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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible

for the ongoing coronavirus pandemic. Besides vaccines and antiviral drugs,

probiotics have attracted attention for prevention of SARS-CoV-2 infection.

Here, we examined the efficacy of heat-killed Lactiplantibacillus pentosus

ONRICb0240 (b240) against SARS-CoV-2 infection in mice. We observed that

oral intake of heat-killed b240 did not affect virus titers in the respiratory organs

of SARS-CoV-2-infected mice, but did provide partial protection against SARS-

CoV-2 infection. In addition, heat-killed b240 treatment suppressed the

expression of IL-6, a key proinflammatory cytokine, on Day 2 post-infection.

Our results highlight the promising protective role of heat-killed b240 and

suggest a possible mechanism by which heat-killed b240 partially protects

against SARS-CoV-2 infection by modulating host responses.

KEYWORDS

SARS-CoV-2, probiotics, Lactiplantibacillus pentosus ONRICb0240, mouse model,
host responses
Introduction

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), emerged in China at the end of 2019 and has

continued to spread throughout the world. The World Health Organization (WHO)

reported that as of September 2022, about 600 million cases of COVID-19 and 6.4 million

associated deaths have occurred. Vaccination against COVID-19 is currently the most-
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effective first line of defense against severe disease and death;

however, the antigenicity of circulating SARS-CoV-2 variants

affects the efficacy of the COVID-19 vaccines. Therapeutic

monoclonal antibodies and antiviral drugs are available for the

treatment of COVID-19 (1, 2); however, the risk of emerging escape

or resistant viruses drives the need for alternative approaches.

Probiotics are defined as live microorganisms that provide health

benefits to the host when administered in adequate amounts, (3); they

include several genera of bacteria and yeast such as Lactobacillus,

Bifidobacterium, Leuconostoc, Pediococcus, and Enterococcus (4, 5).

Probiotics play an important role in balancing the intestinal

microflora, which leads to modulation of the immune system.

Previous studies have shown that probiotics have antiviral activity

against respiratory viruses such as rhinovirus, influenza virus,

respiratory syncytial virus, and SARS-CoV-2 (6–8). Although

probiotics provide physiological benefits to the host, their safety

profiles remain controversial, because they are live strains (9).

Therefore, there is increasing interest in non-viable microorganisms

or microbial cell extracts to avoid the risks of using live

microorganisms. Lactiplantibacillus pentosus ONRICb0240 (b240)

is an anaerobic, non-sporulating, Gram-positive bacterium

originally isolated from fermented tea leaves. Clinical trials have

demonstrated that heat-killed b240 enhances salivary IgA secretion,

reduces the incidence of the common cold, and alleviates allergic

symptoms (10–12). In addition, we and other groups have previously

reported that oral intake of heat-killed b240 modulates mucosal

immunity, which provides protection against influenza virus,

Streptococcus pneumoniae, and Salmonella infection (13–16). Here,

we evaluated the protective efficacy of heat-killed b240 against SARS-

CoV-2 infection in mice.
Materials and methods

Cells

VeroE6/TMPRSS2 (JCRB 1819) cells (17) were propagated in

the presence of 1 mg/ml geneticin (G418; In vivogen) and 5 mg/ml

plasmocin prophylactic (In vivogen) in Dulbecco’s modified Eagle’s

medium (DMEM) containing 10% Fetal Calf Serum (FCS). VeroE6/

TMPRSS2 cells were maintained at 37 °C with 5% CO2 and

regularly tested for mycoplasma contamination by using PCR,

and confirmed to be mycoplasma-free.
Viruses

Mouse-adapted SARS-CoV-2 was generated by serial passages

of SARS-CoV-2 (gamma: hCoV-19/Japan/TY7-501/2021) (18) in

BALB/c mice. The detailed methods of mouse adaptation are

currently unpublished (manuscript in preparation). Mouse-

adapted SARS-CoV-2 was propagated in VeroE6/TMPRSS2 cells

in VP-SFM (Thermo Fisher Scientific).

