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Hepatitis E viruses (HEV) Open Reading Frame 1 (ORF1) encodes a non-

structural polyprotein. In most positive-sense RNA viruses found in animals,

this non-structural polyprotein is cleaved by viral protease or host protease.

However, the mechanism behind the processing of HEV polyprotein remains

one of the most controversial questions in HEV biology. The role of putative

HEV protease in processing is difficult to demonstrate. Recent studies have

questioned the existence of HEV protease and suggested that pORF1 lacks

protease activity. Conversely, studies also suggested the role of host

proteases involved in the blood coagulation cascade, like thrombin, in

processing the HEV pORF1 polyprotein. In summary, recent studies support

the notion that pORF1 lacks protease activity and host proteases are

responsible for processing pORF1. The present review compiles a thorough

overview of contentious research on HEV’s papain-like cysteine protease

(PCP) and highlights recent advancements in the field. We aim to discuss the

challenges and opportunities in the field to focus on further research.
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Introduction

Hepatitis E virus (HEV) is a single-stranded positive-sense virus belonging to the

family Hepeviridae (1). The virus is further sub-classified into eight distinct genotypes

(1). Among these genotypes, five (genotypes 1,2,3,4 and 5) have been identified as

pathogenic to humans. HEV-genotype 1 (HEV-1) and HEV-genotype 2 (HEV-2) are

responsible for human acute infections and are primarily transmitted via the fecal-oral

route. Conversely, HEV-3 and HEV-4 genotypes are prevalent in developed countries

and cause sporadic infections through zoonotic transmission. HEV-3 mainly circulates

among wild boars, pigs, and rabbits, whereas HEV-4 is primarily found in pigs. HEV-7

has been shown to circulate in camels; however, a report also suggested possible

infection in humans (2). HEV can lead to chronic infections, especially in

immunocompromised individuals, with HEV-3 being responsible. Furthermore,
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HEV-1 infections in pregnant women can result in severe disease,

characterized by mortality rates of up to 30% (3, 4).

HEV is a non-enveloped, single-stranded positive-sense RNA

virus with a genome of 7.2 kb (5). The viral genomic RNA features a

7-methylguanosine RNA cap at the 5’ end and a polyadenylation

tail at the 3’ end (6–8). The HEV genome contains three main open

reading frames (ORFs): ORF1, ORF2, and ORF3. The genome is

flanked by untranslated regions (UTRs) (9) (Figure 1). ORF1

encodes for non-structural proteins, which primarily play a role

in RNA genome replication (6, 10, 11). ORF2 encodes for structural

glycoprotein (12–15), while ORF3 encodes for a small

multifunctional protein involved in many proviral processes (16–

29). In addition, Apart from these conserved ORFs, HEV-1

possesses an additional ORF, designated as ORF4, which

responds to the endoplasmic reticulum (ER) stress (30).

The process of HEV particle internalization into host cells

remains unidentified (31). Similar to the typical positive-sense

RNA viruses, translation is the initial event following HEV

particle internalization. The viral genome serves as a template for

translation, leading to the synthesis of a non-structural polyprotein.

However, the precise mechanism of HEV pORF1 polyprotein

processing and post-translational modification remains unclear. It

is suggested that the viral RNA-dependent RNA polymerase (RdRp)

domain is responsible for both the negative strand and sub-genomic

RNA synthesis (6). Negative-sense RNA strands act as a template

for synthesizing positive-sense genomic RNA, and sub-genomic

RNA serves as a template for synthesizing pORF2 and pORF3 (10,

11, 32). Virus particles are believed to egress from infected cells via

cellular exosomal pathway (33). HEV ORF1 encodes for a non-

structural polyprotein comprising 5079 bases with a molecular mass

186-kDa (6). The pORF1 codes for non-structural functional

domains, which are enzymes primarily responsible for RNA

genome replication. According to bioinformatics analysis, pORF1

encompasses domains of methyl transferase, Y-domain, papain-like

cysteine protease (PCP), proline-rich hinge domain, X-domain,

RNA helicase, and RdRP (34). The biochemical activities of

methyl transferase (35), helicase (36, 37), macro domain (38) and

RdRp (39) have been experimentally demonstrated. However,

activities associated with the HEV protease domain remain
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controversial. Despite numerous experimental studies, the

primary predicted role of the protease domain in polyprotein

processing remains mysterious.
Polyprotein processing in positive
sense RNA viruses

