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Hepatitis C virus (HCV) is a well-known virus that causes liver diseases such as

liver cirrhosis and hepatocellular carcinoma. For several decades, numerous

studies have been conducted to unravel the life cycle andmolecular mechanisms

of this virus with the aim of developing strategies to combat diseases caused by

its infection. In this review, we summarize HCV assembly to budding, focusing on

one of the structural proteins, the core, a viral capsid that binds both the viral

genome and host membrane, along with the core-interacting host partners. The

HCV corematures in the endoplasmic reticulum (ER), localizes at the lipid droplet

(LD), and shuttles between the LD and ER to form viral particles. This process is

controlled by many host factors known to binds core proteins, such as

diacylglycerol acyltransferase-1 (DGAT-1), Rab18, m subunit of the clathrin

adaptor protein complex 2 (AP2M1), nuclear pore complex protein 98 (Nup98),

Cortactin, group IVA phospholipase A2 (PLA2G4A) etc. Virion budding is thought

to involve contributions from endosomal sorting complexes required for

transport (ESCRT), similar to other envelope viruses. We delved into potential

perspectives to enhance our understanding of the HCV mechanism by drawing

insights from existing studies.
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1 Introduction

Hepatitis C virus (HCV) was first identified in 1989, and recent estimates suggest that

approximately 58 million individuals currently experience chronic HCV infection (1).

Currently, the primary sources of infection are identified through blood transfusions or

needle sharing among drug users. The infection leads to liver diseases, including liver

cirrhosis and hepatocellular carcinoma. Historically, treatments have faced challenges in

terms of efficacy and intricate dosage regimens (2). However, with breakthroughs in the

development of direct-acting antiviral agents (DAAs), treatment methods have recently

become more effective and less complicated. Sustained virological response rates increase to

90–100% with appropriate treatment (3).
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HCV is a positive-sense single-strand RNA virus with an

envelope that belongs to the Flaviviridae family. Upon infection,

virions exist as lipoviral particles (LVPs) composed of lipids and

apolipoproteins, such as ApoB, ApoC, and ApoE (4). LVP attaches

to glycosaminoglycan and low-density lipoprotein receptor (LDLR)

and scavenger receptor B-I (SR-BI) followed by its interaction with

CD81 on the cell surface (5). LVP then translocates to tight

junctions and interacts with CLDN-1 and Occludin, initiating

viral entry into cells through pH-dependent endocytosis (6, 7).

During endocytosis, the viral envelope fuses with endosomal

membranes, releasing viral genetic material into the cellular

cytoplasm. Its genome comprises approximately 9600 nucleotides,

encompassing the 5’-UTR with an internal ribosome entry site

(IRES) and the 3’-UTR. IRES, along with cellular translation

initiation factors (eIFs) and components of the cellular

translational machinery, such as miR-122, play a role in the

regulation of translation (8). Translation occurs in the rough

endoplasmic reticulum (ER), which produces polyproteins. This

polyprotein is processed by both viral and host signaling proteases,

leading to the generation of ten distinct proteins. Viral proteins can

be classified into two categories: structural proteins (Core, E1, and

E2) and nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A,

and NS5B). The collaboration between HCV NS3 and NS5B

proteins and host cell factors influences intracellular membranes

forms, leading to the construction of a specific membrane structure

known as the “membranous web (MW),” and/or “double

membrane vesicles (DMV)” serving as the site for RNA

replication (9). These structures create an environment separate

from the cytosol, and it has been proposed that their function is to

inhibit cellular innate immune responses (10). The replication of

viral RNA within these structures is facilitated by HCV proteins,

including the viral helicase, viral protease, and viral RNA-

dependent RNA polymerase, in conjunction with various host cell

factors (11–13). The replicated HCV genome is translocated by

NS5A to the HCV core, which is located on lipid droplets (LD) (14).

The HCV core shuttles between the LD and ER, and mature viral

particles encompass E1 and E2. Viral particles budding at the ER

membrane exit through the cellular secretion pathway.

