
Frontiers in Virology

OPEN ACCESS

EDITED BY

Yasumasa Iwatani,
National Hospital Organization (NHO), Japan

REVIEWED BY

Hang Su,
Albert Einstein College of Medicine,
United States
Jean-Christophe Paillart,
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The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like

(APOBEC) family consists of cytosine deaminases implicated in diverse and

important biological functions. APOBEC3 (A3) proteins belong to the

APOBEC/AID family, and they catalyze the deamination of cytosine to

uracil in single-stranded DNA and, to a lesser extent, in RNA substrates. In

humans, seven A3 genes have been identified (A3A, A3B, A3C, A3D, A3F, A3G,

and A3H). The introduction of lethal G-to-A or C-to-U mutations into certain

viral genomes leads to virus inactivation. However, the mutagenic capability

of A3 proteins could serve as a source of mutations to drive virus evolution.

Therefore, recent studies have implied the role of A3 proteins in aiding the

evolution of viruses, conferring themwith severe manifestations such as drug

resistance and/or immune evasion. In this review, we discuss in depth the

interactions of A3 proteins with viruses that infect humans and our

self-proteins.
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1 Introduction

The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC)

family comprises cytosine deaminases implicated in diverse and important biological

functions. The first member of this group to be characterized was APOBEC1 (A1) (1, 2),

which participates in lipid metabolism through the editing of apolipoprotein B mRNA

[reviewed in (3–6)]. Later, several A1 proteins in nonhuman species were demonstrated to

deaminate single-stranded DNA (ssDNA) (7–9) and exhibit potential to inhibit

retroviruses, including human immunodeficiency virus type I (HIV-1), in cell line

models (9–13). The second member of this family to be identified was activation-

induced cytosine deaminase (AID) (14), known for its importance in the antibody

diversification of immunoglobulin genes and class switch recombination [reviewed in (6,

15, 16)]. Other members of this group including APOBEC2 (A2) (17) and APOBEC4 (A4)

(18) are less characterized [reviewed in (6)].
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APOBEC3 (A3) proteins belong to the APOBEC/AID family.

These proteins catalyze the deamination of cytosine to uracil in

ssDNA substrates [reviewed in (19–21)]. In humans, seven A3 genes

(A3A, A3B, A3C, A3D, A3F, A3G, and A3H) are tandemly arranged

into a gene cluster between the flanking genes CBX6 and CBX7 on

chromosome 22 [reviewed in (19, 22, 23)] (Figure 1A).A3 genes are the

products of arduous evolution over 100 million years (24). The

deaminase activity of A3 proteins is attributable to the presence of a

conserved zinc-binding motif (Z domain). A3A, A3C, and A3H

proteins have a single Z domain, whereas A3B, A3D, A3F, and A3G

proteins have double Z domains [reviewed in (19–21, 23, 25)]

(Figure 1A). The mechanism of A3 protein-mediated catalysis

involves a zinc-mediated hydrolytic reaction (Figure 1B). Histidine

and cysteine residues are responsible for the coordination of the zinc

ion required for the catalytic activity of these proteins, whereas a

glutamate residue facilitates the removal of the amine group from the

substrate deoxycytidine [reviewed in (26–28)] (Figure 1B). First, a

glutamic acid residue in the Z domain deprotonates water and forms a

zinc-stabilized hydroxide ion (Figure 1B). Second, the third nitrogen

atom (N3) of the cytosine pyrimidine ring is protonated, leading to the

disturbance of a double bond between N3 and the fourth carbon atom

(C4) of the cytosine pyrimidine ring (Figure 1B). Third, this causes the

zinc-stabilized hydroxide ion to attack C4, forming a double bond and

essentially converting cytosine into uracil [reviewed in (26–28)]

(Figure 1B). The differences among the A3 proteins also extend to

their nucleic acid sequences. The stretch of nucleotides recognized by

A3 proteins can be grouped into two types, namely 5′-CC and 5′-TC
(the target cytosines are underlined; see Figure 2). The former is

recognized by A3G protein, whereas the latter is preferred by other A3

proteins (12, 29–35).

Interestingly, because of their RNA-binding capacity, most A3

proteins are incorporated into ribonucleoprotein complexes in cells

immediately after translation. Multiple reports have documented that
Frontiers in Virology 02
A3G protein can form higher-order, high molecular mass

ribonucleoprotein (HMM RNP) complexes composed of A3G-

binding RNAs, A3G-binding proteins, and numerous cellular RNA-

binding proteins (36–47). Similarly, the ability to form HMM RNP

complexes is conserved in other A3 members (at least in A3B, A3C,

A3F, and stable A3H proteins, but not A3A protein) (39, 44, 48, 49).

Importantly, this capability inactivates the catalytic activity of A3B,

A3G, and A3H proteins, as RNase treatment can restore their

enzymatic activity by abrogating HMM complex formation, leading

to a shift toward low molecular mass (LMM) complexes (40, 49–52).

The shift toward LMM complex formation allows the A3G protein to

be packaged into nascent virions for anti-HIV-1 activity (40).

Therefore, the formation of A3 HMM RNP complexes (with the

exception of A3A) is one of the regulatory mechanisms for the

mutagenic activity of A3 proteins, and A3 enzymatic activity is

altered by cytokines such as interferons (IFNs) and different cell

types (41, 46, 47, 53). Furthermore, differences in each A3 interactor

potentially lead to differences in the localization of A3 proteins in cells.

A3A and A3C proteins are distributed throughout the cell, whereas

A3B protein is localized exclusively to the nucleus (30, 51, 54–62).

Notably, endogenous A3A protein in CD14+ primary cells and IFN-

stimulated THP-1 cells is localized to the cytoplasm, which is distinct

from the overexpressed A3A protein in HEK293 cells (56). This

distinct subcellular localization pattern of overexpressed and

endogenous A3A protein suggests the existence of regulatory

mechanisms for A3A activity and/or provides a potential explanation

for its genotoxicity. Meanwhile, A3D, A3F, and A3G proteins are

exclusively localized in the cytoplasm (30, 36, 44, 54, 55, 57, 59–61).

However, A3G protein was recently reported to localize to the nucleus

of bladder cancer cells in vivo (63) and in human T cell lines in small

amounts (64, 65). Interestingly, A3H protein has a haplotype-

dependent localization in cells: haplotype I is distributed through the

cell (55, 66) and haplotype II is present in only distinct subcellular
B

A

FIGURE 1

Human A3 gene organization and deamination catalyzed by A3 proteins. (A) Human A3 genes are arranged tandemly between CBX6 and CBX7 on
chromosome 22. A3 family proteins include single or double deaminases, which are composed of three phylogenetically different groups, namely Z1
(green), Z2 (orange), and Z3 (blue) domains. (B) The deamination process by which cytosine is converted to uracil by A3 proteins. A glutamic acid
residue in the Z domain of A3 proteins deprotonates water and forms a zinc-stabilized hydroxide ion. The third nitrogen atom (N3) of the cytosine
pyrimidine ring is protonated, thereby disturbing the double bond between N3 and the fourth carbon atom (C4) of the cytosine pyrimidine ring. This
causes the zinc-stabilized hydroxide ion to attack C4, forming a double bond and essentially converting cytosine into uracil. CBX6, chromobox 6;
CBX7, chromobox 7; APOBEC3/A3, apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3; A3A, APOBEC3A; A3B, APOBEC3B; A3C,
APOBEC3C; A3D, APOBEC3D; A3F, APOBEC3F; A3G, APOBEC3G; A3H, APOBEC3H. Created with BioRender.com.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fviro.2023.1332010
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Jonathan and Ikeda 10.3389/fviro.2023.1332010
compartments, namely the cytoplasm and nucleolus (30, 50, 66, 67).

