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At the single-neuron level, precisely timed spikes can either constitute firing-rate codes or 
spike-pattern codes that utilize the relative timing between consecutive spikes. There has been 
little experimental support for the hypothesis that such temporal patterns contribute substantially 
to information transmission. By using grasshopper auditory receptors as a model system, we 
show that correlations between spikes can be used to represent behaviorally relevant stimuli. 
The correlations reflect the inner structure of the spike train: a succession of burst-like patterns. 
We demonstrate that bursts with different spike counts encode different stimulus features, 
such that about 20% of the transmitted information corresponds to discriminating between 
different features, and the remaining 80% is used to allocate these features in time. In this 
spike-pattern code, the what and the when of the stimuli are encoded in the duration of each 
burst and the time of burst onset, respectively. Given the ubiquity of burst firing, we expect 
similar findings also for other neural systems.
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Neural codes based oN spike-timiNg
Single neurons can encode time-dependent stim-
uli in several ways. In firing-rate codes the only 
response feature that carries information is the 
time-varying firing probability. The information 
encoded by the temporal correlations between 
subsequent spikes (if any) is redundant with the 
one available from the firing rate. The firing prob-
ability is a function of the stimulus, often non-
local and non-linear. Depending on the nature of 
the transformation between the stimulus and the 
firing rate, the activity of the neuron may encode 
the stimulus continuously, or may instead only 
extract one or a few specific features.

These two extreme situations are depicted in 
Figures 1A, B. In Figure 1A, the firing probabil-

ity is larger than 0 almost everywhere and the 
cell fires more than one spike in intervals com-
parable to the duration of the fluctuations in the 
stimulus. The number of spikes per unit time 
encodes the stimulus strength through a mono-
tonic transformation. By reading out the number 
of spikes in an extended time window, typically 
in the order of tens of milliseconds, downstream 
neurons have access to a smooth representation 
of the stimulus.

Figure 1B also exemplifies a firing-rate code, 
but in this case the firing probability does not rep-
resent the entire dynamic range of the stimulus. It 
rather picks specific features, so that spike genera-
tion is only possible shortly after these particular 
features. In these codes, each single spike suffices 
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to inform downstream neurons of the presence 
of the relevant feature, and the temporal jitter of 
individual spikes is often smaller than 1 ms.

The two examples mentioned above fall within 
the broad class of firing-rate codes. In one extreme, 
we find codes where the firing rate varies slowly, 
so the precise timing of individual spikes is not 
crucial. The neuron encodes the stimulus strength 
making use of a fairly broad dynamical range, 
but does so with low temporal precision. In the 
opposite extreme, the firing rate varies rapidly. 
As the cell only represents either the presence 
or absence of the relevant feature, little infor-
mation is provided about the overall evolution 
of the stimulus. However, the rapid variation of 
the time- dependent firing rate provides large 
amounts of information about the temporal loca-
tion of the encoded features. These two extreme 
cases can be framed in a unified mathematical 
formulation (Rieke et al., 1997). Depending on 
whether the relevant feature is sharp and brief or 
flat and broad, the system ranges from a firing-
rate code based on individual spikes to a firing-
rate code based on mean spike counts.

Starting with the seminal work of Mainen 
and Sejnowski (1995), several studies have 
shown that precise spike timing down to the 
sub- millisecond regime is important to transmit 
information about the sensory world. Examples 

include the insect visual system (Strong et al., 
1998), the  vertebrate lateral geniculate nucleus 
(Reinagel and Reid, 2000), the rodent somatosen-
sory thalamus (Montemurro et al., 2007a), and 
the auditory system, e.g., invertebrate receptor 
cells (Rokem et al., 2006), vertebrate brainstem 
neurons (Oertle, 1999) and auditory cortical cells 
(Heil, 1997).

However, spike-timing based codes can go 
beyond firing-rate codes. In principle, not only 
the location of precisely timed individual spikes 
can transmit information, but also the relative tim-
ing between two or more spikes. Such schemes are 
referred to as relational, or spike-pattern codes. 
In such codes, the correlations between spikes 
define patterns, and these patterns are employed to 
encode stimulus features, each feature correspond-
ing to a particular sequence of inter-spike intervals 
(ISIs). Reich et al. (2000) and Doiron et al. (2007) 
showed that different patterns (in this case doublets 
of spikes separated by ISIs of different durations) 
were associated with different stimulus features. In 
these examples, however, different patterns have 
different instantaneous firing rates, so unless some 
additional characterization is made, one cannot 
rule out a purely firing-rate coding scheme.

