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The SARS-CoV-2 variant XBB.1.5 is of concern as it has high transmissibility.

XBB.1.5 currently accounts for upwards of 30% of new infections in the United

States. One year after our group published the predicted structure of the

Omicron (B.1.1.529) variant’s receptor binding domain (RBD) and antibody

binding affinity, we return to investigate the new mutations seen in XBB.1.5

which is a descendant of Omicron. Using in silico modeling approaches against

newer neutralizing antibodies that are shown effective against B.1.1.529, we

predict the immune consequences of XBB.1.5’s mutations and show that there is

no statistically significant difference in overall antibody evasion when comparing

to the B.1.1.529 and other related variants (e.g., BJ.1 andBM.1.1.1). However,

noticeable changes in antibody binding affinity were seen due to specific amino

acid changes of interest in the newer variants.
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Introduction

In late November 2022, the United States Centers for Diseases Control stated that they

began tracking a new SARS-CoV-2 variant known as XBB.1.5. At that time, XBB.1.5 was

responsible for around 3% of all infections. Since then, XBB.1.5 has grown to represent 30%

of all infections by January 2023 (1, 2). XBB.1.5 is characterized by 40 mutations in the

Spike protein, 22 of which are in the receptor binding domain (RBD) (3). The highly

prevalent mutations in the RBD are shown in Table 1 below.

A health concern is that XBB.1.5 may evade existing antibodies derived from

therapeutics, vaccination, and or previous Omicron (B.1.1.529) infection. It has been

proposed that XBB.1.5 is a recombinant strain of the virus from BJ.1 and BM.1.1.1 as
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portions of the mutated Spike protein appear to be from each parent

strain (4, 5). However, alternative hypotheses such as convergent

evolution may also explain the similarity of portions of XBB.1.5’s

mutated regions to those seen in other variants (6, 7). In our

previous work on the prediction of the receptor binding domain

(RBD) structure of the Omicron variant, our process provided

robust predictions, having a root mean square deviation of atomic

positions (RMSD) of 0.574Å between the predicted and empirically

derived Omicron RBD structure (PDB: 7t9j) (8). Furthermore, our

previous study proved useful as a predictive gauge of antibody

efficacy several weeks prior to when empirical validations of the

Omicron-antibody binding changes could be performed (9).

In this study, we use the methodology in our previous work to

investigate XBB.1.5 and related variants (B.1.1.529, BJ.1, and

BM.1.1) and expand the antibodies of interest to include more

recently developed anti-Omicron antibodies. At the molecular level,

we further elucidate the antibody binding and interfacing residues

between three commercially-available antibodies: bamlanivimab,

bebtelovimab, and tixagevimab and the RBD structure of each
Frontiers in Virology 02
SARS-CoV-2 variant. We consider in vitro studies with existing

antibodies and older variants to predict performance on XBB.1.5.
Results

Given the four SARS-CoV-2 variants (B.1.1.529, BJ.1, BM.1.1,

and XBB.1.5) and 10 antibodies, 40 in silico docking experiments

were performed. As shown in Figure 1, the mean performance of

the included neutralizing antibodies is similar across the four

variants, with XBB.1.5 binding results being congruent to that of

B.1.1.529. Furthermore, across the 10 antibodies tested, the binding

affinities seen in XBB.1.5 are not weakened compared to B.1.1.529,

nor are the differences statistically significant.

When assessing overall antibody performance against BJ.1, we

see weakened Van der Waals energies as compared to the other

three variants. This is depicted in the Uniform Manifold

Approximation and Projection (UMAP) in Figure 2 where the

position of some antibodies on the BJ.1 UMAP are increased

(leading to decreased binding affinity). However, desolvation

energies and the buried surface areas are slightly improved

overall when comparing BJ.1 results to the other three

variant results.

Note that the comparisons shown in Figure 1 represent the

singular best HADDOCK output for each antibody-RBD pair.

Further investigations using PRODIGY (10) are reported for the

top 4 complexes per antibody-RBD pair in Supplementary

Materials, Figure 9.