The distinct subcellular localization of A3H haplotypes may be a

regulatory mechanism for the antiviral activity of this protein.
2 A3 proteins as innate antiviral
restriction factors

Much of the knowledge about the function of A3 proteins as

restriction factors stemmed from studies of retroviruses, with HIV-

1 being the most well-documented retrovirus [reviewed in (19–21,

68–70)]. Initially, A3G was identified as a specific inhibitor of viral

infectivity factor (Vif)-deficient HIV-1 (71). Thereafter, it was
Frontiers in Virology 03
elucidated that this antiviral protein is packaged in nascent

virions in virus-producing cells, and it triggers the lethal

deamination of cytosine to uracil in the HIV-1 minus-strand

cDNA intermediate in target cells (71–73) (Figure 2). Currently,

up to five A3 proteins (A3C-I188, A3D, A3F, A3G, and stable A3H

haplotypes) contribute to HIV-1 restriction in human CD4+ T cells

(30, 32, 34, 74–77).

In addition to their deaminase activity, the antiviral activity of

A3 proteins can also be conferred through their deaminase-

independent activity (Figure 2). Although the catalytic activity of

A3G protein is important for HIV-1 inhibition, the N-terminal

domain of this protein has the ability to bind to RNAs, although it

lacks any catalytic activity (78–81). Owing to this domain, A3G
FIGURE 2

Mechanisms of HIV-1 inhibition by A3 proteins and the counteraction of Vif. In a Vif-deficient virus infection scenario (left), the lack of Vif causes A3
proteins to be packaged into nascent virions. A G-to-A mutation occurs in the single-stranded cDNA intermediate of HIV-1, resulting in deleterious
and potentially lethal mutations. A3 proteins have different dinucleotide motifs. A3G prefers 5′-CC-3′ motifs, whereas the other six A3 proteins prefer
5′-TC-3′ motifs (target cytosines are presented in red). A3 proteins also physically inhibit reverse transcription via their deaminase-independent
activity to prevent HIV replication. In a Vif-proficient virus infection scenario (right), Vif ubiquitinates A3 proteins for degradation. None or a reduced
number of A3 proteins is packaged into nascent virions. Sublethal levels of A3-mediated mutagenesis can occur in the single-stranded cDNA
intermediate of HIV-1. RBX2, RING box protein 2; ARIH2, ariadne RBR E3 ubiquitin protein ligase 2; CBF-b, core-binding factor subunit beta; ELOB,
elongin B; ELOC, elongin C; Vif, viral infectivity factor; CUL5, cullin-5; A3, apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3; RT,
reverse transcriptase; Env, envelope; Gag, group-specific antigen. Created with BioRender.com.
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protein can be packaged in HIV-1 particles, in which it inhibits viral

replication through its deaminase-independent activity (78–84).

One of the well-known restriction models based on this ability is

the “roadblock” model, whereby A3G protein physically blocks the

elongation of reverse transcription (82, 83). A3G protein also

interacts with HIV-1 reverse transcriptase (RT), thereby

preventing reverse transcription (85, 86). Interestingly, the

antiviral activity of A3F and A3H proteins has been largely

attributed to the deaminase-independent mode (50, 52, 87, 88).

An alternative action of A3 proteins is the inhibition of HIV-1

integration. One study highlighted the possibility that A3G protein

can interrupt the structural integrity of the HIV-1 pre-integration

complex (PIC), as it is reported that A3F and A3G proteins can

interact with the integrase protein of HIV-1, thereby inhibiting

provirus formation (89). Furthermore, it has been postulated that

A3 proteins can interact with host cellular factors through their

deaminase-independent activity. Specifically, recent work

illustrated that A3B protein can interact with host protein kinase

R and RNase L to limit the gene expression of Sendai virus,

poliovirus, and Sindbis virus by inactivating host RNA translation

in vitro (62). Taken together, the antiviral capability of A3 proteins

must be measured through their deaminase and deaminase-

independent activities.
3 Arms race between A3 proteins
and viruses

Heterogeneity in the number of Z domains carried by A3 genes is

predicted to be caused by a gene duplication event (24, 90–93). This

event appears to have occurred within a placental mammal ancestor

that had already possessed the three types of Z domains (Z1, Z2, and

Z3) carried by the present-day human A3 genes (24, 90–93). Each of

the human A3 genes is composed of a combination of these domains

(Figure 1A). Intriguingly, the copy number of A3 genes varies greatly

within the mammalian lineage (24, 90–95), suggesting an arms race

between placental mammals and genetic threats including

endogenous and exogenous retroviruses [reviewed in (5, 19, 69, 96,

97)]. As up to five A3 proteins (A3C-I188, A3D, A3F, A3G, and

stable A3H haplotypes) are involved in HIV-1 restriction in human

CD4+ T cells and myeloid cells (30, 32, 34, 35, 74–77, 98–100), A3

enzymes have overlapping functions to protect their hosts from

various threats. Therefore, it is plausible that the “fortifications” in

genes encoding host restriction factors differ because the interaction

between the host and pathogen is independent in each mammal. For

instance, the mouse genome encodes at least eight TRIM5a-like
proteins (101), whereas the human genome encodes only one (102).

By contrast, mice have only one A3 protein (92, 103). Thus, it can be

said that the seven copies ofA3 genes in humans could be the product

of pathogenic pressures imposed on our ancestors.

The same question can also be asked about the pathogens

themselves. Because of this “arms race”, if viruses had not

coevolved with our ancestors, they would have succumbed to the

mutagenic properties of A3 proteins. For example, HIV-1 encodes

the Vif protein, which can induce degradation of A3 proteins
Frontiers in Virology 04
through a proteasome-mediated pathway (34, 35, 65, 71, 75, 98,

104–110), inhibit A3 mRNA translation (111, 112), and alter the

expression of RUNX-regulated genes (113). Vif protein inactivates

both deaminase-dependent and deaminase-independent processes.

It is hypothesized that HIV-1 Vif evolved to recognize the expansive

repertoire of human A3 proteins (114). It is possible that a cross-

species jump to primates occurred in an ancestral lentivirus that had

originally infected non-primate mammals. As previously explained,

mammals have evolved different repertoires of innate restriction

factors depending on the individual interactions between

themselves and their respective threats. The feline A3 repertoire,

containing four genes producing five A3 proteins (114–117), is

much simpler than the human A3 repertoire with seven A3 proteins

[reviewed in (3, 19, 22, 23)]. The feline lentiviral Vif protein must

therefore, have adapted to the A3 repertoire of its new host. This

theory is supported by several in vitro reports demonstrating that

the simian immunodeficiency virus (SIV) Vif protein is still able to

degrade feline A3 proteins (117–119). The mechanism through

which lentiviral Vif can adapt to an expanded A3 repertoire is

termed the “Wobble model” (120) (Figure 3). A zoonotic event

causes a partial interaction between the lentiviral Vif and the A3

repertoire of its new host (Figure 3). Initially, a more expansive A3

repertoire may bind to the same recognition site (Figure 3). Over

time, “wobbles” may occur, in which Vif adapts and fortifies its

interaction with the A3 proteins of its new host (Figure 3). This

adaptation event could result in overlapping interaction surfaces of

lentiviral Vif with those of A3 proteins, leading to slight differences

arising from this independent adaptation event (Figure 3). Over a

longer period, the interaction surface shifts drastically because

many independent wobble events occur, leading to the current

distinct interaction surface between Vif and various human A3

proteins (Figure 3).

