. Gourzones C, Ferrand FR, Amiel C, Vérillaud B, Barat A, Guérin M, et al.
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Evidence against a direct cytotoxic effect of alpha interferon and zidovudine in HTLV-I
associated adult T cell leukemia/lymphoma. Leukemia (2000) 14(4):716–21.
doi: 10.1038/sj.leu.2401742

312. Tu JJ, Maksimova V, Ratner L, Panfil AR. The past, present, and future of a
human T-cell leukemia virus type 1 vaccine. Front Microbiol (2022) 13:897346.
doi: 10.3389/fmicb.2022.897346

313. Iwanaga M, Watanabe T, Utsunomiya A, Okayama A, Uchimaru K, Koh KR,
et al. Human T-cell leukemia virus type I (HTLV-1) proviral load and disease
progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in
Japan. Blood (2010) 116(8):1211–9. doi: 10.1182/blood-2009-12-257410

314. Moorad R, Juarez A, Landis JT, Pluta LJ, Perkins M, Cheves A, et al. Whole-
genome sequencing of kaposi sarcoma-associated herpesvirus (KSHV/HHV8) reveals
evidence for two African lineages. Virology Mar (2022) 568:101–14. doi: 10.1016/
j.virol.2022.01.005

315. Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, et al.
KSHV 2.0: a comprehensive annotation of the kaposi’s sarcoma-associated herpesvirus
genome using next-generation sequencing reveals novel genomic and functional
features. PloS Pathog (2014) 10(1):e1003847. doi: 10.1371/journal.ppat.1003847

316. de Oliveira Lopes A, Spitz N, Martinelli KG, de Paula AV, de Castro Conde
Toscano AL, Braz-Silva PH, et al. Introduction of human gammaherpesvirus 8
genotypes a, b, and c into Brazil from multiple geographic regions. Virus Res (2020)
276:197828. doi: 10.1016/j.virusres.2019.197828

317. Lee BS, Connole M, Tang Z, Harris NL, Jung JU. Structural analysis of the
kaposi’s sarcoma-associated herpesvirus K1 protein. J Virol (2003) 77(14):8072–86.
doi: 10.1128/jvi.77.14.8072-8086.2003

318. Isaacs T, Abera AB, Muloiwa R, Katz AA, Todd G. Genetic diversity of HHV8
subtypes in south Africa: A5 subtype is associated with extensive disease in AIDS-KS. J
Med Virol (2016) 88(2):292–303. doi: 10.1002/jmv.24328
frontiersin.org