While there are instances of overall antibody performance

increasing or decreasing in singular comparisons, we do not see

an overarching pattern that indicates that XBB.1.5 has evolved

antibody evasion over B.1.1.529 (or BJ.1 and BM.1.1.1). In other

words, XBB.1.5 does not appear to have evolved past current

antibody defenses, specifically concerning the ten antibody

structures tested in this study.
Structural changes in antibody binding
affinity

Of the ten antibodies tested in this study, we focus on the

structural bases in which the antibodies LY-CoV555, LY-CoV1404,

and AZD8895 work. The neutralization mechanisms of three

antibodies have been extensively studied. These three antibodies

have been available as therapeutics for treatment against COVID-19

infections (either currently or previously in the United States under

Emergency Use Authorization) (11–13).

Bamlanivimab (LY-CoV555).
We see a consistent interaction between Bamlanivimab (LY-

CoV555) and the variant RBDs at R/Q493. This differs from (14),

which states that F490 and S494 in the RBD are the interfacing

residues in this region.

The PyMOL structural visualizations of the potential

interaction residues coincides with the overall metrics returned
TABLE 1 Prevalence of mutations in receptor binding domain of XBB.1.5.

Mutation Sequences Prevalence

G339H 10,000 98.35%

R346T 9,992 98.27%

L368I 9,839 96.76%

S371F 9,857 96.94%

S373P 9,856 96.93%

S375F 9,860 96.97%

T376A 9,852 96.89%

D405N 9,895 97.32%

R408S 9,616 94.57%

K417N 9,329 91.75%

N440K 9,687 95.27%

V445P 9,653 94.94%

G446S 9,673 95.13%

N460K 9,757 95.96%

S477N 9,984 98.19%

T478K 9,960 97.95%

E484A 9,943 97.79%

F486P 9,919 97.55%

F490S 9,927 97.63%

Q498R 9,970 98.05%

N501Y 9,983 98.18%

Y505H 9,969 98.04%
Prevalence is calculated as the percentage of samples (out of 10,168 from GISAID captured
on February 12, 2023) that contain that mutation. Positions are numbered as their location
in the larger Spike protein. These mutations are in comparison to the NC_045512.2
reference genome.
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from the HADDOCK analyses shown in Table 2. LY-CoV555

shows the worst overall performance against BJ.1, while the

performance against B.1.1.529, BM.1.1.1, and XBB.1.5 are quite

similar. Though not shown in Figure 3, the latter three complexes

show a higher number of interfacing residues overall than in BJ.1,

thus supporting the reported affinity metrics.
Frontiers in Virology 03
Bebtelovimab (LY-CoV1404)
Westendorf et al. (15) demonstrated that Bebtelovimab (LY-

CoV1404) antibody binding affinity may not be affected by RBD

mutations at E484, F490, Q493. Shown in Figure 4, we see

consistent interactions from this antibody across all four variants

around most of these positions despite mutations.
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FIGURE 1

Boxplots of antibody binding performance by SARS-CoV-2 variant. Wilcoxon p-values are shown to assess the statistical significance of the
differences between overall variant-antibody performance. (A) represents the composite HADDOCK score (lower is better) and is defined as 1.0 van
der Waals energy + 0.2 electrostatic energy + 1.0 desolvation energy + 0.1 restraints energy. (B) represents the van der Waals intermolecular energy
(lower is better). (C) represents the electrostatic intermolecular energy (lower is better). (D) represents the desolvation energy (lower is better).
(E) represents the buried surface area (higher is better). (F) represents the predicted change in Gibbs energy from PRODIGY (lower is better).
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These findings for LY-CoV1404 are congruent with the

reported affinity metrics from the HADDOCK analyses shown in

Table 3. Overall, HADDOCK scores are stable across the four

variant complexes. The antibody LY-CoV1494 is predicted to have

a slightly weaker interaction with XBB.1.5 than the other

three variants.

Tixagevimab (AZD8895)
For tixagevimab (AZD8895), as reported in Dong et al. (16),

there is a critical contact residue at F486 on the RBD. This residue is

interfaced in B.1.1.529, BJ.1, and BM.1.1.1. However, the F486

residue is mutated to proline at this position in XBB.1.5, though

interactions from the antibody to the adjacent RBD residues at

G485 and N487 of the RBD still occur. See Figure 5.

From the HADDOCK metrics shown in Table 4, this F486P

mutation increases the binding affinity with the AZD8895,

especially in terms of Van der Waals and electrostatic energies.