The interaction between HIV-1 Vif and the human transcription

factor CBF-b (105, 121) is another example of how a virus adapts to a

new host. Vif forms an E3 ubiquitin ligase complex consisting of the

transcriptional cofactors CBF-b, CUL5, ELOB, ELOC, RBX2, and
ARIH2, which allows the viral protein to interact with A3 proteins

and induce polyubiquitination, leading to degradation by the 26S

proteasome (105, 107, 121–126) (Figure 2). The interaction between

Vif and CBF-b was reported to be specific only to HIV-1 and SIVs

and not essential for non-primate lentiviruses in vitro (127–131).

Generally, CBF-b forms heterodimers with RUNX transcription

factors to regulate the expression of genes important for

hematopoiesis , T-cel l development, osteogenesis , and

neurogenesis [reviewed in (132–134)]. It has been reported that

this recruitment of CBF-b to the E3 ubiquitin ligase complex

impacts the heterodimerization of CBF-b with the transcription

factor RUNX1 and consequently represses the transcription of

genes regulated by RUNX1, one of which is T-bet, a repressor of

IL-2 expression (113).

Vif is also reported to be able to interfere with A3G protein

translation. A short conserved upstream open reading frame

(uORF) located within two secondary structures of A3G mRNA is

reported to be a negative regulator of A3G protein translation and is

crucial for inhibition of translation mediated by Vif (111, 112).

HIV-1 Vif requires the presence of this uORF in A3G mRNA to
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inhibit A3G protein translation (presumably by inhibiting the leaky

scanning mechanism of A3GmRNAs) and redirect A3GmRNAs to

stress granules; both these actions reduce global A3G mRNA

translation (112).

Therefore, it can be said that primate lentiviral Vif has evolved

multiple ways to adapt to its new host after presumed cross-species

transmission from non-primates. First, primate lentivirus hijacks

CBF-b to degrade primate A3 proteins and, coincidentally, perturbs

the expression of RUNX-stimulated target genes, presumably also

for the benefit of the virus. Second, HIV-1 Vif is able to inhibit the

translation of A3G mRNAs to prevent (or at least reduce) the

packaging of A3 proteins to nascent virions. Collectively, A3

proteins have roles in exerting selection pressure on viruses,

thereby facilitating the evolution of the virus in some cases, as

will be discussed in the upcoming sections of this review.
4 Implications of A3 proteins as
drivers of retrovirus evolution

Retroviruses belong to group VI of the Baltimore classification

(135). The genome of retroviruses consists of a homodimer of linear,

positive-sense, single-stranded RNA of 7–13 kb in length (136). Unlike

most other viruses, retroviruses use an obligate reverse transcription

process to convert viral genomic RNA (gRNA) into double-stranded

DNA (dsDNA) with long terminal repeats (LTRs). This dsDNA is then

integrated into the host genome, resulting in the formation of a

provirus, which serves as a template for the transcription of viral

RNAs for gRNA and viral protein production (137). During reverse
Frontiers in Virology 05
transcription, an ssDNA intermediate is produced. A3 proteins

target this ssDNA intermediate as a substrate. In this section, we

discuss the implications of A3 proteins as evolutionary drivers of

human retroviruses.
4.1 HIV-1

HIV-1 cDNA is the most well-characterized substrate for A3

proteins. A3 proteins induce C-to-U mutations in reverse-

transcription ssDNA intermediates, resulting in G-to-A mutations

on the genomic strand (Figure 2). These G-to-A mutations can

affect more than 10% of all G residues within HIV-1 gRNA, causing

an abortive infection attributable to the lethal level of mutations in

the HIV-1 genome (73, 138–141). HIV-1 counteracts the antiviral

activity of A3 proteins through Vif (Figure 2). Studies examining

samples from patients infected with HIV-1 revealed that A3

proteins form a distinct twin gradient of G-to-A hypermutation

(142, 143). This gradient is well aligned with the amount of time

that the minus-strand DNA remains single-stranded during reverse

transcription. The frequency of G-to-A mutations increases away

from the primer binding site, reaching a maximum upstream of the

5′-central polypurine tract (cPPT) half-way along the provirus, then
reducing significantly, increasing when moving away from the 5′-
cPPT and then reaching a maximum upstream of the 3′-PPT of the

HIV-1 3′-LTR (142, 143).

An interesting question is whether the mutagenic capability of

A3 proteins can aid in virus evolution. Regarding this question, it

must first be stressed that G-to-A hypermutation induced by A3

proteins can be beneficial or deleterious for the virus and the host.
FIGURE 3

Evolution of the interaction between A3 proteins and lentiviral Vif. This schematic is adopted from (120). Each hexagon tiles represent the binding
surface of an A3 protein and Vif. Initially, an ancestral A3 protein bound strongly to an ancient lentiviral Vif protein. A cross-species jump to humans
occurred, forcing protein to adapt to the wide repertoire of A3 proteins in humans. This resulted in a diminished yet overlapping interaction between
Vif and the new repertoire of A3 proteins. Over an evolutionary period, intraspecies adaptation occurred whereby Vif further adapted to its new host,
creating wobbles that shifted the binding interface of Vif, resulting in the nonoverlapping interaction surface presently observed between Vif and
human A3 proteins. A3, apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3; Vif, viral infectivity factor. Created with BioRender.com.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fviro.2023.1332010
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Jonathan and Ikeda 10.3389/fviro.2023.1332010
The inherent error-prone replication of virus genomic material

allows viruses to diversify themselves, permitting the existence of

variants that are more fit for replication, including those that can

evade the immune system, such as what we currently see in the

situation regarding severe acute respiratory syndrome coronavirus-

2 (SARS-CoV-2) (144–151), and those that become resistant to

antiviral medications, such as influenza A virus [reviewed in (152)].

This also appears to be the case with A3 proteins. A possible

treatment strategy for HIV-1 that focuses on the interplay

between A3 and Vif could revolve around the modulation of A3

protein-mediated hypermutation. The theory was predicated on a

previous in vitro study that demonstrated a proof-of-concept of

targeting the A3G–Vif axis to tip the balance in favor of HIV

inhibition (153) (Figures 4A, B). In this model, A3-mediated

hypermutation (or hypomutation) can be utilized to combat HIV-

1 infection (Figure 4). However, a niche between these two

extremities that is beneficial for HIV-1 exists because of the

existence of a threshold whereby HIV-1 can garner benefits from

the mutagenic property of A3 proteins if the action of these proteins

is counterbalanced stably by Vif to achieve a certain level of

mutagenesis (154–157) (Figures 4A, B). Conversely, the

extremities of the A3 mutagenic axes (hypermutation and

hypomutation) are deleterious for HIV-1 [reviewed in (28, 158,

159)] (Figures 4A, C, D). For instance, hypomutagenic therapy

might work under the assumption that A3 mutagenesis is important

and substantial toward the diversification of HIV-1 genome. The

idea is that by eliminating this mutagenic potential, HIV-1 cannot

sufficiently diversify, allowing the elimination of the virus through

the adaptive immune response and antiviral drugs. The premise of

the opposite side of this strategy, i.e., hypermutation, is that by

modulating A3 activity to induce high levels of mutagenesis, the

lethal consequence would eventually eliminate HIV-1 replication, as

demonstrated in vitro by small-molecule drugs that can upregulate

the activity of A3 proteins, resulting in HIV-1 inhibition (153, 160–

166). Hypermutated viral cDNA would be subjected to degradation

before integration (167). Even if the integration is successful, the

cDNA would contain large numbers of missense and nonsense

mutat ions . These provira l DNAs are assumed to be

nonreproductive because no progenies or noninfectious viruses

will be produced (168–171).