A neural code that cannot be explained in terms 
of the instantaneous firing rate requires more 
complex patterns, including three or more spikes 

Firing-rate codes
Neural codes where all the information 
is encoded in the time-dependent firing 
rate, additional response properties 
being irrelevant.

Spike-pattern codes
Neural codes based on patterns  
of spikes, defined by characteristic 
correlations in their relative timing.

Inter-spike intervals (ISIs)
The time interval between two 
subsequent action potentials.

Figure 1 | Schematic comparison between different neural codes. (A) Firing-rate code, where the strength  
of the stimulus is encoded by the number of spikes fired in an extended time window. The temporal evolution  
of the firing probability (shown below) mimics the stimulus. (B) Firing-rate code, where the occurrence of specific 
stimulus features (in this case, pronounced upstrokes or downstrokes marked in red) is encoded in the times  
at which individual spikes are generated. (C) Spike-pattern code, in which different stimulus features are represented  
by different patterns. In this case, a burst-mediated code is shown, where different patterns are distinguished  
by their intra-burst spike count. The burst structure presented in this example implies strong temporal correlations 
between subsequent spikes. All data were obtained using model neurons.  
Source code is available at cabfst28.cnea.gov.ar/ eyherabh/codes.html.
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(two or more ISIs). In this paper we review the 
coding capabilities of a ubiquitous   burst-medi-
ated code, where the distinction between different 
patterns is given by the number of spikes that 
compose each burst. The set of different code-
words consists of bursts containing different 
numbers of spikes, as exemplified in Figure 1C. 
In this case, the intra-burst ISI for different code-
words remains approximately the same, and the 
distinction between the different codewords is 
given by the intra-burst spike count.

Traditionally, burst firing was believed to 
underlie unconscious regulatory processes dur-
ing sleep, seizures or anesthesia, and to prevent 
sensory signals from reaching higher process-
ing stages. This picture emerged from the robust 
synchronized bursting activity that rises sponta-
neously in thalamic slices, even in the absence 
of stimulation (Guillery, 2001). Bursting is also 
observed in thalamic neurons during sleep, and 
is disrupted as soon as the subject wakes up, to 
be replaced by tonic activity during wakefulness. 
However, in the last decade several studies have 
shown that burst firing also participates in the 
representation of the sensory world during the 
aroused state (Sherman, 2001), as well as in other 
neural systems (Krahe and Gabbiani, 2004). For 
example, in the electrosensory lateral line lobe 
of the weak electric fish, bursts represent low-
frequency events (Oswald et al., 2004), com-
prising either excitatory or inhibitory stimulus 
deflections (Metzner et al., 1998). In the mam-
malian LGN, bursts encode slow stimulus fea-
tures (Lesica and Stanley, 2004), characterized 
by high contrast (Reinagel et al., 1999), typical 
of natural images (Denning and Reinagel, 2005). 
In the rodent hippocampus, bursting pyramidal 
place cells represent the location of the animal 
in the environment, both through the firing rate 
(Wilson and McNaughton, 2003) and the tim-
ing with respect to the theta cycle (O’Keefe and 
Recce, 1993).

A few studies have specifically explored the 
information carried by the intra-burst spike 
count. Two of them involve the mammalian 
primary visual cortex (DeBusk et al., 1997; 
Martinez-Conde et al., 2002), where the length 
of each burst was correlated with the orientation 
of the stimulus. A theoretical analysis based on 
a computational model of a cortical pyramidal 
cell (Kepecs and Lisman, 2003) concluded that 
the number of spikes inside each burst repre-
sented the slope of the incoming stimulus at 
burst onset. Finally, in tactile sensory neurons in 
leech (Arganda et al., 2007), the intra-burst spike 
count represented the velocity of skin displace-
ments. These analyses demonstrate that bursting 

neurons in different systems represent different 
stimulus attributes. A common aspect however, 
is that the information is not only encoded in 
the time-dependent firing rate, but also in the 
correlations between spikes.