The crystal and NMR structures of various HCV proteins,

including E1 and E2 ectodomain (with antibody 8FSJ), p7

(2M6X), NS2 (membrane segment 2JY0), NS3 (3O8B-D, 3O8R,

and others), NS4A (complex 3KF2, 2A4Q, 4I31, and others), partial

NS5A (4CL1, 3FQQ, 1ZH1), and NS5B (3FQK, 4KAI, and others),

have been reported. However, the structure of the HCV core has not

yet been elucidated, although a partial structure has been reported

(e.g., 1CWX). The HCV core protein shares homology with the

nucleocapsid proteins of other flaviviruses. It is highly conserved

across different HCV strains (15) and is expected to play a vital role

in the diagnosis of HCV infection by detecting specific anti-core

protein antibodies and the core itself (16). The HCV core is

composed of two alpha-helical modules in its C-terminal region

(domain 2: D2) that are believed to be involved in membrane

binding. In addition, it possesses a basic amino acid cluster in its N-

terminal region (domain 1: D1), which is presumed to play a role in

binding to viral genomic RNA (15) (Figure 1). These characteristics

suggest its crucial role in surrounding and protecting genomic RNA
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as a viral capsid protein, as well as in genome packaging and virion

assembly. In addition, it is involved in various cellular responses

such as modulating host cell transcription, influencing apoptosis

(inhibition or stimulation), and suppressing host immunity (17).

Extensive investigations on the HCV core have yielded numerous

published papers. In this review, we provide a comprehensive

overview of the functions of HCV core and its host partners in

viral assembly and particle formation.
1.1 HCV core binds to host cell membrane

Following cleavage of the transmembrane (TM) region (domain

3: D3) by the host signal peptide peptidase (SPP), the HCV core

protein changes to its soluble mature form and is released into the

cytoplasm. However, in its role as a viral capsid protein, the mature

core protein has the potential to interact with the host cell membrane.

The D2 domain is responsible for the association between ER

membranes and LDs (18). Comprising two amphipathic a-helices,
Helix I (119–136 aa) and Helix II (148–164 aa), separated by a

hydrophobic loop (HL) (Figure 1), the D2 domain features a helix-

turn-helix motif essential for the effective localization of the protein to

LDs, possibly mediating an in-plane membrane interaction (18).

Mutant core proteins that are incapable of associating with LDs

undergo rapid degradation by the proteasome, suggesting that the D2

domain plays an indispensable role in folding and stability of the

mature core (18). In addition to the D2 domain, the HCV core

protein undergoes palmitoylation at the conserved cysteine residue

172. This modification is also important for facilitating the

interaction of the core with the membrane and subsequent

formation of viral particles (19).
FIGURE 1

Primary structure of HCV core protein. Primary structure of the HCV
genome (top) and core proteins (bottom). HCV core encoding
region is located at 5’ end of HCV genome. The HCV core
comprises of three domains. Domain 1 (D1) contains three basic
amino acid-rich clusters, indicating RNA binding. Domain 2 (D2) is a
hydrophobic region containing two alpha helices. It contains
cysteine 128, which contributes to dimerization, and cysteine 172,
which is palmitoylated. YXXF motif is also located in this domain.
Domain 3 (D3): Domain 3 includes a signal sequence to the ER
membrane and is cleaved by a signal peptide peptidase during the
core maturation process.
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The ER plays a crucial role as a foundational organelle for both

HCV genome replication (4) and translation of viral proteins within

an infected cell. Following viral entry, viral genome replication

occurs on membrane structures derived from the ER (15). LDs,

which are derived from ER membranes but are separated from ER

membranes, are recognized as a viral assembly platform (15, 20).

The presence of triglycerides (TGs) within LDs facilitates the

folding of the core protein (21). Previous studies have suggested

that the HCV core shuttles between LDs and the ER, facilitating the

transfer of newly synthesized viral genomes to the site of viral

particle assembly on LDs (Figure 2). Moreover, it aids in the transfer

of assembled materials to the ER membrane for association with E1

and E2 proteins, contributing to particle envelopment (15, 22).

Notably, the predominant localization of the core on LDs was

evident when the core was expressed alone. In contrast, during

infection with recombinant viruses, the core predominantly

localizes to the ER membrane rather than to LDs (23, 24). This

suggests that other viral proteins play a role in core shuttling

between the ER and LDs. Boson et al. reported that among the

viral proteins, p7 and NS2 act as HCV strain-specific factors that

influence the recruitment of core proteins from LDs to ER assembly

sites. To date, there has been no evidence of a direct interaction

between the core protein and NS2 or p7. Other viral proteins, such

as NS5A, which directly interacts with core proteins, may play a

concerted role in these processes (25, 26).
1.2 The host factors regulate HCV core-
NS5A interaction