We discussed that A3 can exert mutagenic pressure and that a

balance exists between the actions of A3 and Vif (Figure 4). This is

because the degradation of A3 proteins by Vif is not absolute,

meaning that sublethal mutagenesis can possibly be utilized by

HIV-1 to diversify its genome (154, 156, 157, 172, 173). Clinical

studies reported that a considerable number of patients infected

with HIV-1 at different clinical stages harbored abundant G-to-A

hypermutation in proviral DNA (169–171, 174–181), further

suggesting that Vif does not eliminate A3 function completely.

Because A3 proteins are mutagens for HIV-1, their potential to

confer drug resistance should also be considered. The A3G protein

is reported to be a source of genetic variation that confers resistance

to 2′,3′-dideoxy-3′-thiacytidine (3TC) in vitro and in vivo (154,

155). This observation is further supported by an ex vivo study

using peripheral blood mononuclear cells (PBMCs) obtained from

healthy donors (156). Naturally occurring HIV-1 Vif point mutants
Frontiers in Virology 06
with suboptimal anti-A3G activity induce the development of

proviruses with 3TC resistance and these cytosine deamination

mutation events are detected in more than 40% of proviruses with

partially defective Vif (156). This partially Vif-defective phenotype

can outcompete wild-type virus growth, implying that G-to-A

hypermutation alone can alter the phenotype of a viral

population. An in vivo study using humanized mice found that

an isogenic HIV-1 molecular clone with Vif 45G (HIV-45G) had

lower replication over time than the wild-type HIV-1 (NL4-3)

(155). However, when these mice were treated with 3TC,

treatment failure occurred in 91% of mice infected with HIV-

45G, which was in clear contrast to the treatment failure of 36%

in mice infected with wild-type HIV-1 (155). The mutations

attributed to 3TC resistance are M184I (ATG-to-ATA) and

M184V (ATG-to-GTG) (155). Although both of these mutations

can result from reverse transcription errors, the M184I mutation

contains a dinucleotide motif preferred by A3G (ATGG-to-ATAG)

(155). Differentiating G-to-A mutations that are derived from either

A3 proteins or RT in this mutation is difficult because both can

induce G-to-A mutations. However, it is noteworthy that A3G-

mediated mutations significantly increase the incidence of 3TC-

resistant mutations in humanized mice (155). This agrees with an in

vitro study demonstrating that the mutation rate of A3 proteins is

higher than that of HIV-1 RT (182, 183). Specific patterns can be

discerned regarding G-to-A mutations derived from A3 proteins

and HIV-1 RT. A study of PBMCs from patients infected with HIV

revealed that A3D/F/G/H-derived mutations introduced more stop

codons than HIV-1 RT-derived mutations (181). In addition, in

vitro studies found that HIV-1 RT was biased to the introduction of

A-to-G mutations (183, 184), which is fundamentally different to

the exclusive G-to-A mutations introduced by A3 proteins. As

expected, the result of this difference is that the hypermutation

index (A3 protein-mediated G-to-A mutation/100bp) is calculated

by subtracting it from the A-to-G mutation rate to correct for

background mutation by HIV-1 RT (143).

An in vitro study suggested a role for A3 proteins in modulating,

but not necessarily conferring, drug resistance (185). It has been argued

that A3 proteins have a role in enhancing resistance to non-nucleoside

reverse transcriptase inhibitors (NNRTIs) by inducing a V179I

substitution, which arises from a G-to-A mutation (185). In and of

itself, V179I does not confer drug resistance. However, when present

with the NNRTI resistance mutation Y181C/V, NNRTI resistance is

increased by 3-to-8 fold. In addition, the frequency of V179I

substitution is higher in CD4+ T cells that express A3F and A3G

proteins (185).

A clinical study found that A3G-mediated hypermutation was

significantly associated with antiretroviral therapy (ART) failure in

Indian patients infected with HIV-1 subtype C (186). However, it

should be noted that A3G-mediated hypermutation was only

observed in the provirus; no hypermutation was recorded in the

plasma HIV RNA of the patients tested (186). This agrees with an in

vitro study demonstrating that A3G induces purifying selection that

will eventually select HIV-1 variants with no hypermutation in their

RNA genome that can still produce virions (187). Furthermore, in

vitro and in silico studies support the proposition that A3-mediated

hypermutation is an “all or nothing” phenomenon because the
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production of proviruses with A3G-induced sublethal

hypermutation (proviruses with low levels of hypermutation yet

bearing no stop codons) is statistically very unlikely (188).

Based on the aforementioned clinical study, drug-resistance

phenotype derived from A3G-mediated hypermutation was not
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detected in plasma HIV-1 RNA because it also harbors stop codons

due to the deaminating action of A3G in tryptophan codons (TGG-

to-TGA/TAA/TAG) (186), further supporting the “all or nothing”

phenomenon of A3G-mediated hypermutation. Therefore, it is

unlikely that HIV-1 will continue to develop A3-related
B

C

D

A

FIGURE 4

The hypomutation and hypermutation activities of A3 proteins. (A, B) The interplay between HIV-1 Vif and A3 proteins is an interaction between viral
fitness and the mutation rate. An equilibrium between these two axes results in an optimal mutation rate for HIV-1 through the use of A3 proteins as
additional sources of mutagenesis. This will achieve a maximum viral fitness greatly exceeding the “dead zone” depicted as a horizontal dotted line
along the graph. (C) Increased activity of A3 proteins results in hypermutation of the HIV-1 genome, leading to loss of the genome in the population.
(D) Conversely, it is argued that reduced A3 protein activity results in a less diversified HIV-1 genome, causing it to be more easily eliminated by the
adaptive immune response, provided that A3 proteins are important sources of mutagenesis for HIV-1 diversification. RBX2, RING box protein 2;
ARIH2, ariadne RBR E3 ubiquitin protein ligase 2; CBF-b, core-binding factor subunit beta; ELOB, elongin B; ELOC, elongin C; Vif, viral infectivity
factor; CUL5, cullin-5; A3, apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3. Created with BioRender.com.
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mutations under effective ART treatment because a clinical study

found no G-to-A hypermutation on plasma HIV-1 RNA in patients

with successful ART (186).

Another interesting aspect that A3 proteins can influence is the

cytotoxic T lymphocyte (CTL) response against HIV-1 (Figure 5).