Interfacing residues are abundant across all four of these AZD8895-

RBD complexes (in addition to those shown in Figure 5), thus

providing additional agreement to the strong affinity metrics

reported by HADDOCK.
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In addition, there is considerable agreement between the

interfacing residues detected from the HADDOCK complexes

with the active and passive residues predicted by CPORT (17),

listed in the Supplementary Materials, Table 7 and Figure 8.
Methods

Our in silico modeling approach includes the curation or

generation of the RBD structures for four SARS-CoV-2 variants

and ten neutralizing antibody structures. Next, each antibody

structure was docked against each RBD structure and binding

affinity metrics were collected for comparison.
RBD structures

The Spike protein structure of the SARS-CoV-2 Omicron

variant (B.1.1.529) was obtained from Protein Data Bank (PDB:

PDB: 7t9j) (18). This structure was then trimmed to the RBD

residues 339-528.
FIGURE 2

UMAP scatter plot of antibody binding affinity metrics with a variant in each quadrant. Note that a higher UMAP value is likely indicative of worse performance.
TABLE 2 Docking metrics for the LY-CoV555 antibody against the four RBD variants.

Metric B.1.1.529 BJ.1 BM.1.1.1 XBB.1.5

HADDOCK score -105.1 ± 8.4 -70.5 ± 10.7 -105.3 ± 3.1 -93.4 ± 8.7

Van der Waals energy -87.8 ± 5.1 -65.1 ± 6.2 -95.3 ± 6.1 -87.3 ± 2.6

Electrostatic energy -237.1 ± 14.3 -184.9 ± 39.4 -148.7 ± 14.1 -168.2 ± 18.7

Desolvation energy -12 ± 1.2 -17.1 ± 5.2 -18.7 ± 3.6 -13 ± 3

Buried Surface Area 2498.1 ± 63.6 2155.5 ± 97.3 2462.9 ± 68.0 2386 ± 52.3

Average DG (s) -14.78 (0.13) -14.16 (0.26) -14.59 (1.15) -14.21 (0.86)
f
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RBD sequences for BJ.1, BM.1.1.1, and XBB.1.5 were derived

from representative samples found on GISAID:
Fron
BJ.1: EPI_ISL_16182897

BM.1.1: EPI_ISL_15658180

XBB.1.5: EPI_ISL_16505393
The RBD structures of BJ.1, BM.1.1.1, and XBB.1.5 were

predicted with these sequences using AlphaFold2 (ColabFold-

mmseqs2 version) (19, 20). Next, the most confident structure of

each was used in docking analyses.
Antibody structures

Representative antibody structures were collected from various

Protein Data Bank entries ranging from antibodies derived from

infected patients (or patients with breakthrough infections) or

commercially available antibodies used in the treatment of

COVID-19. See Table 5.

Only a fragment antigen-binding (Fab) region of the antibodies

was used in the docking analyses.
tiers in Virology frontiersin.o05
Docking

To prepare the Fab structures, we renumbered residues

according to HADDOCK’s requirements such that there are no

overlapping residue IDs between the heavy and light chains of the

“Fab's .PDB file.” Residues in the Fab structures’ complementarity-

determining regions (CDRs) were selected as “active residues” for

the docking analyses.

Residues in the S1 position of the RBD were selected as the

“active residues” of the RBD structures. Since all of the input RBD

.PDB files were renumbered to numbers 339-528, all of the input

RBD files share the same “active residue” numbers.

Each of the ten antibody structures where docked against each

of the four RBD structures using HADDOCK v2.4, a biomolecular

modeling software that provides docking predictions for provided

structures (26).

The HADDOCK system outputs multiple metrics for the

predicted binding affinities and an output set of .PDB files

containing the antibody docked against the RBD protein.

PRODIGY, a tool to predict binding affinities using Gibbs energy,

reported as G in Kcal/mol units), was also run on each of the

complexes (10).
FIGURE 3

Interfacing residues of interest from the LY-CoV555 antibody (in pale pink) against the four RBD structures.
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This process resulted in forty sets of docked structures. Each set

contains many antibody-RBD complex conformations, from which we

selected the top-performing structure for each antibody-RBD pair. We

used this top-performing complex for subsequent structural

investigations into interfacing residues and docking positions.

These analyses were performed on the antibody-RBD structure

pairs shown in Figure 1. The multiple metrics were used to assess

the overall binding affinity changes between SARS-CoV-2 variants

across multiple representative antibodies.