burst-mediated codes iN grasshopper 
auditory receptors
Grasshoppers communicate with each other by 
chirping acoustic signals produced by rasping 
their hind legs across their wings. By analyzing 
the response of acoustic receptor cells to a broad 
range of naturalistic and artificial stimuli, we 
have demonstrated that spiking activity is par-
ticularly precise when driven by sound waves 
whose temporal characteristics coincide with 
those of the natural songs (Rokem et al., 2006). 
When these stimuli are played at moderate or 
loud volume (e.g., nearby sources), receptor 
neurons have a large probability to elicit burst-
ing responses (Eyherabide et al., 2008). Actually, 
93% of the recorded neurons generated bursts 
when driven with naturalistic stimuli, whereas 
none of them bursted in response to signals that 
varied much faster than the natural songs. Hence, 
bursting seems to appear in response to behav-
iorally relevant stimuli only.

If bursts of different spike counts are mapped 
onto different stimulus features, then the stimuli 
eliciting shorter bursts must be significantly dis-
tinct from the stimuli generating longer bursts. 
The easiest way to test this hypothesis is to com-
pare the average stimulus preceding single spikes, 
with that corresponding to doublets, triplets and 
quadruplets. We defined the burst-triggered 
average (BTA) corresponding to bursts of n 
spikes as the average stimulus time course before 
bursts containing exactly n action potentials 
(Figure 2A).

In our case, the time-dependent stimulus was 
the volume (in decibels) of the envelope of a 
high-frequency input sound wave (Eyherabide 
et al., 2008). All the BTAs exhibited a pro-
nounced peak on top of a noisy background. 
Hence, burst production occurred a few milli-
seconds after a sudden elevation of the sound 
intensity. The magnitude of the elevation deter-
mined the number of spikes in each burst, such 
that higher stimulus fluctuations elicited longer 
bursts. In 85% of all bursting cells, this corre-
spondence was selective: BTAs associated to 
single spikes, doublets, triplets and quadruplets 
were significantly different from each other. As 
a consequence, the number of spikes per burst 
was a good predictor of the maximal height of 
the transient intensity fluctuation (Eyherabide 
et al., 2008). The relationship between stimulus 

Burst of spikes
Sequence of action potentials  
separated by short inter-spike intervals, 
near to the refractory period  
of the neuron under investigation.

Burst-triggered average (BTA)  
of a burst of n spikes
The average stimulus time course 
preceding bursts of exactly n spikes.
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intensity and burst duration was not trivial, as 
sketched in Figure 2B. In 95% of the bursting 
neurons, the mean stimulus eliciting a doublet 
was significantly larger than the stimulus that 
would be obtained by summing up two copies 
of the mean stimulus generating isolated spikes, 
separated by the observed ISI.

Distinguishing between bursts of different 
durations, hence, allows us to discern between 

different stimulus features. But how can we be 
sure that there is no other alphabet that could do 
a better job? Perhaps there is another set of pat-
terns that also allows one to discern between dif-
ferent stimulus features. We would like to have a 
criterion to quantify the adequacy of the  chosen 
alphabet, and to rank it with respect to other 
possible choices. One way would be to measure 
how much information is lost by only distin-
guishing between the patterns of the chosen 
alphabet, and to neglect all additional response 
features. For a burst code, this amounts to dis-
tinguishing between bursts containing different 
number of spikes, while disregarding the internal 
 temporal structure of each burst beyond its spike 
count. Not all doublets have exactly the same 
ISI between their two spikes, and not all triplets 
have exactly the same ISI sequence. In order to 
assess the success of the burst alphabet we there-
fore neglect these differences. Operationally, the 
spike train is represented as a sequence of sym-
bols that specify the number of spikes in each 
burst, as sketched in the inset of Figure 3A. All 
doublets are represented by the same symbol, 
irrespective of their inner structure. The same 
holds for triplets, quadruplets, and higher-order 
bursts. The resulting sequence of symbols can 
be used to calculate the mutual information 
between the stimulus and the burst alphabet. If 
this  information is  substantially lower than the 
information in the original spike train, then the 
inner structure of bursts must be considered as 
relevant, and the selected alphabet as not appro-
priate. But this is not the case with our data. In 
Figure 3A we show that the burst representation 
has almost the same amount of information as 
the full response. This implies that bursts encode 
different stimulus features essentially through 
their intra-burst spike count.