https://doi.org/10.1038/sj.leu.2400956
https://doi.org/10.1002/(sici)1097-0215(19980504)76:3%3C293::aid-ijc1%3E3.0.co;2-q
https://doi.org/10.1097/00042560-200010010-00010
https://doi.org/10.1128/JCM.38.11.4049-4057.2000
https://doi.org/10.1097/01.qai.0000242465.50947.5f
https://doi.org/10.1016/s0140-6736(85)90461-1
https://doi.org/10.1016/s0140-6736(85)90461-1
https://doi.org/10.1056/NEJM199202063260604
https://doi.org/10.7326/0003-4819-111-7-555
https://doi.org/10.1002/ijc.2910510609
https://doi.org/10.1046/j.1537-2995.1994.34694295061.x
https://doi.org/10.1016/s0140-6736(98)09460-4
https://doi.org/10.1002/(sici)1096-8652(199905)61:1%3C78::aid-ajh13%3E3.0.co;2-w
https://doi.org/10.1002/(sici)1096-8652(199905)61:1%3C78::aid-ajh13%3E3.0.co;2-w
https://doi.org/10.4269/ajtmh.2004.70.158
https://doi.org/10.4269/ajtmh.2004.70.158
https://doi.org/10.1053/jinf.2002.1107
https://doi.org/10.1097/00042560-199600001-00030
https://doi.org/10.1086/315088
https://doi.org/10.4269/ajtmh.2004.70.158
https://doi.org/10.4269/ajtmh.2004.70.158
https://doi.org/10.3389/fmicb.2016.01674
https://doi.org/10.3390/v2092037
https://doi.org/10.3390/v2092037
https://doi.org/10.1128/CMR.00063-09
https://doi.org/10.1128/CMR.00063-09
https://doi.org/10.1093/cid/ciy168
https://doi.org/10.1111/j.1365-2141.2004.04999.x
https://doi.org/10.1111/j.1365-2141.2004.04999.x
https://doi.org/10.1182/blood.V77.11.2419.2419
https://doi.org/10.1097/00000478-198404000-00003
https://doi.org/10.1182/blood-2015-03-632489
https://doi.org/10.1182/blood-2005-09-3801
https://doi.org/10.1002/ijc.20028
https://doi.org/10.1002/ijc.20028
https://doi.org/10.1200/JCO.2008.18.2428
https://doi.org/10.1200/JCO.18.00501
https://doi.org/10.1200/JOP.2017.021907
https://doi.org/10.3389/fmicb.2012.00322
https://doi.org/10.3389/fmicb.2012.00322
https://doi.org/10.3390/v8020040
https://doi.org/10.1111/bjh.15234
https://doi.org/10.7326/0003-4819-117-11-933
https://doi.org/10.1086/423957
https://doi.org/10.1038/sj.leu.2401742
https://doi.org/10.3389/fmicb.2022.897346
https://doi.org/10.1182/blood-2009-12-257410
https://doi.org/10.1016/j.virol.2022.01.005
https://doi.org/10.1016/j.virol.2022.01.005
https://doi.org/10.1371/journal.ppat.1003847
https://doi.org/10.1016/j.virusres.2019.197828
https://doi.org/10.1128/jvi.77.14.8072-8086.2003
https://doi.org/10.1002/jmv.24328
https://doi.org/10.3389/fviro.2023.1103737
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Diakite et al. 10.3389/fviro.2023.1103737
319. Olp LN, Jeanniard A, Marimo C, West JT, Wood C. Whole-genome
sequencing of kaposi’s sarcoma-associated herpesvirus from Zambian kaposi’s
sarcoma biopsy specimens reveals unique viral diversity. J Virol (2015) 89
(24):12299–308. doi: 10.1128/JVI.01712-15

320. Hayward GS, Zong JC. Modern evolutionary history of the human KSHV
genome. Curr Top Microbiol Immunol (2007) 312:1–42. doi: 10.1007/978-3-540-34344-
8_1

321. Poole LJ, Zong JC, Ciufo DM, Alcendor DJ, Cannon JS, Ambinder R, et al.
Comparison of genetic variability at multiple loci across the genomes of the major
subtypes of kaposi’s sarcoma-associated herpesvirus reveals evidence for
recombination and for two distinct types of open reading frame K15 alleles at the
right-hand end. J Virol (1999) 73(8):6646–60. doi: 10.1128/JVI.73.8.6646-6660.1999

322. Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, et al.
Nucleotide sequence of the kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl
Acad Sci U.S.A. (1996) 93(25):14862–7. doi: 10.1073/pnas.93.25.14862

323. Sallah N, Palser AL, Watson SJ, Labo N, Asiki G, Marshall V, et al. Genome-
wide sequence analysis of kaposi sarcoma-associated herpesvirus shows diversification
driven by recombination. J Infect Dis (2018) 218(11):1700–10. doi: 10.1093/infdis/
jiy427

324. Hosseinipour MC, Sweet KM, Xiong J, Namarika D, Mwafongo A, Nyirenda
M, et al. Viral profiling identifies multiple subtypes of kaposi’s sarcoma. mBio (2014) 5
(5):e01633–14. doi: 10.1128/mBio.01633-14

325. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, et al. Lytic
growth of kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture.
Nat Med (1996) 2(3):342–6. doi: 10.1038/nm0396-342

326. Dittmer D, Lagunoff M, Renne R, Staskus K, Haase A, Ganem D. A cluster of
latently expressed genes in kaposi’s sarcoma-associated herpesvirus. J Virol (1998) 72
(10):8309–15. doi: 10.1128/JVI.72.10.8309-8315.1998