In the typical life cycle of a positive-sense RNA virus, the

translation of viral proteins is the first event. An intriguing

feature is the compact nature of the viral genome, typically

encoding just one or two ORFs (40). These ORFs encode multiple

functional domains with distinct functions. Thus, proteins are

translated as polyproteins and post-translationally proteolytically

processed into smaller functional subunits. The strategy of

polyprotein processing is a gene expression or regulation of the

viral life cycle. In this type of post-translational modification, the

structure, function, and biochemical activity of domains of protein

subunits can be regulated. Polyprotein processing regulates the

activities of different sets of enzymes with distinct activity and

substrate requirements. And this regulation may be responsible for

regulating viral transcription and translation. Typically, polyprotein

processing is orchestrated by viral proteases’ limited and tightly

regulated activity. In the case of non-structural polyproteins, they

are processed into separate subunits of functional domains,

including capping enzyme, helicase, protease, and RdRP (41).

Polyprotein processing is well studied in various RNA virus

families such as flavivirus, alphavirus, and calicivirus. However, in

the case of HEV, the mechanism of processing of non-structural

polyproteins remains elusive.

Alphaviruses encode for two ORFs; one encoding non-

structural polyprotein is located at the 5’-end of the genome, and

the ORF encoding structural genes is located at the 3’ end. The

genomic RNA acts as a template for synthesizing non-structural

proteins, which are processed by regulated proteolysis by viral

proteases within the nsP2 domain (42). The process ensures

temporal and spatial regulation of the transcription and genome

regulation. During the alphavirus life cycle, sub-genomic RNA is
FIGURE 1

Schematic representation of Hepatitis E virus genome organization. HEV Genotype 1 encodes for 4 ORFs. The figure shows the domain organization
originally proposed by Konnin et al., 1992 and the domain organization reported by recent computational biology studies (Fieulaine et al., 2023).
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synthesized, serving as a template for synthesizing c-terminal ORF,

responsible for encoding structural proteins. The structural

polyprotein undergoes proteolytic processing, combining

autocatalytic activity within the capsid protein and cellular

proteins. Host cell proteases, known as signalase proteins, and

furin-like proteases are known to be involved in structural gene

polyprotein processing (42, 43).

In the case of flaviviruses, a single long ORF produces a

polyprotein, which is cleaved both co- and post-translationally

into small functional proteins. The N-terminal one-fourth part of

polyprotein encodes structural proteins, followed by the non-

structural protein part. Polyprotein processing in flaviviruses

involves host signal peptidases and the virus-encoded serine

protease (44–46). Caliciviruses encode for three ORFs, and ORF1

encodes for non-structural polyproteins. The non-structural

polyprotein is co-translationally processed by viral 3C-like

cysteine proteinase. This proteinase activity generates non-

structural proteins and capsid protein precursors (47).

These studies show the diversity of mechanisms involved in

polyprotein processing, including processing by the host or virus-

encoded proteases or a combination of both.
HEV protease domain and
polyprotein processing

Proteases belong to a class of enzymes that catalyze the

hydrolysis of peptide bonds within proteins or peptides (48, 49).