A3 proteins can introduce changes in the HIV-1 provirus,

inadvertently changing the amino acid sequence of a given viral
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protein (Figure 5A). Therefore, one might also assume that this

change will eventually accumulate and generate epitopes that can

avoid HIV-1–specific CTL responses. This is supported by a

previous in vitro report illustrating the inherent trait of A3

proteins as restriction factors that eventually select variants

bearing lesser (sublethal) mutations in their genomes because

heavily edited genomes would not survive in the population
B

A

FIGURE 5

Effects of A3 proteins on the CTL response against HIV-1 infection. (A) Sublethal mutations mediated by A3F and A3G proteins lead to reduced or
even ablated recognition by the CTL because of small changes in the epitope sequence caused by A3F and A3G proteins, depicted by the change of
the epitope color and shape. (B) Lethal levels of G-to-A mutations mediated by A3F and A3G proteins improve the MHC class I antigen presentation
pathway, providing the adaptive immune system with an additional source of antigen, possibly improving detection by the adaptive immune system,
as depicted by the increase of MHC class I expression with varying epitope shapes. A3, apolipoprotein B mRNA editing enzyme catalytic
polypeptide-like 3; APC, antigen-presenting cell; CTL, cytotoxic T lymphocyte; MHC, major histocompatibility complex; TCR, T-cell receptor.
Created with BioRender.com.
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(187). These variants with minor changes in their genomes could

result in overall reduced detection by our adaptive immune

response. Along these lines, it was reported that A3F/G-induced

mutations on common CTL epitopes cause a reduction in HIV-1–

specific CTL responses ex vivo (189). Meanwhile, another ex vivo

study revealed that hypermutation can facilitate detection by CTLs

(190) (Figure 5B). Defective proviruses that were heavily edited by

A3G protein could produce truncated proteins that can be sources

of antigens to CTLs (190). Newly synthesized and rapidly degraded

polypeptides [defective ribosomal products (DRiPs)] are major

sources of epitopes for major histocompatibility complex (MHC)

class I (191). DRiPs are polypeptides with errors in transcription,

translation, or post-translational processes [reviewed in (192)]. A

previous study demonstrated that targeting HIV-1 group-specific

antigen protein (Gag) to the DRiP pathway boosts MHC class I

antigen presentation and CD8+ T-cell activation in vivo (193). This

further demonstrates that A3 proteins have a role in stimulating the

adaptive immune response by providing another source of viral

antigens for recognition.

Research groups argued that the mutagenicity of A3 proteins is

not correlated with the evolutionary pressure from these enzymes

(139, 194). If the HIV-1 genome has been changed because of

evolutionary pressure from A3 proteins, there should be an imprint

left by A3 proteins in the form of an underrepresentation of A3

target motifs and an overrepresentation of A3 product motifs (195).

In other words, the nucleotide G must be depleted and A must be

enriched in the HIV-1 genome. This is because repetitive exposure

to A3 activity can result in nonlethal mutations, leading to the

underrepresentation of nucleotide sequences favored by A3

proteins. This underrepresentation is considered a footprint

(195). However, this was not found to be the case (194). An

explanation based on these two contradicting studies is that G-to-

A mutations caused by A3 proteins might not represent the primary

mechanism by which they inhibit HIV-1 replication and that they

are merely a side product of this inhibition. As previously explained,

the antiviral effect of A3 proteins extends beyond their deamination

capabilities. Therefore, it is not far-fetched that A3 proteins do not

confer any evolutionary pressure on HIV-1. An alternative

explanation is that the mutations induced by A3 proteins are

highly deleterious, leading to loss of the population. Studies

reported that the number of A3G molecules within Vif-deficient

HIV-1 virions range from 3–11 (196). This number is greatly

reduced to approximately 0.3–0.8 molecules in Vif-proficient

virions (197). Furthermore, it was reported that virions packaged

with one or two A3G molecules exhibit significantly reduced

infectivity (182). This number is close to the number of A3

proteins packaged in virions expressing wild-type Vif. This fuels

the hypothesis that the mutagenic property of A3 proteins, as low as

it might be, confers a lethal effect on the overall fitness of HIV-1. On

average, A3 proteins mutate 2.3 bases for every 1 kb (182). To put

things into better perspective, the optimal mutation rate for HIV-1

is agreed to be approximately 0.3 mutations per genome per

replication cycle in vivo (198). Therefore, it is tempting to think
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that the mutational burden levied upon the HIV-1 genome by A3

proteins might be too high to tolerate, such that it immediately

produces lethal repercussions, leaving no evolutionary footprints on

the genome of the surviving HIV-1 in the population. There could

be heterogeneity among A3 molecules, including differences in the

amount of A3 molecules incorporated per particle and/or the

mutation efficiency of A3 proteins in target cells during infection

events. Further investigation elucidating whether A3 proteins

contribute to HIV-1 evolution is required.
4.2 HTLV-1

Another member of the retrovirus family is human T-

lymphotropic virus type 1 (HTLV-1), the causative agent of adult T-

cell leukemia (ATL) (199). HTLV-1 was also reported to be susceptible

to restriction by A3 proteins (200, 201). Unlike HIV-1, the HTLV-1

genome does not encode Vif. Instead, a peptide motif in the C-terminal

of the HTLV-1 nucleocapsid (NC) domain inhibits the packaging of

A3G protein into virions, as mutations in this region lead to increased

A3G protein packaging and increased susceptibility to this protein

(202). Therefore, it is assumed that the mechanism to counteract the

antiviral activity of A3 proteins might not be identical to that of HIV-1

Vif. Although endogenous and overexpressed A3G protein could be

packaged into nascent HTLV-1 virions in MT-2 and HEK293T cells,

few G-to-A hypermutation were observed in the HTLV-1 genome

(200). This observation supports the idea that HTLV-1 is relatively

more resistant to the antiviral activity of A3 proteins than HIV-1.

Another study reported a relatively lower frequency of G-to-A

mutations in the HTLV-1 provirus (203). Interestingly, the base

composition of HTLV-1 genome is rich in G-C compared with the

HIV-1 genome, which is more A-T rich, as reported decades ago (204–

208). Therefore, it appears that the frequency of nucleotide preference

for the A3 protein within the HTLV-1 provirus is not a major

determining factor, given that the HTLV-1 genome has a higher G-

C content than HIV-1, but the former is more resistant to A3 proteins.

This supports the idea that the difference in replication strategy

between HIV-1 and HTLV-1 may be the biggest determinant in A3

susceptibility of HTLV-1. The primary replication route of HTLV-1 in

vivo is through the mitotic division of host cells because the HTLV-1

provirus is also cloned [reviewed in (209)]. Therefore, ssDNA, as a

substrate of A3 proteins, would not be present because of the clonal

expansion of HTLV-1-infected cells. Furthermore, it has been reported

that the HTLV-1 NC domain in the C-terminus is important for

inhibiting the packaging of A3G protein into virions (202). The

resistance of HTLV-1 to A3G protein is also evident when

considering that, although HTLV-1 RT and HIV-1 RT have

comparable mutation rates (210), the diversity of HTLV-1 is lower

than that of HIV-1 when comparing the variability of their respective

env genes (211, 212). These findings provide further emphasis of the

greater resistance of HTLV-1 than HIV-1 to the antiviral activity of the

A3G protein. Nevertheless, HTLV-1 is still susceptible to A3G protein-

mediated deamination during reverse transcription because GG-to-AG
frontiersin.org

https://doi.org/10.3389/fviro.2023.1332010
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Jonathan and Ikeda 10.3389/fviro.2023.1332010
mutations preferred by A3G protein were observed in proviruses from

HTLV-1 carriers and patients with ATL (203).

An interesting question is whether HTLV-1 can benefit from A3

mutagenesis because A3 proteins leave a footprint on the genome of

HTLV-1 (195, 203). HTLV-1 encodes two oncogenic genes, namely tax

in the sense (plus) strand and HTLV-1 bZIP factor (HBZ) in the

antisense (minus) strand (213). Tax protein is a potent oncoprotein

that is essential for viral transcription and cell transformation (214–

216). This protein is highly immunogenic because of the strong

inducibility of other viral proteins (217, 218). HBZ is also an

oncogenic protein, but it has low immunogenicity (219, 220).