The burst code, though missing several 
response details, still provides an informative 
and compact representation of the original 
spike train. The advantage of such a representa-
tion is that now we can explicitly interpret the 
code. At this stage, we know that the number of 
spikes in each burst represents the height of the 
 stimulus feature that elicited bursting, whereas 
the time at which the burst is generated tags the 
temporal location of this relevant feature. One 
may therefore wonder how much information 
corresponds to distinguishing between different 
features, and how much is accounted for allocat-
ing them in time. To show this, we compare the 
information in the burst train with that of an 
even more drastically reduced representation of 
the spike train, in which all bursts are mapped 
onto the same symbol. No distinctions between 

Figure 2 | The burst-triggered averages (BTAs) corresponding to bursts of different durations. 
(A) Calculation of BTAs. The stimulus stretches preceding bursts of exactly n spikes are aligned 
with respect to the first spike in the burst, and averaged together. For all cells, BTAs exhibit  
a central peak, on top of a noisy background. The size of the peak increases with the number  
of spikesin the burst. (B) The BTA corresponding to doublets is larger than the one that would be 
obtained by summing up two copies of the BTA of single spikes, displaced from one another  
by one ISI. The same holds for triplets and quadruplets.
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different types of bursts (and stimulus features) 
thus remain, as shown in Figure 3B. In the inves-
tigated cells this leads to an  average reduction of 
the encoded information of 22%. This percentage 
represents the ‘what’ in the stimulus, whereas the 
complementary fraction accounts for the ‘when’ 
(Berry et al., 1997; Borst and Theunissen, 1999; 
Theunissen and Miller, 1995).

is the burst code a firiNg-rate code?
In our data, the instantaneous firing rate inside 
different bursts is always approximately the same: 
we found no significant dependence of the intra-
burst ISI on the number of spikes per burst. Yet, 
it could be argued that the burst code is still a 
firing-rate code, but such that the mean firing rate 

of the cell should be read out in long intervals. In 
Rokem et al. (2006) we showed that the larger the 
time bin used to read out neural responses, the 
smaller the amount of transmitted information. 
The loss arises because longer bins have less tem-
poral precision. One could then try using broad 
time bins, but make them slide along the spike 
train in very fine steps. Even so, the number of 
spikes per burst cannot be obtained by count-
ing the spikes inside a window of fixed duration. 
The code is composed of sequences that alternate 
between short and long bursts, and the interval 
between bursts is often comparable to the dura-
tion of bursts themselves. Hence, if the window 
used to count spikes is short, long bursts are not 
captured. Instead, if a long window is used, then 

Figure 3 | The information rate carried by manipulated spike trains, for all recorded bursting cells. x-axis: original 
response. y-axis: manipulated response. In all cases, information rates were calculated using the direct method (Strong 
et al., 1998), with the error estimations from Montemurro et al. (2007b). (A) The spike train is parsed into a sequence  
of bursts that are only distinguished by their spike count, such that their inner structure is neglected. Inset: green, red, 
blue and brown symbols in the burst train represent bursts containing 1, 2, 3 or 4 action potentials in the original spike 
train, respectively. The sequence of bursts contains 94% of the information of the full spike train. (B) If the same symbol 
is used to represent bursts of different lengths, then distinctions between different stimulus features are no longer 
possible (see inset). Only temporal information referring to the timing of each feature remains. This leads to a 26% 
reduction of the original information (22%, if compared to the information transmitted by the burst train). (C) If trials within 
each fixed time bin are shuffled, all within-trial temporal correlations are destroyed, though the time-dependent firing  
rate is preserved. As a consequence, the information drops by 32%. (D) If the stimulus is decoded from the spike train 
(see inset) without taking temporal correlations into account, the information is reduced by 18%.

Mutual information between  
stimuli and neural responses
The amount of knowledge that can  
be gained about the stimulus  
by observing the neural activity  
(and vice versa). This measure can  
be calculated from the statistical 
dependence between stimulus and 
neural response.
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several short bursts are mistaken as a single longer 
burst. The same problem arises if one tries to con-
volve the spike train with a smooth bell-shaped 
weight function, as for example, a Gaussian kernel 
of fixed width. Therefore, bursts do not constitute 
a convolved firing-rate code either.