Generally, proteases are classified based on catalytic residue types

such as cysteine, serine, etc. (48, 49)Additionally, proteases that

utilize metal ions for catalysis are known as metalloproteases. PCP

represents a sub-class of cysteine proteases. These proteases

contribute to diverse biological functions in all life forms,

including viruses (50). HEV protease was identified as a putative

papain-like protease due to its similarity with rubella virus protease

in computer-assisted sequence alignments (34). In silico analysis

identified various signature motifs of papain-like proteases in the

HEV protease domain, such as papain-like beta-barrel fold, putative

catalytic dyad (C434 and H443), putative Zinc binding domain, and

disulfide bridges (51). Many researchers attempted to investigate

HEV papain-like cysteine protease’s biochemical activity and role in

polyprotein processing. The primary purpose of ORF1 expression

studies in cell-free and prokaryotic systems was to study HEV

protease’s cis- or trans-action on pORF1 polyprotein. However,

none of the published studies has demonstrated HEV polyprotein

processing in the cell-free system consisting of a coupled

transcription-translation system with phage T7 polymerase in

rabbit reticulocyte lysate (52). However, the processing status

remained unclear when ORF1 was expressed in a bacterial

system. In a study by Ansari et al., 2000, GST-tagged ORF1

protein was expressed in E. coli, while a prominent band of intact

ORF1 protein in immunoblot analysis, smaller fragments of ORF1

were observed in the western blot, possibly due to protein

degradation in E. coli (52). The challenge of expressing intact

ORF1 protein in E. coli may be attributed to its larger size and

codon usage pattern. A group studied pORF1 expression in insect
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cells using the baculovirus expression system, and ORF1 processing

was studied using mass spectroscopy. This approach revealed nine

ORF1 fragments, and the processing was inhibited when cells were

treated with cysteine protease inhibitors (53).

Furthermore, studies have suggested atypical activities

associated with the HEV protease domain. A study suggested that

the HEV protease domain possesses chymotrypsin-like activity and

processes the pORF1 and pORF2 (54). Another study by Karpe and

Lole 2011 suggested that the HEV protease domain has

deubiquitinating activity; however, its role in pORF1 polyprotein

processing remained unestablished (55). This activity may

contribute to regulating various signaling pathways and

modulation of host immune pathways.

Many researchers have attempted to study ORF1 expression

and processing in mammalian systems, falling into two categories:

the plasmid-based expression of pORF1 in mammalian cells and the

use of infectious replicon. The latter approach appears more

relevant; however, both studies have yielded inconclusive results.

In a study, authors constructed a recombinant vaccinia virus

vector expressing ORF1 and studied the expression of pORF1 in

mammalian cells. In this study, no processing of ORF1 was

observed; however, after extended incubation, processing of

pORF1 was observed (two fragments, 107 kDa and 78 kDa) (56)].

However, when the predicted active site of protease was mutated

with site-directed mutagenesis, it failed to stop the observed pORF1

processing, suggesting the possible involvement of host protease in

this processing (56). On the contrary, a study that expressed

genotype 1 and genotype 3 epitope-tagged pORF1 via plasmids in

293T cells did not show processing and observed an intact band of

pORF1 in western blots experiments (57). Yet another study

expressed pORF1 in HeLa and Huh7 cells and demonstrated

localization in ER membranes. However, the pulse-chase

experiment with radioactive amino acids did not reveal

polyprotein processing (58). Similarly, Ansari et al. expressed

pORF1 in the human hepatoma cell line HepG2, but in immune

precipitation experiments, no processing was observed (52). A

subgenomic replicon expressing GFP of Sar55 Genotype 1 was

used in a study. Site-directed mutagenesis was employed to alter

cysteine and histidine residues within the putative protease

domain,. Mutant replicons showed reduced GFP expression,

suggesting that the protease domain plays a vital role in HEV

replication. In the same study, epitope-tagged replicons were

transfected into Huh7 cells and showed the processing of pORF1

into two fragments, 35 and 78 kDa (59). Similarly, a recent study

demonstrated the importance of the protease domain in HEV

replication by using mutagenesis; however, this study supports

the notion that pORF1 operates as a multifunctional unprocessed

polyprotein (60). A functional ORF1 trans-complementation

system was used to investigate HEV replication; this system

showed an intact band of pORF1, suggesting the possibility that

ORF1 functions as an unprocessed polyprotein (61, 62). Also,

replicons expressing recombinant HEV with HA-tag were used in

a study, and an intact band of pORF1 was observed (63). In

contrast, the V5 epitope-tagged full-length infectious replicon

system in Huh7.5 cells showed an intact band of pORF1 along

with fragments of lower molecular weight, indicating the possibility
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of pORF1 processing (64). All these studies have yielded varied

