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Medicine, Kobe, Hyogo, Japan
Enveloped viruses complete their replication cycle by forming virions that bud

from infected cells throughmembrane scission. Themechanisms by which this is

achieved are less well-understood than the well-characterized membrane

scission of vesicles budding inwards into the cytosol. The scission of vesicles

that bud away from the cytosol is mediated by machinery of the endosomal

sorting complexes required for transport (ESCRT)-III, which is highjacked by

viruses of several different families. Other groups of viruses can bud

independently of ESCRT-III activity. It has not been fully elucidated how the

latter achieve this in the absence of host ESCRT-III, but it is known that some viral

proteins directly mediate membrane scission. The Herpesviridae constitute a

family of highly diverse viruses that bud at the inner nuclear membrane and

cytoplasmic membranes in infected cells. Many investigators have attempted to

determine the mechanism of membrane scission during herpesvirus budding,

and have found this to be complex, not exactly conforming to either of the two

methods. The present review attempts to synthesize the disparate findings into a

model of herpesvirus egress based on both ESCRT-mediated and viral protein-

mediated mechanisms.
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Introduction

Enveloped viruses must produce viral particles by deforming the host cell membrane

and then pinching off from the membrane in a scission step. In eukaryotic cells, vesicles can

bud inwards into the cytosol or outward away from the cell (Figure 1A) (1). Types of

vesicles budding into the cytosol include clathrin-, coat protein I (COPI)- and COPII-

coated vesicles (2). In this case, the bud neck is surrounded by cytoplasm and the BAR and

dynamin family fission machineries bind outside the bud to constrict and pinch off the

membrane necks. This process has been well characterized (Figure 1A) (2).

Vesicles budding outwards away from the cytosol include intraluminal vesicles (ILVs)

and extracellular vesicles as well as enveloped viruses (1). It is less clear how this “reverse-

topology scission” is directed from the inner surface of the membrane itself. The machinery
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of the endosomal sorting complexes required for transport

(ESCRT)-III molecules is the sole mechanism thus far identified

that is responsible for such reverse-topology scission (Figure 1A) (1,

3, 4). Because of the particular topology of viral budding

(Figure 1B), studies of viral egress have been focused on whether

or not the process is ESCRT-III dependent (5, 6). Nevertheless, for

some viruses including herpesviruses, there is no consensus

regarding the dependence of viral egress on ESCRT-III.

Herpesviruses are enveloped double-stranded DNA viruses,

with a mature virion consisting of three elements: an icosahedral

capsid with a linear double-stranded DNA genome, a host-

membrane-derived envelope spiked with viral glycoproteins and

the tegument, a proteinaceous layer between the capsid and

envelope (7). The Herpesviridae family is subdivided into the

Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae

subfamilies, based on their molecular and biological properties

(7). Herpes simplex virus 1 (HSV-1) is the prototype of the
Frontiers in Virology 02
alphaherpesvirus subfamily and causes a variety of conditions

such as mucocutaneous disease, keratitis, skin disease and

encephalitis in humans (8). Herpesviruses share a common virion

morphology and approximately 40 conserved genes (7). Tegument

proteins form a group of structural components playing an

important role in virion assembly (9), similar to the matrix

proteins of other viruses.