Importantly, a previous study by Fan et al. reported that nonsense

mutations deriving from the A3G protein occur in minus-strand viral

cDNA during reverse transcription, resulting in the inactivation of Tax

and all viral proteins excluding HBZ (203). Conversely, G-to-A

mutations preferred by A3G protein in the plus-strand region were

less frequent, whereas the HBZ gene remains intact (203). A nonsense

mutation in the tax gene of HTLV-1–infected cells would result in the

loss of Tax protein expression, which sounds counterproductive to viral

infection. However, considering that Tax protein can halt cell cycle

progression, losing expression of this protein could confer a growth

advantage. An additional explanation is that the loss of Tax protein

expression causes the loss of expression of other viral proteins, resulting

in escape from the host immune system.

A plethora of studies have been conducted on the interaction

between retroviruses and A3 proteins. Results are indicating the role of

A3 proteins as drivers of retrovirus evolution, evident in the fact that

A3 proteins confer drug resistance and promote immune escape in

HIV-1 and promote uncontrolled cell proliferation and immune

evasion in HTLV-1–infected cells. Some studies deny the direct

contribution of A3 proteins to the aforementioned phenotypes

because of their perceived lack of A3-mediated hypermutation in the

retrovirus genome. More research should be conducted to ascertain

whether the lack of a footprint found in some studies is because A3

proteins do not exert any evolutionary pressure on HIV-1 or because of

the lethal mutagenesis induced by A3 proteins in the HIV-1 genome.
5 Implications of A3 proteins as
drivers of DNA virus evolution

It is undisputed that A3 proteins can act as antiviral factors

against retroviruses. However, A3 proteins are not only antiviral

factors for retroviruses. In essence, A3 proteins are DNA mutators,

and their best-characterized substrate is HIV-1. DNA viruses

belonging to groups I, II, and VII of the Baltimore classification

(135) were reported to be susceptible to the mutagenic ability of A3

proteins, as explained later in this review. This lesser-known

interaction might not be far-fetched considering that some A3

proteins were reported to be localized to the nucleus (30, 51, 54–62,

66). Therefore, these proteins can physically access viral genomes

during DNA virus infection because replication of the genomes of

most DNA viruses occurs in the nucleus [reviewed in (221–223)],

although some viruses such as poxvirus can replicate in the

cytoplasm (224).
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5.1 Parvovirus

Parvoviruses have a linear ssDNA genome [reviewed in (225)],

which is a prime candidate for a substrate for A3 deamination. It

was reported that A3A protein can inhibit parvoviruses (226, 227).

However, this inhibition is entirely deamination-independent, as no

A3A-induced mutations were observed (226, 227). A3A protein can

induce lethal mutagenesis in the genome and prevent survival of the

virus in the population, similar to the previously discussed

explanation regarding A3 proteins pushing the HIV genome

beyond its genomic stability (Figure 4A). However, it is difficult

to ascertain whether this is the case, as no studies have confirmed

the mutational rate of human parvoviruses. The closest virus

belonging to the same family is canine parvovirus, which has a

similar mutation rate as RNA viruses (228, 229), implying that A3

proteins can drive the genomes of parvoviruses beyond their genetic

stability. The second explanation is that the nucleic acid-binding

capability of A3A protein prevented the replication of the

parvovirus genome, leading to inhibition (226). This explanation

is highly supported by a study demonstrating that the deamination

activity of A3A protein is not required for inhibition of parvovirus

replication (227).

However, Poulain et al. recorded different results, demonstrating

that in the case of parvoviruses, A3 proteins do leave footprints, and

there is a difference in terms of the magnitude and localization of the

footprint among the viruses within this family in silico (195). One of

the viruses with the largest A3 protein footprints is the B19

erythroparvovirus (195). This virus was strongly depleted of A3-

favored motifs, which has been observed to a lesser extent in

parvovirus 4 and bocavirus 4 (195). Interestingly, the researchers

found no A3 footprints on adeno-associated dependoparvovirus

(195), in accordance with previous in vitro reports revealing a lack

of A3-induced mutations and the independence of parvovirus

replication inhibition from the deaminase activity of A3A protein

(226, 227).

If parvoviruses are susceptible to the antiviral activity of A3

proteins, it should be clarified whether they have evolved a

mechanism to counteract A3 proteins. However, we found no

reports of such an A3 counteraction mechanism by parvoviral

proteins akin to Vif protein of HIV-1 or the C-terminal peptide

motif of HTLV-1 NC protein. Although it is evident that some

viruses belonging to the Parvoviridae family are primarily

susceptible to the antiviral activity of A3 proteins, whether A3

proteins impart evolutionary pressure on parvoviruses remains

unclear. Furthermore, it is unknown whether A3 proteins can

help change the phenotype of parvoviruses by conferring drug

resistance and/or immune escape.
5.2 Human herpesvirus

Human herpesviruses (HHVs) possess a linear dsDNA genome

of 125–240 kbp in length that encodes 70–165 genes (230). DNA

replication in HHVs occurs in the nucleus (231). Hence, it is

tempting to think that HHVs are susceptible to the antiviral
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activity of A3 proteins. A3C protein is reported to be an important

restriction factor against human herpesvirus 1 (HSV-1), as

indicated by the reduced virus titer and particle/plaque-forming

unit ratio upon its overexpression. In addition, A3-edited genomes

have been discovered in vitro and in vivo (232). Furthermore, the

same A3-mediated editing was detected in the genome of Epstein–

Barr virus (EBV) samples (232). Further fueling this theory, recent

reports illustrated that the ribonucleotide reductases (RNRs) of

HHVs could antagonize A3 proteins by triggering their

relocalization and enzymatic inhibition (51, 59, 233, 234), proving

that A3 proteins have a sufficient effect on HHV replication to

necessitate a counteraction mechanism.

RNRs synthesize deoxyribonucleoside triphosphates, which are

required for DNA replication both by viruses and cells (235). EBV

has been reported to antagonize A3B protein through the binding of

its RNR subunit BORF2 (51, 59, 233, 234). This binding was

reported to enzymatically inhibit the cytosine deaminase activity

of A3B protein and relocalize A3B protein from the nucleus to

perinuclear bodies to maintain genomic integrity (51, 59, 233, 234).

This ability of viral RNR to antagonize the antiviral activity of A3B

is argued to be the product of evolution for herpesviruses because it

is conserved among viruses that infect humans, who naturally

express A3B protein, but it is absent in homologous viruses that

infect New World monkeys, which naturally lack the A3B gene

(233). These results suggest the possibility that A3B protein aided

the evolution of HHVs. Furthermore, many of their genes are

footprinted by A3 proteins (195).

Another interesting finding is that HHVs that infect

lymphocytes, such as varicella zoster virus (VZV), EBV, and

Kaposi’s sarcoma-associated herpesvirus, do not have reduced

A3G protein-preferred motifs in vitro (236), even though

lymphocytes are known to express extremely high levels of A3G

protein (237). This makes sense when considering that HHVs

replicate solely in the nucleus (231), whereas A3G protein is

primarily localized to the cytoplasm (36, 44, 54, 55, 57, 60) and

only a very small amount localize to the nucleus (63–65). VZV, but

not HSV-1, is depleted of recognition motifs preferred by A3A,

A3B, and A3H proteins (238, 239). Taken together, the depletion of

A3-preferred motifs might involve multiple factors that can

modulate the frequency of these features. A counterpoint to the

notion that A3 proteins aid the evolution of HHVs is a study

reporting that although G-to-A hypermutation was found in in vivo

buccal swabs, they argued that it does not affect HHV genome

evolution (232). This connects to the idea mentioned in previous

sections of this review in which the highly mutagenic potential of

A3 proteins pushed the viral genome beyond its genetic stability,

causing the virus to not survive in the population (Figure 4A).