results and remain inconclusive, possibly due to factors like non-

specific action of host proteases, improper protein folding, and lack

of required host factor and host environment. Ideally, polyprotein

processing should be studied in the context of virus replication,

which may give a specific processing pattern of pORF1. However,

more experiments are required to establish the processing and role

of viral or host protease. These studies suggest several possibilities:

1) HEV pORF1 may not be processed at all and works are

multifunctional polyprotein 2) HEV pORF1 does not have

protease activity 3) Host proteases contribute to the processing, 4)

Processing may be carried out in specific cellular microenvironment

to a very limited extent, which is enough for virus replication.

Recently, Fieulaine et al., 2023, proposed an interesting opinion

that the HEV community should stop calling the term “HEV

protease” or “PCP-domain” based on computational and

structural biology studies (65), while Koonin et al., 1992,

suggested that HEV has a protease domain (amino acid residue

434-592); however, the confidence index for the putative PCP

domain was very low compared to other HEV ORF1 domains

(34). Recent studies involving X-ray crystallography and artificial

intelligence (AI)-based computational studies have suggested that

HEV ORF1 lacks protease activity. It is suggested that the 510-690

region is the Fatty Acid Binding-like domain (Figure 1). Recently,

three independent groups used AI-based AlphaFold2 tools to

predict ORF1 domains. All three studies support that HEV ORF1

lacks protease activity (60, 66, 67). It is suggested that pORF1 may

not be processed, and the structural flexibility of different pORF1

domains may regulate the activities of different domains.
Role of thrombin in
polyprotein processing

Recent reports suggested the possible role of coagulation

proteases like thrombin and factor Xa in HEV polyprotein

processing (68, 69). Thrombin, a serine protease, is composed of

two polypeptide chains, namely A chain (36 amino acid residues)
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and B chain (259 amino acid residues) (70, 71). Thrombin plays a

significant role in the blood coagulation pathway (72, 73). Its

primary function is to cleave fibrinogen to form an insoluble

fibrin clot (74). It can act as a procoagulant or anticoagulant (70).

In normal physiological conditions, blood does not contain

thrombin; however, after injury, thrombin is generated. Following

vascular injury, tissue factor (TF) is exposed to blood and binds

with FVIIa (75, 76). This interaction activates Factor X (FX) to form

Factor Xa (FXa) (76). FXa cleaves prothrombin to form active

thrombin (75, 76). Further, thrombin is a versatile enzyme and acts

on various substrates. The primary function of thrombin is to

convert fibrinogen to fibrin. In addition, thrombin activates

platelets and various factors like FXIII, FV, FVIII, FXI, and TAFI.

It also inactivates ADAMTS13 (77). In the anticoagulant phase,

thrombin activates protein C and binds to antithrombin (78).

Earlier a study by Kanade et al., 2018 reported a possible role of

factor Xa and thrombin in HEV polyprotein processing (68). They

identified highly conserved thrombin and factor Xa sites on pORF1

(Figure 2). Subsequent experiments were performed in which the

cleavage sites of thrombin and factor Xa were altered by site-directed

mutagenesis on HEV sub-genomic replicons expressing the luciferase

gene. These mutant replicons were transfected into permissive

human hepatoma cell line Huh7-S10, and levels of luciferase were

studied. Compared with the wild-type, mutant replicons significantly

reduced luciferase counts. This suggests that intact thrombin and

Factor Xa cleavage sites are required for HEV replication. HEV

replication was significantly reduced in cells transfected with siRNA

targeting thrombin and factor Xa. This observation proved that

thrombin and factor Xa are essential for HEV replication. When

thrombin and factor Xa inhibitors were treated on cells transfected

with the capped transcript of HEV replicons, the viral replication was

significantly reduced. Hence, these experiments collectively showed a

significant role of thrombin and factor Xa in HEV replication (68).