All experiments with SARS-CoV-2 were performed in

enhanced biosafety level 3 (BSL3) containment laboratories at the

University of Tokyo and the National Institute of Infectious
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Diseases, Japan, which are approved for such use by the Ministry

of Agriculture, Forestry, and Fisheries, Japan.
Animal experiments and approvals

Animal studies were carried out in accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocols were approved by the Animal Experiment Committee

of the Institute of Medical Science, the University of Tokyo

(approval number PA19-72). All animals were housed under

specific pathogen-free conditions in a temperature control

environment with a 12 h: 12h light: dark cycle, with 50%

humidity and ad libitum access to water and standard laboratory

chow. Virus inoculations were performed under anesthesia, and all

efforts were made to minimize animal suffering.
Experimental infection of mice

Six-week-old female BALB/c mice (Japan SLC Inc., Shizuoka,

Japan) were used in the study. Oral administration of heat-killed b240

was initiated in mice at six weeks of age. Mice were orally

administered heat-killed b240 every day at a dose of 10 mg/mouse,

which corresponds to 1010 cell counts of heat-killed microbe, in 200 ml
of buffered saline for 5 weeks. The control group received saline. The

b240 dose was determined on the basis of previous studies (14, 15).

On Day 21 of heat-killed b240 administration, mice were

intranasally infected with PBS, or with 0.3 or 0.6 MLD50 of

mouse-adapted SARS-CoV-2 [MLD50 = 103.3 plaque forming

units (PFU).] under isoflurane anesthesia. To determine the

effects of oral administration of heat-killed b240 on mouse

mortality, mice were infected with 0.3 or 0.6 MLD50 of SARS-

CoV-2 and their body weight and survival were monitored daily for

10 days post-infection (n = 20 for 0.3 MLD50; n = 10 for 0.6

MLD50). To investigate the effects of oral administration of heat-

killed b240 on viral replication and host immune responses, the

animals infected with 0.6 MLD50 of mouse-adapted SARS-CoV-2

were euthanized on Days 2 and 5 post-infection, and the virus titers

in the nasal turbinates and lungs were determined by using plaque

assays on VeroE6/TMPRSS2 cells.
Pathology

Excised animal tissues were fixed in 4% paraformaldehyde in

PBS and processed for paraffin embedding. The paraffin blocks were

cut into 3-µm-thick sections and mounted on silane-coated glass

slides for histopathological examination. The sections were stained

with hematoxylin and eosin.
Cell preparation and flow cytometry

To isolate single cells from lungs, lung tissue was minced, and

fragments were digested in 5 ml of DMEM containing collagenase
frontiersin.org
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D (Roche, Basel, Switzerland)) for 30 min at 37°C. The single-cell

suspension was filtered through a 70-µm cell strainer and washed

twice with 5 ml of RPMI 1640. Leukocytes were enriched by

centrifugation (14 min, 700 ×g) on a 33% Percoll gradient

(Cytiva, Marlborough, MA, USA) in HBSS, and red blood cells

(RBCs) were lysed by RBC lysis buffer (pluriSelect Life Science UG

& Co.KG, Leipzig, Germany). Cells were then incubated with anti-

CD16/32 Ab (93) to block Fc receptors and stained with antibodies

specific to CD3 (17A2), CD45 (30-F11), CD4 (RM4-5), CD11b

(M1/70), CD8a (53–6.7), CD11c (N418), I-A/I-E (M5/114.15.2),

Ly6G (1A8), and Ly6C (HK1.4) from Biolegend or eBioscience (San

Diego, CA, USA) and Live/Dead fixable aqua (Thermo Fisher

Scientific, Waltham, MA, USA).

Data were acquired with CytoFLEX S (Beckman Coulter Inc.,

Brea, CA, USA) and data analysis was performed using FlowJo

software (FlowJo, Ashland, OR, USA).

Cytokine and chemokine measurement

Under isoflurane anesthesia, twelve mice per group were

infected with 0.6 MLD50 of mouse-adapted SARS-CoV-2 on Day

21 of heat-killed b240 administration. On Day 0 (pre) prior to the

infection, and Days 2 and 5 post-infection, animals were euthanized

and their lungs were collected. For cytokine and chemokine

measurements, homogenates of mouse lungs were processed with

the Bio-Plex Mouse Cytokine 23-Plex (Bio-Rad Laboratories).

Reagent availability

All materials are available from the authors or from

commercially available sources.

Statistical analysis

GraphPad Prism software was used to analyze the data.

Statistical analysis included unpaired Student’s t-tests, Mann-

Whitney tests, the Log-rank (Mantel-Cox) test, and ANOVA with

post-hoc tests. Differences among groups were considered

significant for P values < 0.05.
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Results

To evaluate the prophylactic effects of heat-killed b240 against

SARS-CoV-2, we orally administered heat-killed b240 (10 mg/

mouse) to Balb/c mice once daily for 21 days before intranasal

infection with 0.3 or 0.6 MLD50 (50% mouse lethal dose) of mouse-

adapted SARS-CoV-2. Thereafter, heat-killed b240 was

administered once daily for 10 days. When mice were infected

with 0.3 MLD50, the heat-killed b240 showed statistically significant

improvement in body weight changes and survival (Figure 1A). In

mice infected with 0.6 MLD50, although no significant differences in

body weight or survival were observed between the animals that

were treated with heat-killed b240 and those treated with saline

(control), we observed smaller body weight reductions and better

survival compared with 0.6 MLD50 infection of saline-treated mice

(Figure 1B). Overall, these results suggest that heat-killed b240 may

partially protect against SARS-CoV-2 infection. For detailed

analyses, we chose the higher dose (i.e., 0.6 MLD50) to compare

virus replication and host responses under more severe conditions.