Further, the docked Protein Data Bank Files (PDB) were

manually reviewed using PyMOL (27) to search for interfacing
Frontiers in Virology 06
residues and polar contacts between the RBD and Fab structures

that may indicate neutralizing activity.
Conclusions

Building on our previous work (8) in studying Omicron’s

structure, we have continued to demonstrate the utility of in silico

modeling for predicting whether antibody binding affinity changes

with the evolution of new SARS-CoV-2 variants. Given that in vitro

assessment of protein structure and antibody binding experiments
FIGURE 4

Interfacing residues of interest from the LY-CoV1404 antibody (in light purple) against the four RBD structures.
TABLE 3 Docking metrics for the LY-CoV1404 antibody against the four RBD variants.

Metric B.1.1.529 BJ.1 BM.1.1.1 XBB.1.5

HADDOCK score -124 ± 1.1 -115.4 ± 1.8 -110.9 ± 6.3 -109.1 ± 8.5

Van der Waals energy -78.6 ± 10.8 -63.9 ± 4.7 -75.8 ± 5.4 -74 ± 3.0

Electrostatic energy -262.1 ± 24.3 -337.7 ± 27.6 -290.7 ± 16.1 -291.8 ± 7.3

Desolvation energy -30.5 ± 7.1 -23 ± 6.2 –2.7 ± 2.8 -4.5 ± 3.5

Buried Surface Area 2457.2 ± 111.6 2365.5 ± 71.9 2467.1 ± 80.9 2454.9 ± 65.1

Average DG (s) -16.47 (0.78) -12.65 (0.53) –19.90 (0.59) -13.54 (0.88)
frontiersin.org
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Interfacing residues of interest from the AZD8895 antibody (in bright green) against the four RBD structures.
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are costly and take an extended time, in silico computational

modeling provides a more economical and faster method near or

at empirical resolution. Our previous in silico results were

confirmed via an empirical study reported by (9).

With computational modeling we rapidly predict the potential

severity of a new variant and provides predictions on antibody

binding affinity. These predictions inform public health

considerations and provide a method of rational drug design

based on expected therapeutic and vaccine (and booster) efficacy.

Computational modeling can be used to rapidly infer the public

health consequences of a new variant in terms of the loss of efficacy
Frontiers in Virology 07
of antibodies, such as breakthrough infections and associated

healthcare burden.

For XBB.1.5 specifically, there are residue mutations of interest

that may affect antibody binding of the various S1 region-binding

antibodies tested here. Comparing previous reports on older variants

concerning the three main antibodies discussed here to our

computational results shows strong agreement between previous

empirical results and our new in silico predictions. Mutations in

XBB.1.5 (and BJ.1 and BM.1.1.1) are not predicted to disrupt the

overall tertiary structure of the RBD and are predicted to be very

similar to B.1.1.529 (RMSD ≤ 0.78Å). See Supplementary Materials,
TABLE 4 Docking metrics for the AZD8895 antibody against the four RBD variants.

Metric B.1.1.529 BJ.1 BM.1.1.1 XBB.1.5

HADDOCK score -93.5 ± 4.3 -88 ± 6.7 -84.8 ± 3.2 -123.8 ± 6.9

Van der Waals energy -71.5 ± 6.6 -64.3 ± 5.5 -86.7 ± 3 -90.7 ± 4.4

Electrostatic energy -230 ± 29.9 -215.5 ± 5.9 -150 ± 11.3 -256.3 ± 222.6

Desolvation energy -4.5 ± 1.5 -8.4 ± 5.7 -8.9 ± 1.6 -5.5 ± 2.8

Buried Surface Area 2259.5 ± 49.1 2134.6 ± 116.6 2482 ± 46.4 2470.8 ± 53.5

Average DG (s) -12.55 (0.21) -11.76 (1.78) -13.08 (0.36) -13.01 (0.77)
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Figure 6 and Table 6. Also, the interfacing residues of interest in the

S1 binding site’s loop differ mainly in the side chain angle rather than

overall loop conformation. See Supplementary Materials, Figure 7.