Apparently, this might also hold true for HHVs or at least for HSV-

1. Although it is true that highly edited genomes are defective, a

study monitoring the molecular evolution of herpesviruses found

that HSV-1 has 68.3% GC content (240). If A3 proteins contributed

to HSV-1 evolution, the percentage should be lower considering the

C-to-U mutations that A3 proteins cause on the single-stranded

viral DNA.
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Therefore, HHVs are demonstrated to be susceptible to the

antiviral activity of A3 proteins, and they also possess a

counteraction mechanism (51, 59, 233). It can be said that A3

proteins exert evolutionary pressure on HHVs, considering that

certain subtypes of HHVs that infect old world monkeys possess a

counteraction mechanism against the antiviral activity of A3B

protein whereas it is absent in homologous viruses that infect

New World monkeys lacking natural A3B protein expression.
5.3 Human papillomavirus

Vartanian et al. sought to clarify whether the human

papillomavirus (HPV) genome is susceptible to the antiviral

activity of A3 proteins (241). A3H protein is expressed within

keratinocytes (target cells of HPV) (241). A3A and A3B proteins are

expressed in psoriatic keratinocytes (241), a manifestation that is

commonly attributed to HPV infection (242). Prior research

focused on the region corresponding to the promoter region of

HPV because this region more frequently exists as ssDNA.

Hypermutation has been detected in HPV1a plantar wart samples

and HPV16 precancerous cervical biopsies, albeit at low cytosine

editing frequencies of 11% and 9% for plantar warts and

precancerous cervical biopsies, respectively (241). This is

supported by a study examining the HPV16, HPV18, and HPV31

genomes (195). However, the researchers found that the footprint

left by A3 proteins is genome-wide opposed to being limited to the

promoter region (195). This strong presence of an A3 footprint

implies that the genome will receive less exposure to A3 proteins,

experience less uracil introduction, and consequently less

degradation of the viral genome through base excision repair

(195). However, an important highlight is the existence of reports

of these HPVs stabilizing (243) or even upregulating the expression

of A3B protein (244), which is counterproductive for the virus when

considering both facts. If the genome of the virus itself is slowly

acquiring increased resistance to A3 proteins, why would the

proteins encoded in this genome also increase the half-life of A3B

protein in an infected cell? Poulain et al. speculated that A3 proteins

are required to increase the mutational rate in the HPV genome

because the host DNA polymerase hijacked by HPVs is not

sufficient to drive viral evolution (195). This might not be far-

fetched as a previous publication also suggested a similar narrative

(245). Prior research suggested that the TC dinucleotide sequence

preferred by several A3 proteins is highly depleted in HPV

genomes (195).

HPVs can be roughly categorized into two groups based on

tissue tropism. Specifically, beta- and gamma-HPVs infect

cutaneous tissues such as the skin, whereas alpha-HPVs infect

mucosal tissues such as the cervix (246). Warren et al. found a

difference in terms of the basal expression of A3 protein isoforms

between cutaneous and mucosal tissues, the latter having extremely

high expression of all A3 isoforms excluding A3B (245). They

argued that the differential expression of A3 proteins in both types

of tissues helps shape the evolution of HPVs, conferring them with
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tropism toward one tissue over the other by depleting the TC

dinucleotide (245). When considering the various findings, it can be

said that A3 proteins exert evolutionary pressure on HPVs.
5.4 Human polyomavirus

Poulain et al. reported that several human PyVs, namely BK

polyomavirus (BKPyV), JC polyomavirus, and Merkel cell

polyomavirus, are susceptible to the antiviral activity of A3

proteins (195). They found that BKPyV exhibits an extreme

depletion of TC dinucleotides, as previously reported (247).

Interestingly, BKPyV infection upregulated the expression of A3B

protein (247). Similarly as HPV, BKPyV also upregulated the

expression of A3B protein, which does not improve nor impair

BKPyV infection (247). PyVs upregulate A3B protein via their large

T antigen (TaG) (248), although the precise mechanism of the

process is unclear. TaG has a domain that targets p53 for

inactivation and another domain that targets retinoblastoma

protein (RB) for inactivation, leading to the inhibition of cellular

apoptosis [reviewed in (249, 250)]. Starrett et al. revealed that the

RB-interacting domain is important for A3B gene upregulation in

vitro (248). They proposed a model whereby disruption of the RB–

E2F pathway by TaG resulted in the expression of the antiviral

enzyme A3B. Reiterating the speculation by Poulain et al. (195), it is

highly plausible that DNA viruses such as HPV and PyV utilize A3B

protein as a means to evolve their genomes, modulating

pathogenesis and/or allowing immune escape. This is further

supported by a clinical study demonstrating that A3A and A3B

proteins are major sources of mutations in the BKPyV genome

(251), implying that A3 proteins act as drivers for BKPyV evolution.
6 Implications of A3 proteins as
drivers of hepadnavirus evolution

The most well-studied hepadnavirus affected by A3 proteins is

hepatitis B virus (HBV) (195, 252–259). However, there is a debate

on exactly when and how A3 proteins exert their antiviral effects.

This is because although HBV possesses RT, the process by which it

performs reverse transcription is extremely different than that in

retroviruses such as HIV-1. The complete synthesis of the plus-

strand DNA of the HBV genome does not occur in the producer

cell, meaning that a portion of the minus-strand DNA of HBV is

exposed as a single strand, making it a prime target for A3 proteins

(253). This largely appears to be the case, as a full genome ultra-

deep pyrosequencing study revealed that G-to-A hypermutation

largely occurs in single-stranded regions of the HBV genome (253).

Furthermore, their results point to the contribution of G-to-A

hypermutation, which is characteristic of cytosine deamination

mediated by A3 proteins, in the progression of HBV infection to

liver cirrhosis because there was a correlation between the increased

frequency of G-to-A hypermutation and a higher degree of liver

fibrosis (253). Another interesting point from that study was the key

difference in the action of A3 between hepadnaviruses and
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retroviruses, as deamination occurs in mature virions within

producer cells before viral egress in hepadnaviruses but cells in

retroviruses (253).

The aforementioned G-to-A editing that occurs within the HBV

genome contributes to HBeAg seroconversion (253). HBeAg

seroconversion is a phenomenon whereby the expression of an

accessory nonparticulate protein encoded by preC mRNA is lost

during a natural infection, changing the phenotype from a highly

replicative, low-inflammatory phenotype of the HBeAg-positive

phase to a low-replicative, HbeAg-negative chronic hepatitis

phase (257). This loss of HBeAg protein expression can be

considered shortsighted evolution because HBV has to establish

an infection (high replication) and then persist (low replication and

immune response escape). Interestingly, this G-to-A editing is

primarily performed by A3 proteins (253), demonstrating that A3

proteins edit the HBV genome and that these mutations naturally

help HBV to establish a persistent infection.