Herpesviruses replicate their genomes and package nascent

viral progeny genomes into capsids in the host cell nucleus. These

capsids must first acquire envelopes by budding through the inner

nuclear membrane (INM) into the perinuclear space between the

INM and the outer nuclear membrane (ONM). This is followed by

fusion with the ONM to release capsids into the cytoplasm, which

then bud again into cytoplasmic vesicles to produce infectious

virions (10) (Figure 1C). This variety of viral factors and the

complexity of the budding processes make it difficult to

understand their relationship to ESCRT-III. Here, I review
B

C

A

FIGURE 1

Reverse-topology scission involved in viral egress. (A) Normal-topology scission (left), carried out by dynamin and BAR proteins, for the biogenesis of
vesicles directed inwards into the cytosol. Reverse-topology scission (right), carried out by ESCRT-III, functions in vesicle budding away from the
cytosol. Note that only the cytosolic side of the membrane neck is accessible for the protein scaffolding and scission machinery. (B) HIV-1 Gag
recruits ESCRT-III via TSG101 or ALIX to mediate scission (left). Influenza virus M2 mediates scission by virtue of its own activity through lipid re-
ordering (right). (C) Egress of herpesviruses. After genome replication in the nucleus, viral capsids in the nucleus bud through the INM to form
vesicles in the perinuclear space that fuse with the ONM to release the capsids into the cytoplasm. Capsids bud again into cytoplasmic vesicles to
produce infectious virions, followed by release to the extracellular space. During budding at the INM, the NEC mediates scission by recruitment of
ESCRT-III via ALIX/NEDD4 or by itself through its polymerization. During budding at the cytoplasm, tegument proteins may mediate scission by
recruitment of ESCRT-III via multiple interactions or by polymerization as is the case for proteins such as UL51.
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mechanisms of membrane scission for viral egress, focusing on

herpesviruses, which have unique properties.
ESCRT-III-dependent viral egress

ESCRT proteins were originally identified by virtue of their

essential role in the formation of ILVs in budding yeast (11).

Members of the ESCRT family can be classified into five groups:

ESCRT-0, -I, -II -III and VPS4 complex (3, 12). Of these, ESCRT-III

catalyzes membrane fission and the VPS4 complex mediates ESCRT

disassembly (3, 12). ESCRT-III proteins are recruited onto the

membrane by ESCRT-II or adaptors such as ALIX. This is

followed by the formation of membrane-binding spirals that

mediate membrane deformation and scission, in cooperation with

the ATPase VPS4 (1, 3). VPS4 ATPases disassemble ESCRT-III

filaments into their constituent subunits using the energy of ATP

hydrolysis (13, 14). The activity of VPS4 is crucial for the ESCRT-III

assembly cycle, as shown by severe defects in ESCRT-III-mediated

membrane scission on expression of a dominant negative VPS4

allele. ESCRT-III appears to mediate reverse-topology scission

events in a wide range of cellular processes, including vesicle

budding from the cytoplasmic membranes, autophagy, membrane

repair and cytokinesis (1, 4).

A unique mechanism of scission during viral egress was

originally revealed by the finding that disruption of a short

tetrapartite motif (the L domain) found in retroviral proteins

typically results in defects during the late stages of budding,

particularly at the final step of vesicle fission (15). Similar motifs

have been identified in a variety of different viruses (5, 15). These

motifs mediate the recruitment and interaction of the ESCRT

proteins to facilitate virus egress. Briefly, the PTAP motif binds

the ESCRT-I protein TSG101 and the YPXL motif binds the

ESCRT-III adaptor ALIX, whereas the PPXY motif binds NEDD4

ubiquitin ligase family proteins (16–21). The ESCRT proteins are

rich in ubiquitin-binding domains, reflecting their prominent role

in sorting ubiquitinated proteins into ILVs (3, 15). In the case of

NEDD4-dependent budding, ESCRT-III is thought to be recruited

via ubiquitin on the viral protein complex (15).

Different viral species exhibit a wide variety of functional L

domains and hence different ESCRT proteins are required for

budding. For example, human immunodeficiency virus 1 (HIV-1)

Gag protein recruits TSG101 and ALIX through its PTAP and

YPXL motifs, respectively (16, 17, 19, 20) (Figure 1B). Equine

infectious anemia virus recruits ALIX via the YPXL motif (19–21)

and Rous sarcoma virus uses NEDD4 through the PPXY motif (18).