This study demonstrated the insights into the intracellular function of

blood coagulation proteases.

A recent study demonstrated seven potential thrombin cleavage

sites within pORF1 (69) (Figure 2). To demonstrate the in vitro

pORF1 processing, authors generated pORF1 fragments using in
FIGURE 2

Role of blood coagulation proteases in HEV polyprotein processing. The figure shows the pORF1 domain organization Two independent studies by
Kanade et al., 2018 and Pierce et al., 2023, reported the possible role of thrombin in HEV polyprotein processing. The figure shows the reported
thrombin and Factor Xa cleavage sites on pORF1.
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vitro coupled transcription and translation, and purified thrombin

was added to the reactions. Authors have demonstrated the

processing of pORF1 polyprotein upon the addition of thrombin.

Results were further confirmed by mutagenesis of thrombin

cleavage sites on pORF1 fragments. These mutant proteins were

subjected to thrombin cleavage, and no processing of pORF1

fragments was observed. The authors corroborated their findings

using G1 and G3 replicons expressing nano-luciferase (nLuc)

instead of structural genes. In these replicons, the thrombin

cleavage sites were altered by site-directed mutagenesis, and

replication mutant replicons were analyzed. It was observed that

the removal of thrombin cleavage significantly inhibits viral

replication. Further, the authors studied the effect of serine

protease inhibitors on virus replication and demonstrated that

serine protease inhibitors inhibit virus replication (69). Similar to

the study by Kanade et al., the authors also demonstrated the

presence of intracellular thrombin (68). Using fluorescence

microscopy, authors also demonstrated partial co-localization

between thrombin/prothrombin and pORF1 proteins (69).
Unanswered questions and prospects

Despite many studies, polyprotein processing remains

unsolved. Ideally, HEV polyprotein processing should be studied

in a permissive cell culture system, and results must be confirmed

by reverse genetics and the biochemical function of pORF1

domains. However, the lack of robust and accessible cell culture

systems remains the most challenging in HEV replication studies.

Recent structural and computational biology studies support the

notion that HEV pORF1 lacks the PCP domain; instead, it has a

Fatty acid binding domain (FABD)-like domain. This is an exciting

development in the biology of HEV. The role of the FABD-like

domain in HEV replication and pathogenesis is unknown.

Conversely, recently, two studies (including ours) have supported

the possible role of coagulation proteases in polyprotein processing

(68, 69).

Many coagulation cascade proteins are synthesized in the liver,

a primary site of HEV infection. Studies have implicated the roles of

coagulation proteases like thrombin and Factor Xa in the HEV life

cycle and possibly polyprotein processing. The studies conducted by

Kanade et al., 2018 and Pierce et al., 2023 agree in principle (68, 69).

However, further evidence is still required to prove thrombin’s

direct role in pORF1 polyprotein processing. Also, whether pORF1

sub-units generated from thrombin cleavage are biochemically

active or form the virus replication complex is unknown. Pierce

et al., 2023 also suggested that along with thrombin, other host

serine proteases like hespin in the endoplasmic reticulum may

contribute to polyprotein processing. Previously, the pORF1

domain structure was studied by in silico modeling (60, 66, 79).
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Pierce et al., 2023 suggested that some thrombin cleavage sites were

matching with some of the in silico predictions (69). Interestingly,

thrombin is present across all mammals, and a broad host range of

HEV supports this notion.

Interestingly, this study demonstrated the intracellular function

of blood coagulation proteases. Thus, it would be interesting to

study the roles of intracellular coagulation proteases. It is unlikely

that the thrombin present in the Huh7 cell is generated from a

classical coagulation cascade. Further studies are needed to study

the synthesis and secretion of intracellular coagulation proteases in

HEV-infected liver cells, animal models, and human patient

samples. In summary, recent studies suggest that HEV pORF1

lacks protease activity, and possibly, host proteases may carry

out processing.
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