We next assessed the effect of heat-killed b240 on virus

replication in the respiratory tract of mice infected with the

higher dose (0.6 MLD50) of mouse-adapted SARS-CoV-2. No

obvious differences in virus titers in the nasal turbinates and

lungs were found between the animals that received heat-killed

b240 and those that received saline on Days 2 and 5 post-infection

(Figure 2A). Furthermore, there were no differences in lung

histology between heat-killed b240-treated mice and control mice

on Day 5 post-infection (Figure 2B).

Probiotics have regulatory effects on host innate and adaptive

immune responses (19, 20). Therefore, to assess whether heat-killed

b240 can alter immune cell recruitment to the lungs following

infection with SARS-CoV-2 in mice, heat-killed b240-treated mice

were intranasally inoculated with 0.6 MLD50 of mouse-adapted

SARS-CoV-2, and whole lungs were harvested pre-infection (Day 0)

and on Days 2 and 5 post-infection. Flow cytometry analysis

revealed no differences in CD4+T and CD8+T cell numbers in the

lungs between heat-killed b240- and control vehicle-treated mice at

any timepoints (Figures 3A, B). A rapid increase in neutrophil

recruitment was observed in the lungs of infected mice treated with
A B

FIGURE 1

Efficacy of oral intake of heat-killed b240 in SARS-CoV-2-infected mice. Mice were administered heat-killed b240 at a dose of 10 mg/mouse daily
for 21 days prior to infection and for 14 days after infection. Mice in the control group were administered saline. Mice were then intranasally infected
with 0.3 (A) or 0.6 MLD50 (B) of mouse-adapted SARS-CoV-2 on Day 21 of heat-killed b240 administration. Body weight (left panels) and survival
(right panels) were monitored daily for 10 days. The data are presented as the mean percentages of the starting weight ± s.e.m. Weight data were
analyzed by using a two-way ANOVA followed by Dunnett’s test. Survival data were analyzed by using the Log-rank (Mantel-Cox) test. n = 20 for 0.3
MLD50, n = 10 for 0.6 MLD50.
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heat-killed b240 and the control mice on Day 2 post-infection,

although no statistically significant difference in the percentage of

neutrophils was observed between the two groups (Figures 3C, D).

We also saw no difference in the percentage of Ly6chiCD11b+ or

Ly6c+CD11b+ monocytes between the two groups (Figure 3D).

Interestingly, however, the percentage of dendritic cells (DCs) was

significantly higher for infected mice treated with heat-killed b240

compared with the infected control mice on Day 2 post-

infection (Figure 3D).

Proinflammatory cytokines (21, 22), which are the central host

mediators of innate immunity, are essential to recruit immune cells
Frontiers in Virology 04
to sites of infection. These mediators are also associated with

pulmonary inflammation and lung damage. Elevated levels of

proinflammatory cytokines such as IL-6 and TNFa have been

reported in patients with severe COVID-19 (21, 23, 24). We

therefore examined the effects of oral administration of heat-

killed b240 on the expression levels of pro-inflammatory

cytokines (i.e., IL-1a, IL-1b, IL-2, IL-6, IL-12p40, IL-12p70, IL-
17A, TNFa, and IFNg) in mice infected with SARS-CoV-2

(Figure 3E). Consistent with our previous report (14), no

significant differences in cytokine levels in the lungs were found

between non-infected mice that were treated with heat-killed b240
A

B

FIGURE 2

Virologic effect of oral intake of heat-killed b240 in SARS-CoV-2-infected mice. Mice were infected with 0.6 MLD50 of mouse-adapted SARS-CoV-2
on Day 21 of heat-killed b240 administration and euthanized on Days 2 and 5 post-infection. (A) Virus burdens in the lungs and nasal turbinates
were determined by performing plaque assays. The values are means ± s.e.m. (n = 4). Points indicate data from individual mice. The lower limit of
detection is indicated by the horizontal dashed line. Statistical significance was determined with a two-tailed Student’s t-test (lung) or the Mann-
Whitney test (nasal turbinate). (B) Histopathologic examination of the lungs of infected mice (n = 3/group) on Day 5 post-infection. Representative
images of infected mice are shown.
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and those given the control vehicle, indicating that oral

administration of heat-killed b240 does not induce inflammatory

responses (Figure 3E). The expression levels of proinflammatory

cytokines in the lungs of infected mice treated with heat-killed b240

were similar to those in infected mice given the control vehicle,

except for IL-6 on Day 2 post-infection; the IL-6 expression level

was significantly lower for the former than for the latter (Figure 3E).