There are also other ways to recruit ESCRTs in addition to the

three traditional L domains. The matrix (M) protein of the

paramyxovirus parainfluenza virus 5 (PIV5) lacks the well-defined

PTAP, YPXL and PPXY motifs but mediates budding through

ubiquitination and the ESCRT-III pathway (22). An FPIV motif

within the PIV5 M protein is essential for viral budding and can

functionally compensate for the absence of the L domain during

HIV-1 budding. Similarly, NEDD4L ubiquitin ligase allows the

release of HIV-1 mutants lacking the PTAP and YPXL motif

(23–25). HIV-1 Gag does not interact with NEDD4L directly
Frontiers in Virology 03
but the cellular protein Angiomotin links HIV-1 Gag and

NEDD4L to facilitate budding (26, 27). ESCRT-III appears to

mediate egress of viral progeny in many different families

of viruses, including retroviruses, filoviruses, rhabdoviruses,

arenaviruses, paramyxoviruses, flaviviruses, bunyaviruses,

poxviruses and hepadnaviruses as well as herpesviruses (5, 28–30).
ESCRT-III-dependent egress
of herpesviruses

It was reported early on that the expression of a VPS4 dominant

negative allele in HSV-1-infected cells suppressed envelopment in

the cytoplasm (31–34). The canonical motifs of the L domains are

present in various tegument proteins, but siRNA for TSG101 or

ALIX had no effect on HSV-1 reproduction (35). This led to the

conclusion that HSV-1 recruits ESCRT-III machinery via complex

interactions between multiple viral proteins and ESCRT proteins at

the cytoplasm in a redundant fashion (Figure 1C). Another group

showed that one of the ESCRT-III components, CHMP4C, has a

predominant role in HSV-1 envelopment in the cytoplasm (36). A

role for ESCRT-III in the life cycle of the betaherpesvirus human

cytomegalovirus (HCMV) has also been reported; expression of

dominant negative mutants of VPS4 or ESCRT-III protein severely

impaired HCMV replication (37).

In contrast to the redundant role of tegument proteins in the

cytoplasm, the nuclear egress complex (NEC) is essential for the

envelopment of capsids at the INM (38, 39). Herpesvirus NEC,

which consists of nuclear matrix and nuclear membrane proteins,

forms a complex on the intranuclear side of the INM (38). Ectopic

expression of the NEC results in the generation of characteristic

vesicles without capsids located between the INM and ONM,

suggesting that the NEC itself can induce membrane deformation

and scission in the absence of any other viral factors (40). Our group

showed that the NEC of HSV-1 interacts with ALIX to recruit

ESCRT-III to the INM (41, 42). Furthermore, depletion of ESCRT-

III components severely impaired envelopment at the INM and

impaired nucleocytoplasmic transport (41). Similarly, another

group showed that the NEC of the gammaherpesvirus Epstein-

Barr virus (EBV) interacts with ALIX and the NEDD4 protein to

recruit ESCRT-III to the INM (43, 44). These experiments reveal

that budding at the INM requires ESCRT-III function in

herpesvirus-infected cells (Figure 1C) (39, 45).

During viral infection, different types of extracellular vesicles

(EVs) appear to be released by host cells, including so-called L-

particles composed of virus envelope and tegument proteins but

lacking the viral genome and viral capsid proteins. Although L-

particles are themselves non-infectious, they were shown to facilitate

HSV-1 infection, at least in cell cultures, most likely by delivering

viral and/or cellular proteins to the target cells that are needed for

virus replication and suppression of antiviral responses (46). In

contrast, HSV-1 infection influences the cargo and functions of

EVs released by infected cells; these EVs then negatively impact a

subsequent HSV-1 infection (47–49). Because ESCRT-III mediates

scission of EVs and is incorporated into them (1, 4), it is conceivable

that it affects viral replication via EV biogenesis.
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The effects of compounds that target
the ESCRT machinery

Recently, compounds binding the ESCRT-I protein TSG101

were analyzed in the context of viral infection. These compounds

target the N-terminal domain of TSG101, disrupting its ubiquitin

binding and inhibiting HIV-1 replication. Electron microscopy

revealed a defect in HIV-1 Gag assembly in the cytoplasm. The

authors concluded that Tsg101 acts as a chaperone for HIV-1 Gag

that is independent of its interaction with the PTAP motif (50).