Another aspect is the deaminase-independent activity of A3

proteins against hepadnaviruses. The anti-HBV activity of A3G

protein is independent of its DNA editing activity (258), implying

that this protein physically blocks DNA strand elongation. This is

further supported by the fact that A3G protein interferes with

reverse transcription by binding to pre-genome RNA (pgRNA) and

preventing nucleocapsid formation (256). However, researchers

also found that A3C protein, which is smaller than A3G protein,

does not prevent nucleocapsid formation and instead deaminates

the HBV genome (256). Another group reported similar findings

demonstrating that the blockade of HBVDNA accumulation results

from the inhibition of pgRNA packaging (260). Therefore, the next

question is whether HBVs have a mechanism to counter A3

proteins. An in vitro study demonstrated that the small

nonstructural X protein (HBx) of HBV decreases the protein

levels of A3G in cells through a process that does not involve

proteasomal degradation (255). Interestingly, it was indicated that

HBx induces A3G exosome secretion, as the A3G protein

concentration was maintained by inhibit ing exosome

biogenesis (255).

Taken together, the anti-HBV activity of A3 proteins is more of

a collective action by several different A3 proteins exerting both

deaminase-dependent and deaminase-independent effects to

achieve an anti-HBV effect. Considering the evidence that A3

proteins have a role in the evolution of HBV as infection

proceeds, it can be said that A3 proteins aid in HBV evolution.
7 Implications of A3 proteins as
drivers of RNA virus evolution

The first mention of APOBEC/AID family proteins stems from

the discovery of the RNA-editing enzyme A1 (1, 2). A1 protein was

later revealed to deaminate DNAs (7). Although A3 proteins

generally prefer to deaminate ssDNA, several reports

demonstrated that certain A3 proteins induce C-to-U mutation in

the ssRNA substrate (261–266). Therefore, it is interesting to

speculate that A3 proteins also contribute to RNA virus
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evolution. Apparently, this has been observed for a few RNA

viruses, as discussed in the subsequent sections.
7.1 Coronaviridae

A study revealed that A3C, A3F, and A3H proteins can inhibit

the human coronavirus NL63, a nonzoonotic coronavirus (267).

Although hypermutation was not found in the tested coronavirus

genome (267), cytosine deamination was still found to occur

because the study demonstrated that wild-type A3 proteins confer

a higher level of antiviral activity than the catalytically inactive A3

mutants (267). There are two possible explanations for the

mechanism by which A3 proteins inhibit coronavirus replication:

A3 proteins may deaminate a cellular target or the genome of the

coronavirus itself; or, the inhibition may be caused by the

interaction of A3 with viral RNA and/or proteins. The antiviral

activity of A3 proteins against coronaviruses is supported in

another study, which demonstrated marked cytosine deamination

in all coronavirus genomes (268), and A3 proteins did have an effect

on HKU-1, a nonzoonotic human coronavirus (195). Interestingly,

despite being in the same family of coronaviruses, zoonotic

coronaviruses such as Middle East respiratory syndrome

coronavirus (MERS-CoV), severe acute respiratory syndrome

coronavirus-1 (SARS-CoV-1), and SARS-CoV-2, do not contain

footprints of A3 proteins (195). For the cases of MERS-CoV and

SARS-CoV-1, it was speculated that the relatively low number of

infected individuals and the short time of viral circulation may have

affected the outcome (195). For SARS-CoV-2, it was stated that the

additional viral protein encoded inORF10might have some Vif-like

activity through an interaction with the CUL2 ubiquitin ligase to

degrade A3 proteins (269). However, this does not eliminate the

possibility of deamination, as several study groups have reported

the contribution of A3 proteins to UC-to-UU mutations in the

SARS-CoV-2 genome (270, 271). The first report of deamination by

A3 proteins in the SARS-CoV-2 genome demonstrated that wild-

type A3A protein expression greatly increased the viral titer

production, by 100-fold (270). Furthermore, SARS-CoV-2

mutants harboring C-to-U mutations were found to be circulating

during the early part of the pandemic (January 2020) and rapidly

became a signature of the dominant strains (including Delta and

Omicron variants) that spread worldwide (270). This is further

supported by several reports mentioning that C-to-U mutations are

among the most frequently accumulated mutations in the SARS-

CoV-2 genome (271–275). A study of the SARS-CoV-2

transcriptome also detected C-to-U mutations and revealed that

the sequence context was compatible with APOBEC-mediated

deamination (272). In addition, their study indicated that the

inherent error-prone RNA-dependent RNA polymerase (RdRp)

of SARS-CoV-2 represented only a fraction of the C-to-U

mutations observed (272).

Collectively, A3 proteins may contribute to the evolution of

some coronaviruses, notably SARS-CoV-2. However, a correlation

between the A3-mediated deamination of coronaviruses and

alteration of their phenotype to confer drug resistance and/or

immune escape has not yet been identified, because C-to-U
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mutations were found in the 5′-UTR, which has an important

function in the replication of SARS-CoV-2 RNA and viral protein

expression (270). Further investigations examining the role of A3

protein-mediated hypermutation in SARS-CoV-2 evolution,

including drug resistance and/or immune escape, are needed.
7.2 Rubella virus

It has been reported that the rubella virus belonging to

Matonaviridae is susceptible to the RNA-editing activity of A3

proteins (276). The sequence evolution of immunodeficiency-

related vaccine-derived rubella virus (iVDRV) revealed a

divergence from the genome of the parental rubella virus contained

within the vaccine (276). A clear bias toward C-to-U mutations was

observed in the iVDRV positive-strand genome, indicating that A3

proteins represent an important cause of the divergence (276).

Furthermore, the mutation caused a decrease in nucleotide

preference for A3G protein but an increase in nucleotide

preference for other A3 proteins and A1 protein, implying that

multiple APOBEC family proteins act on iVDRV to generate

sequence diversity (276). Similar to a study of coronavirus, the

researchers also found that the error-prone RdRp is not the major

contributor to this sequence diversity (276). Evidence suggests that

rubella virus, at least in immunodeficient patients, is susceptible to the

deaminating properties of A3 proteins and that A3 proteins aided the

evolution of this virus, as indicated by the changes in its sequence

(276). These changes also alter the phenotype of the virus, as different

strains of iVDRV have unique replicative and persistence properties

(276). Of note, iVDRVs were less cytopathic in cell culture than the

parental vaccine virus, but they had better capability to sustain an

infection, similar to the characteristics of wild-type rubella virus

(276). This strongly supports the idea that A3 proteins can shape the

evolution of a virus and even alter its phenotype to improve viral

fitness. However, we also note that no other similar studies have

confirmed these findings.

The change of iVDRV phenotype allows a higher level of

persistence (277). This was later elucidated to primarily stem

from A3 protein-derived mutagenesis (276). Therefore, the

editing activity of A3 proteins on the rubella virus genome

implies that the proteins can shape the evolution of a virus and

even alter its phenotype to improve viral fitness.
8 Conclusion

The pathogen–host interaction is a complex “arms race” to

outcompete each other for survival. Some viruses have adapted to

live with A3 proteins, utilizing their mutagenic ability for their own

benefit, whereas some have evolved to negate their action

altogether. Therefore, A3 proteins have been established as

extremely important restriction factors because of their plethora

of interactions with several viruses, helping to shape viral evolution

and their own evolution. Modulating A3 proteins for our own

benefit remains a difficult task. Because of the deep interactions of

A3 proteins with viruses and host proteins, it is difficult to predict
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the repercussions of modulating these proteins, as it can lead to

unwanted outcomes or even promote beneficial mutation in viruses.

More research is needed to better elucidate the interactions of A3

proteins with host and pathogens.
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