Interactions between the core proteins and NS5A have been

reported to play a role in virion assembly (25). This interaction is

facilitated by the N-terminal basic residues R50, K51, R59, and R62
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in the D1 domain of the core, which engage with N-terminal

domain I of NS5A (25). However, another study suggested that

the highly phosphorylated serine cluster located in the C-terminal

domain III of NS5A also plays a role in its interactions with the core

protein (25). Various host factors regulate these interactions, and

diacylglycerol acyltransferase-1 (DGAT1) is one such factor (27,

28). DGAT1 forms a complex with NS5A and its core region,

thereby promoting interactions between these viral proteins. The

presence of a catalytically inactive mutant of DGAT1 (H426A)

disrupted the localization of NS5A (but not the core) to LDs in a

dominant-negative manner and blocked the production of

infectious viral particles (28). These results suggest that the LD

association of the core and NS5A is not a random process but

instead necessitates the formation of LDs mediated by active

DGAT1. Besides DGAT-1, PACSIN2 (29), cortactin (30),

osteopontin (OPN) (31), Rab18 (32), group IVA phospholipase

A2 (PLA2G4A), (33) and Apolipoprotein J (Apo J) (34) have been

identified as factors that promote the interaction between the core

and NS5A in LDs. Depletion of any of the above proteins has been

demonstrated to impair the release of infectious virus particles,

coinciding with a reduction in the localization of the core and/or

NS5A on the LDs and/or ER. Some of these factors have specific

roles. Rab18 is associated with LDs and is thought to facilitate the

physical interactions between LDs and ER membranes. Rab18 may

play a role in enhancing the association between NS5A, other viral

components, and LDs (32). Cortactin is an actin-binding protein

crucial for cell migration and invasion. NS5A and its core region

may induce cell migration by triggering cortactin phosphorylation,

suggesting that this altered cellular behavior could contribute to the

spread of viruses (30). PLA2G4A plays a pivotal role in the cleavage

of lipids, particularly arachidonic acid, and is involved in the

metabolism of prostaglandins and leukotrienes. Inhibition of

PLA2G4A results in the generation of aberrant HCV particles,
FIGURE 2

The role of core and its host partners on assembly and release of HCV particle. The HCV core, which is located at the N-terminus of the
polypeptide, is cleaved by a signal peptidase and relocates to lipid droplets (LDs), where the virus is assembled. The HCV core shuttles to the
endoplasmic reticulum (ER) to form viral particles with E1, and E2, enveloped proteins. Budding was linked to VLDV to form lipoviral particles (LVPs).
The predicted roles of the core-binding host partners are indicated by the open boxes.
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and their infectivity can be restored by the addition of arachidonic

acid. This suggests that this specific lipid is crucial for the

production of highly infectious HCV progeny, possibly by

establishing a membrane environment conducive to the efficient

incorporation of essential host and viral factors into the lipid

envelope of the viral particles (33).
1.3 The role in RNA binding

Several studies have demonstrated the pivotal roles of core

proteins as potent nucleic acid chaperones. Analogous to other

RNA chaperone proteins, the core protein directly guides the

proper folding of viral genomic RNA, preventing misfolding, and

resolving misfolded RNA structures. Specifically, the core has been

observed to enhance the annealing of complementary sequences,

facilitate strand exchanges, and promote the dimerization of the 3’-

UTR sequence of the HCV genome (35–37). These effects are

mediated by peptides comprising either all three core basic

domains or a combination of the two (38). Some of these

processes may involve a collaboration with cellular factors.

DDX3, a DEAD-box RNA helicase 3, has been reported to

interacts with core proteins (39–41). The N-terminal region of

HCV core interacts with the C-terminal region of DDX3 (41).

Depletion of DDX3 leads to a reduction in RNA genome replication

and the release of the core into the culture supernatants (42).

However, conflicting results exist as other reports have suggested

that the core-DDX3 interaction does not contribute to genome

replication (43). Instead, DDX3 is reported to interact with the

HCV genome 3’UTR, leading to IKKa activation and subsequent

core-associated lipid droplet generation (44). The precise role of

DDX3 and HCV core interactions in the HCV life cycle remains

unclear, necessitating further investigation.
1.4 HCV core binds to the factors involved
in enveloped virus budding

Many enveloped viruses bud from the host cell membrane,

utilizing the cellular endosomal sorting complexes required for

transport (ESCRT) machinery. It was initially identified in a study

on human immunodeficiency virus I (HIV-I). The structural

proteins of HIV-1 Gag, including the viral capsid protein, directly

bind to TSG101, a subunit of the ESCRT-I complex, and ALIX

through its late domains. The ESCRT machinery comprises a

modular pathway consisting of more than 30 factors and is known

to function in sealing membranes in the cytoplasmic phase. Viral late

domains comprising short peptide motifs play a crucial role in the

recruitment of upstream ESCRT factors, including ESCRT-I and

ALIX. Subsequently, these domains facilitate the recruitment of

downstream ESCRTs such as ESCRT-III proteins (also known as

CHMP family proteins), which are key players in membrane sealing.