These compounds also impaired the replication of members of the

filo-, alpha- and herpesvirus families but not the flaviviruses (51). In

agreement with the results of experiments depleting ESCRT

proteins, these compounds impair HSV-1, HSV-2 and EBV

nuclear egress (52, 53). Thus, the ESCRT machinery supports

maturation of herpesvirus virions at the INM in addition to its

role in scission. Studies on nucleocytoplasmic transport of capsids

contributes anti-viral therapies.
Mechanisms of ESCRT-III-
independent egress

ESCRT-III-independent egress has been reported for several

members of the groups of orthomyxoviruses, paramyxoviruses,

coronaviruses, togaviruses, and herpesviruses (31, 54–58),

although the responsible mechanisms have mostly not been well-

studied. The best investigated ESCRT-III-independent egress is that

of influenza viruses, which can still replicate in cells with a

dominant negative allele of VPS4 (55). The influenza M2 protein

is a proton-selective ion channel protein, crucial for the scission step

during viral egress (59). In vitro, purified M2 protein alters the

membrane curvature and generates vesicles inside giant unilamellar

vesicles (GUVs), a process dependent on its cytoplasmic

amphipathic helix (60). Thus, upon binding, the M2 amphipathic

helix forms clusters and induces membrane curvature and lipid

ordering, constricting and destabilizing the membrane neck,

causing fission of liposomes (60–62). Based on these observations,

it has been concluded that influenza virus M2 protein directly

mediates membrane scission (Figure 1B). This model is attractive as

the M2 protein at the neck of the bud will be released from the cells

together with the virions and recycling of M2 proteins is not

required for the next round of budding.
ESCRT-III-independent egress
of herpesviruses

In the past, viral egress was mainly considered in terms of its

dependency on ESCRT-III or VPS4 activity. However, the

distinction between ESCRT-III-dependent and -independent

budding is not clear for some viruses, including herpesviruses.

Following the discovery of the intrinsic functions of influenza

virus M2 proteins for membrane deformation/scission, similar
Frontiers in Virology 04
assays were adapted to investigate the NEC. This documented the

ability of NEC to produce vesicles inside the GUV in vitro (63).

Purified NECs form hexagonal lattices that might reflect the driving

force for particle formation because mutation at the contact site of

these lattices severely impaired vesicle formation both at the GUV

and in infected cells (63–67). Similar to the situation with influenza

M2 proteins, it could be concluded that NEC mediates membrane

scission at the bud during egress from the INM (Figure 1C). At the

present time, it is unclear whether NECs can trigger INM scission in

infected cells in the absence of ESCRT-III, or whether NEC scission

activity and ESCRT-III machinery act independently in parallel.

Confusion about the dependence of ESCRT-III has also arisen

regarding envelopment in the cytoplasm. HSV-1 UL51 protein and

its homologues are conserved tegument proteins which are important

for envelopment in the cytoplasm (68–71). Unexpectedly, the crystal

structure of the UL51 protein was found to resemble the host ESCRT-

III component. As UL51 forms ESCRT-III-like filaments in vitro, it

has been proposed that it promotes membrane scission directly at the

cytoplasm (72) (Figure 1C).Whether UL51 mediates scission by itself

or modifies ESCRT-III assembly in infected cells has not yet

been clarified.

Reports on HCMV imply an even greater degree of complexity.

In contrast to the previous report (37), others reported that

expression of dominant negative mutants of VPS4 or ESCRT-III

protein had no effect on the envelopment of HCMV capsids but

reduced the efficacy of viral spread, perhaps due to effects on

exosome-mediated signaling (73).

Thus far, there is no explanation for these discrepancies

regarding the role of ESCRT-III in the life cycle of herpesviruses.