For Bamlanivimab (LY-CoV555), Jones et al. (14) reported that

mutations at RBD positions V483, E484, F490, and S494 either

decrease or eliminate binding and function. Our study does not

refute this. However, our computational modeling indicates the

S494 is interfaced in the BJ.1 and XBB.1.5 interactions with LY-

CoV555. This result suggests that this residue does not decrease the

antibody’s binding affinity. Also, R/Q493 forms a polar interaction

with LY-CoV555 in B.1.1.529, BJ.1, and BM.1.1.1, but not XBB.1.5.

In Bebtelovimab (LY-CoV1404), Westendorf et al. (15) states

that mutations at E484 may confer advantages in antibody evasion

capabilities for the virus. This result is supported in our study as

A484 in our four variants in this study, is only interfaced in our

docked structures for B.1.1.529 and BM.1.1.1. We see G485 as an

important interfacing residue, forming a polar contact with LY-

CoV1404 with all four RBD variants.

Lastly, Dong et al. (16) reports that aromatic residues from

AZD8895 CDR loops form a hydrophobic pocket with the RBD

residues G485, F486, and N487. Note that in XBB.1.5 there is a

F486P mutation and, interestingly, the adjacent residues (G485 and

N487) are interfaced in our predicted complex. It is possible the

proline at position 486 provides less steric hindrance than

phenylalanine, thus allowing surrounding residue interaction.

This result can be tested in future studies.

The increased binding affinity of XBB.1.5 for ACE2 may lead to

increased transmissibility at the population level (28). The results

here do not indicate that we can expect increased disease severity on

an individual level for patients that avail themselves of therapeutics

and vaccination.

The climb in cases of COVID-19 disease linked to XBB.1.5

indicates that XBB.1.5 could be a very serious subvariant of

Omicron. Whi le other s tudies are needed to assess

transmissibility, virulence, pathogenicity, and other facets of viral

severity and epidemiology, this study predicts that many current

therapeutic and infection-derived antibodies provide antibody

binding affinities similar to B.1.1.529 for XBB.1.5. Thus, the
Frontiers in Virology 08
results indicate that the health care outcomes should be positive

for the patients that avail themselves of vaccines and therapeutics.
Limitations and future work

This work estimates potential changes in antibody

neutralization effects or antibody neutralizing affinity using in

silico protein modeling and computational docking analyses.

Given the computational and predictive nature of this study,

empirical investigations are necessary to validate these findings.

However, these computational approaches provide an economical,

scalable, and rapid methodology to understand the severity of new

viral variants while the empirical work is being completed. Also,

while HADDOCK is considered state-of-the-art in terms of protein

docking, there are other docking tools that could pose different

results for the comparisons

While we tested 10 representative neutralizing antibody

structures against four variants of SARS-CoV-2, there are many

more neutralizing antibodies and antibody-variant RBD complexes

to be assessed. In future work, we shall improve and automate our

docking pipeline to enable to large-scale prediction of antibody

binding affinity changes across any future SARS-CoV-2 variants of

interest. Also, given the dynamic nature of protein structure

conformations, alternative conformations may exist that show

other polar contacts and antibody-RBD interfaces than those

shown by the best performing HADDOCK complexes. All

docking outputs and results, including those not shown in the

body of this article, are available in the Supplementary Materials.
Data availability statement

All code, data, results, docking parameters, and protein structure files

can be found on GitHub at https://github.com/colbyford/SARS-CoV-2_

XBB.1.5_Spike-RBD_Predictions. The Supplementary Material for this

article can be found online at: https://github.com/colbyford/SARS-CoV-

2_XBB.1.5_Spike RBD_Predictions/tree/main/supplementary_materials.
TABLE 5 List of antibodies and their source PDB IDs used in this work.

Antibody Other Names PDB ID Citation

LY-CoV555 bamlanivimab, LY3819253 7kmg Jones et al. (14)

LY-CoV1404 bebtelovimab, LY3853113 7mmo Westendorf et al. (15)

AZD1061 cilgavimab 7l7e Dong et al. (16)

AZD8895 tixagevimab 7l7e Dong et al. (16)

58G6 7e3l Li et al. (21)

CV38-142 7lm9 Liu et al. (22)

C110 7k8p Barnes et al. (23)

P5C3 7qtj Fenwick et al. (24)

EY6A 7zf3 Nutalai et al. (25)

COVOX-150 7zf8 Nutalai et al. (25)
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