These results suggest that heat-killed b240 may reduce the early

host inflammatory responses including IL-6-mediated

proinflammatory signaling caused by SARS-CoV-2 infection,

leading to partial protection against SARS-CoV-2 infection.
Frontiers in Virology 05
Discussion

Our previous study showed that oral administration of heat-killed

b240 enhanced protection against a lethal influenza A(H1N1) pdm

virus in a mouse model (14). In the present study, we found that the

oral intake of heat-killed b240 partially protects mice from SARS-

CoV-2 infection. The heat-killed b240 treatment did not affect the

virus titers in the respiratory organs of the mice infected with SARS-

CoV-2; however, this treatment suppressed the expression of

proinflammatory cytokines in the lungs. Previous studies have

reported that heat-killed b240 inhibits the production of pro-
A B

D

E

C

FIGURE 3

Immunologic effect of oral intake of heat-killed b240 in SARS-CoV-2-infected mice. Mice were infected with 0.6 MLD50 of mouse-adapted SARS-
CoV-2 on Day 21 of heat-killed b240 administration. On Day 0 (pre) prior to the infection and Days 2 and 5 post-infection, mice were euthanized
and their lungs were harvested. (A–D) Frequency of immune cells in lungs examined by use of flow cytometry. Representative gating strategies used
to identify CD4+T and CD8+T cells (A), and neutrophil, monocytes, and dendritic cells (C) are shown. Cell frequency data are shown (n = 4/group)
(B, D). The values are means ± s.e.m. (n = 4). Points indicate data from individual mice. Statistical significance was determined with a two-way
ANOVA followed by Tukey’s multiple comparisons test. (E) The expression of proinflammatory cytokines in mouse lungs is shown. Vertical bars show
the mean ± s.e.m (n = 4). Points indicate data from individual mice. Data were analyzed by using a two-way ANOVA with Tukey’s multiple
comparisons test. All values were normalized to the mean value of the saline-treated mice on Day 0 (pre) prior to the infection.
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inflammatory cytokines such as IL-6 and TNF-a after Streptococcus

pneumoniae infection in mice (10) and that probiotics such as

Bifidobacterium longum MM-2 and Lactobacillus plantarum 06CC2

inhibit the production of pro-inflammatory cytokines such as IL-6 and

TNF-a after influenza virus infection in mice (25, 26). In addition, we

previously showed that heat-killed b240 modulates the expression

levels of genes involved in metabolism and antiviral responses in mice,

which may result in the partial protection of pdmH1N1 influenza

virus-infected mice by heat-killed b240 (14). Recent studies indicated

that tightly regulated microbiota-host interplay influences the

establishment of the immune system, which affect the outcome after

pathogen-infection (27–30). Therefore, it is possible that heat-killed

b240 could have altered the microbiota-host interaction, leading to the

inhibition of IL-6 production in SARS-CoV-2-infected animals.

Further investigation is needed to assess how heat-killed b240

treatment leads to the suppression of IL-6 production in virus-

infected mice. Overall, these findings suggest that oral

administration of heat-killed b240 may modulate the host immune

responses in lungs infected with respiratory viruses such as influenza

virus and SARS-CoV-2. Recently, several studies have reported

improved outcomes in COVID-19 patients who received probiotics

in clinical trials, suggesting promising beneficial effects of probiotics as

part of COVID-19 management (31). It would be interesting to extend

our study and examine the effect of b240 in COVID-19 patients.

We found that DCs were slightly but significantly increased in

heat-killed b240-treated mice on Day 2 post-infection. Previous

studies have demonstrated that DCs induce cytotoxic T

lymphocytes (CTL)-mediated antiviral immunity (32, 33), which

suggest that increased levels of DCs may contribute to protection

upon SARS-CoV-2 infection. How DCs are recruited or induced in

the lungs of SARS-CoV-2-infected mice upon oral administration

of heat-killed b240 should be examined in a future study.

In conclusion, our data suggest that oral intake of heat-killed

Lactiplantibacillus pentosus ONRICb0240 promotes the survival of

SARS-CoV-2-infected mice.
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