Inhibition of ESCRT-III severely inhibits cell division, resistance to

cell death, biogenesis of EVs and membrane repair (1, 4). Hence, the

true contribution of ESCRT-III for budding per se is difficult to

establish in experiments performed under conditions that avoid

cytotoxicity. Cytotoxic effects of ESCRT-III deficiency need to be

analyzed more carefully, especially in the case of relatively slowly

replicating viruses such as herpesviruses.
Updated model of reverse-
topology scission

The model where a single viral factor cleaves the membrane by

clustering of viral protein and/or lipid structures might be based on

in vitro analyses showing that the ESCRT-III protein CHMP4 forms

a helical polymer on the GUVs which act as the executor of

membrane scission (74, 75). This approach has documented that

the other ESCRT-III components CHMP2 and CHMP3 are located

at the termination site of the CHMP4 polymer to recruit VPS4

ATPase (74, 76). Based on these observations, it was proposed that

the polymerization of CHMP4 protein itself cleaves the membrane

in a reverse-topology manner and that the enzymatic activity of

VPS4 recycles the ESCRT-III proteins from the complex (74, 75)

(Figure 2A). On the other hand, imaging experiments have shown

that VPS4 recruitment precedes membrane scission (77–79).
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Therefore, there has been a persistent belief that the GUV assay

does not adequately reflect reverse-topology membrane scission in

the cell. As GUVs are less stiff than cellular membranes, it might be

easier to achieve scission in the GUV system than in cells, and thus

generate artifacts (80). Likewise, it is uncertain whether viral

proteins alone can mediate reverse-topology scission from the

cytoplasmic or nuclear space independent of any cellular

machinery in infected cells.

In an effort to resolve this disparity, GUV assays were modified

to create membrane nanotubes under controlled tension and force

(80). ESCRT-III/VPS4 assembly was reconstituted using these

membrane nanotubules, with the result that it appeared to be the

case that VPS4 activity and polymerization of ESCRT-III subunits

could generate forces within the nanotubes that led to their

constriction and to membrane scission (81, 82). Accordingly, a

model was proposed in which sequential polymerization of ESCRT-

III subunits, driven by a recruitment cascade and by continuous

subunit-turnover by VPS4, induces membrane deformation and

fission (81–83) (Figure 2B). These modifications to the reverse-

topology membrane scission model with ESCRT-III will need to be

addressed for other viral factors as well. It would be important to

determine whether reconstitution of viral protein complexes at the

bud is necessary for, and whether any ATPases are required for,

ESCRT-III-independent viral egress (Figure 2C).
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Discussion

Since the historical report that scission in HIV-1 budding is

dependent on ESCRT proteins (16, 17), viral budding has been

considered mainly in terms of interactions with ESCRT-III.

However, there are many conflicting reports regarding the degree

of ESCRT-III dependence for viral budding. Due to the wide range

of ESCRT-III functions (1, 4), direct effects of ESCRT-III on viral

budding may often be underestimated or overestimated. It is

especially difficult to separate the roles of ESCRT-III for budding

of virion and EVs, as the latter can promote or inhibit viral

replication through cell-cell communication. Furthermore, some

viruses mediate membrane scission through multiple mechanisms

that might act in a redundant fashion. Of these, herpesviruses

employ an extraordinarily complex process, making it impossible to

determine the contribution of ESCRT-III at each stage, given the

paucity of published reports in the field at this time. As our

understanding of membrane scission by ESCRT-III advances,

based on biochemical and structural analysis, it is valuable to

update consensus knowledge of viral egress. In particular, there

are many viruses that apparently egress independently of ESCRT-

III, but the details of the responsible membrane scission processes

are largely unknown, and it is unclear whether there is a common

principle. Improved awareness of the different mechanisms of viral
B

C
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FIGURE 2

Models of reverse-topology membrane scission in infected cells. (A) Polymerization of the ESCRT-III protein CHMP4 mediates membrane scission,
and the enzymatic activity of VPS4 recycles the ESCRT-III proteins. (B) The sequential recruitment of ESCRT-III components, polymerization, and
replacement of different filament subunits driven by VPS4 result in constriction and scission of the membrane. (C) Proposed model of ESCRT-III-
independent membrane scission. Viral proteins may mediate membrane scission by themselves. Question marks indicate unknown steps.
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membrane scission will contribute greatly to our understanding of

reverse-topology scission, which is difficult to explain in physico-

chemical terms.
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