These late domains have been identified in other enveloped viruses,

such as rhabdoviruses, filoviruses, and hepadna viruses, indicating

that the ESCRT pathway is a common budding machinery for

various enveloped viruses.
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HCV is also an envelope virus, and reports have indicated the

involvement of the ESCRT pathway in virion release (45–48).

Inhibiting the ESCRT pathway through the expression of a

dominant-negative form or siRNA transfection targeting the VPS4

family proteins ITCH or HRS markedly reduces the production of

infectious viral particles. However, there is a divergence in perspectives

regarding the role of ESCRT machinery in HCV production. Ariumi

et al. and Corless et al. reported that ESCRT inhibition did not affect

the production of intracellular viral particles. This suggests that the

ESCRT pathway may be involved in the secretory pathway of the

virion but not in the process of viral particle formation (45, 46).

Conversely, Barouch-Bentov et al. and Deng et al. demonstrated that

inhibition of the ESCRT pathway impairs the production of

intracellular virions (47, 48). Additionally, Barouch-Bentov et al.

conducted a proteinase K protection assay, providing evidence that

the envelopment of core proteins was insufficient for ESCRT

inhibition, indicating a role for ESCRT in viral particle formation (47).

A critical aspect of comprehending the mechanics of ESCRT-

mediated viral particle formation is identifying the factors

responsible for their recruitment. Although no discernible late

domains have been identified in the HCV genome, there is

information about the physiological interactions between HCV

proteins and ESCRT factors (46, 47). Interaction of core proteins

with CHMP4B and CHMP1A. Barouch-Bentov et al. highlighted

the significance of the interaction between ubiquitinated NS2 and

the ubiquitin-interacting motif (UIM) of HRS in the HCV budding

process. The interaction between the core protein and ESCRT-III

proteins may also play a role in viral particle formation (47, 49).
1.5 The core protein binds to various other
host factors facilitating the release of
virus particles

The HCV core protein is also known to interact with other

cellular proteins, such as m subunit of the clathrin adaptor protein

complex 2 (AP2M1) (50) and nuclear pore complex protein 98

(Nup98) (51), to facilitate efficient virus release. Neveu et al.

identified a conserved, YXXF motif (where F represents a

hydrophobic residue) within the core protein. This motif, which

corresponds to sorting signals found in host cargo proteins, binds to

AP2M1. Mutations in this core motif and the inhibition of AP2M1

function significantly impede both intra- and extracellular infectivity

without any discernible effect on HCV RNA replication. This implies

that they play pivotal roles in viral assembly (50). AP2M1 is

recognized for mediating the sorting of cargo proteins containing

YXXF into clathrin-coated vesicles (CCVs). These vesicles either

form at the cell surface and are destined for fusion with early

endosomes or trafficking along lysosomal transport pathways (52).

These results imply that core proteins exploit these intracellular

membrane trafficking pathways to facilitate translocation between

LDs and the ER for particle formation.

Boson et al. reported that the expression of the core protein

induces the relocalization of Nup98, an essential component of the

nuclear pore, from annulate lamellae to LDs (51). The recruitment

of Nup98 by the core to viral assembly sites may play a crucial role
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in enhancing the local concentration of the RNA genome, thereby

facilitating its incorporation into nascent virions (51). To date, a

direct interaction between the core and Nup98 has not been

conclusively demonstrated. Understanding the involvement of

Nup98 in the assembly of HCV particles is crucial for elucidating

this aspect of the viral life cycle.
2 Discussion

In this review, we summarize the interactions between HCV

core and host cell proteins, with a particular focus on their roles in

the assembly and budding of HCV virions. Numerous host–cell

interactions with the core have been reported, but limitations exist

in definitively establishing direct binding. Furthermore, the

contributions of certain interactions to the viral life cycle and

their impact on cellular activity have not been fully elucidated.

Recently, we developed a method for purifying core proteins under

non-denaturing conditions (53), enabling more detailed analysis of

the interactions between host cell proteins and HCV core. To date,

most interactions have been demonstrated in cells or cell lysates,

suggesting the presence of intermediate factors, such as nucleic

acids or host membranes. Purified core proteins offer the

opportunity to obtain more concrete evidence supporting the

direct interactions between them. We also need to note that HCV

assembly is derived from complex interactions between host cell

factors and other HCV proteins as well. One example is the E2-

SPCS1-NS2 interaction, which influences the assembly of infectious

HCV particles (54). A comprehensive understanding of viral

assembly is essential. Even with the recent development of HCV

treatments, a thorough understanding of the HCV lifecycle, host

cell-protein interactions, and mechanisms would be valuable, not

only for HCV, but also for gaining insights into other viruses.
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