327. Kedes DH, Lagunoff M, Renne R, Ganem D. Identification of the gene
encoding the major latency-associated nuclear antigen of the kaposi’s sarcoma-
associated herpesvirus. J Clin Invest (1997) 100(10):2606–10. doi: 10.1172/JCI119804

328. Rainbow L, Platt GM, Simpson GR, Sarid R, Gao SJ, Stoiber H, et al. The 222-
to 234-kilodalton latent nuclear protein (LNA) of kaposi’s sarcoma-associated
herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the
latency-associated nuclear antigen. J Virol (1997) 71(8):5915–21. doi: 10.1128/
JVI.71.8.5915-5921.1997

329. Toth Z, Papp B, Brulois K, Choi YJ, Gao SJ, Jung JU. LANA-mediated
recruitment of host polycomb repressive complexes onto the KSHV genome during
De novo infection. PloS Pathog (2016) 12(9):e1005878. doi: 10.1371/
journal.ppat.1005878

330. Decker LL, Shankar P, Khan G, Freeman RB, Dezube BJ, Lieberman J, et al. The
kaposi sarcoma-associated herpesvirus (KSHV) is present as an intact latent genome in
KS tissue but replicates in the peripheral blood mononuclear cells of KS patients. J Exp
Med (1996) 184(1):283–8. doi: 10.1084/jem.184.1.283

331. Broussard G, Damania B. Regulation of KSHV latency and lytic reactivation.
Viruses (2020) 12(9):1034. doi: 10.3390/v12091034

332. Lu CC, Li Z, Chu CY, Feng J, Feng J, Sun R, et al. MicroRNAs encoded by
kaposi’s sarcoma-associated herpesvirus regulate viral life cycle. EMBO Rep (2010) 11
(10):784–90. doi: 10.1038/embor.2010.132

333. Wang SE, Wu FY, Fujimuro M, Zong J, Hayward SD, Hayward GS. Role of
CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the kaposi’s
sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein
(RAP) promoter in cooperation with the KSHV replication and transcription
activator (RTA) and RAP. J Virol (2003) 77(1):600–23. doi: 10.1128/jvi.77.1.600-
623.2003

334. Dalton-Griffin L, Wilson SJ, Kellam P. X-Box binding protein 1 contributes to
induction of the kaposi’s sarcoma-associated herpesvirus lytic cycle under hypoxic
conditions. J Virol Jul (2009) 83(14):7202–9. doi: 10.1128/JVI.00076-09

335. Zoeteweij JP, Moses AV, Rinderknecht AS, Davis DA, Overwijk WW,
Yarchoan R, et al. Targeted inhibition of calcineurin signaling blocks calcium-
dependent reactivation of kaposi sarcoma-associated herpesvirus. Blood Apr 15
(2001) 97(8):2374–80. doi: 10.1182/blood.v97.8.2374

336. Crabtree KL, Wojcicki JM, Minhas V, Kankasa C, Mitchell C, Wood C.
Association of household food- and drink-sharing practices with human herpesvirus
8 seroconversion in a cohort of Zambian children. J Infect Dis (2017) 216(7):842–9.
doi: 10.1093/infdis/jix399

337. Dedicoat M, Newton R. Review of the distribution of kaposi’s sarcoma-
associated herpesvirus (KSHV) in Africa in relation to the incidence of kaposi’s
sarcoma. Br J Cancer (2003) 88(1):1–3. doi: 10.1038/sj.bjc.6600745

338. Minhas V, Wood C. Epidemiology and transmission of kaposi’s sarcoma-
associated herpesvirus. Viruses (2014) 6(11):4178–94. doi: 10.3390/v6114178

339. Plancoulaine S, Abel L, Tregouet D, Duprez R, van Beveren M, Tortevoye P,
et al. Respective roles of serological status and blood specific antihuman herpesvirus 8
antibody levels in human herpesvirus 8 intrafamilial transmission in a highly endemic
area. Cancer Res (2004) 64(23):8782–7. doi: 10.1158/0008-5472.CAN-04-2000

340. Mamimandjiami AI, Mouinga-Ondeme A, Ramassamy JL, Djuicy DD, Afonso
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