More importantly, the burst code found in 
grasshopper receptors uses not only the preci-
sion of individual spikes, but also the correlations 
between spikes. Two subsequent spikes may or 
may not be part of the same burst, depending on 
the size of the ISI separating them. Hence, it is 
their relative timing that matters. In firing-rate 
codes, however, correlations between spikes can 
be entirely explained in terms of the time-varying 
firing probability. Therefore, correlations make 
no additional contribution to the encoding or 
decoding of information, beyond the informa-
tion available in the firing probability.

The impact of correlations on the encoding of 
sensory information can be assessed by shuffling 
trials in the neural response, for each fixed time bin, 
as highlighted in the inset of Figure 3C. By doing 
so, the time-dependent firing rate is preserved, 
while the within-trial correlations are abolished. 
If the shuffled spike train contains significantly 
less information than the real spike train, then 
removing the correlations has a negative impact 
in the transmitted information. This approach 
was proposed as a measure of conditional inde-
pendence in the framework of population coding 
(Schneidman et al., 2003). When later employed 
to assess the role of temporal correlations in sin-
gle neurons in the rat thalamus (Montemurro 
et al., 2007a), spike patterns played a minor role. 
They only increased the total information by 6% 
and the remaining 94% was entirely attributable 
to the time-dependent firing rate. Thus, most 
information was transmitted by precisely timed 
single spikes. In grasshopper receptor cells, how-
ever, spike patterns play a more important role, 
as shown in Figure 3C. The shuffled responses 
carried 32% less information than the full spike 
train. The constraints imposed by correlations, 
hence, resulted in a substantially improved cod-
ing scheme as compared to the one that would be 
obtained by independent time bins.

A complementary approach is to assess the 
effect of correlations in neuronal decoding 
(Latham and Nirenberg, 2005). This formulation 
allows us to evaluate whether the original stimu-
lus can be decoded from the neural responses 
equally well, if within-trial temporal correlations 
are neglected. Since we do not know which decod-
ing scheme is employed by downstream neurons 
in the brain, we use optimal Bayesian decoding, 
guaranteed to perform at least as well as any bio-
logical decoding. Figure 3D shows that neglecting 
the correlations has a detrimental effect in the 
decoded information of almost 20%, an amount 
that is very similar to the information needed to 
discriminate between different stimulus features, 
see Figure 3B. Therefore, grasshopper auditory 
responses can only be decoded properly if their 
correlational structure is taken into account as 
summarized in Figure 4.

coNclusioNs
One of the central problems in neuroscience is to 
understand the way in which sensory information 
is represented in the nervous system. The objective 
is to know the general principles of the   encod-
ing scheme, and to have an explicit   dictionary 
 connecting stimulus  features with response char-
acteristics. This study addresses both issues. By 
using information- theoretical quantities, we were 

Figure 4 | A burst of rhymes to close,  
and complement the prose.
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able to extract some general principles govern-
ing the representation of acoustic information 
in grasshopper receptors. We demonstrated that 
the code is based on spike patterns, and that the 
information conveyed by these patterns cannot 
be accounted for by a rapidly varying firing rate. 
The code is structured in bursts, and the distinc-
tive feature discerning between different types 
of bursts is the number of spikes they contain. 
The time of burst onset represents the temporal 
location of a certain stimulus feature, and the 
intra-burst spike count discriminates between 
different types of features. Using theoretical tech-
niques, we quantified the fraction of information 
that corresponds to these two aspects individu-
ally. By thoroughly examining the correspond-
ence between bursts and stimuli, we revealed the 
meaning of each pattern in terms of the height of 
sudden amplitude fluctuations. The non-linear 
transformation between spike count and stimu-
lus amplitude provides additional evidence that 
spike patterns must be read out as compound 

codewords, and not as a collection of single 
spikes.

Our model system, hence, provides an exam-
ple of a correlation-based neural code whose 
building blocks are bursts of spikes. Burst fir-
ing is ubiquitous in the nervous systems of both 
vertebrates and invertebrates. Our study suggests 
that the role of bursts in sensory representations 
might be even more relevant than previously 
thought.
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