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Digital brain atlases are useful as references, analytical tools, and as a data integration framework. As a 
result, they and their supporting tools are being recognized as potentially useful resources in the movement 
toward data sharing. Several projects are connecting infrastructure to these tools which facilitate sharing, 
managing, and retrieving data of different types, scale, and even location. With these in place, we have the 
ability to combine, analyze, and interpret these data in a manner not previously possible, opening the door 
to examine issues in new and exciting ways, and potentially leading to speedier discovery of answers as 
well as new questions about the brain. Here we discuss recent efforts in the use of digital mouse atlases 
for data sharing.
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istration requires alignment of an image to the atlas. 
This information is then used to place data into 
the context of the atlas, allowing it to inherit infor-
mation tied to the spatial coordinates of the atlas. 
A perfect example of this is gene expression image 
data. Spatial information in this type of slice data is 
key to interpreting results, yet these images lose ana-
tomical context during the data collection process. 
Thus atlas-based tools for organizing and analyzing 
this and related types of data may be used to create a 
system ideal for sharing data.

Several projects offer access to gene expression 
image data with differing levels of spatial mapping 
in the mouse nervous system. These projects have 
been comprehensively reviewed (Brumwell and 
Curran, 2006; Koester and Insel, 2007; Sunkin, 2006; 
Sunkin and Hohmann, 2007) and among others, 
include the Allen Brain Atlas (ABA, www.brain-
map.org), BGEM (www.stjudebgem.org), GENSAT 
(www.gensat.org), GenePaint (www.genepaint.org), 
EurExpress (www.eurexpress.org), MGI (http://
www.informatics.jax.org/) and EMAP/EMAGE 
(http://genex.hgu.mrc.ac.uk). Several of these 

ATLASES FOR SHARING GENE EXPRESSION DATA
Many neuroscientists have been calling for a system 
for the mouse brain where digital atlases serve as 
the framework used to traverse the brain and infor-
mation linked to it (Baldock et al., 2003; Bjaalie, 
2002; Boline et al., 2007; MacKenzie-Graham et al., 
2003; Martone et al., 2004; Toga, 2002). In contrast 
to data repositories, which allow simple access to 
data through a single interface, sophisticated digital 
atlases backed by the appropriate technology can act 
as a neuroinformatics hub facilitating access to dif-
ferent databases, information sources, and related 
documents and annotations. They may act as the 
scaffold in which otherwise unrelated data may be 
housed and correlated, providing an intuitive inter-
face to share, visualize, analyze, and mine data of 
multiple modalities, scales, and dimensions.

The semantic and spatial information tied to 
an atlas can add a dimension to data in a manner 
that exponentially increases its potential use and 
 reusability. Semantic linking of data to the atlas 
requires the data provider to register it with an 
ontology or controlled vocabulary, while spatial reg-
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projects are geared toward the developmental stages 
of the mouse. As illustrated by the images from 
GENSAT and MGI in Figure 1, the ability to exam-
ine spatial and temporal expression patterns is cru-
cial for developing correlations between genotype 
and phenotype as well as for interpreting and com-
paring fi ndings across experiments. Also illustrated, 
is that the anatomical information tends to be sparse 
in these data sources, as is also the case with BGEM, 
GenePaint, and EurExpress (Sunkin and Hohmann, 
2007). ABA and EMAP/EMAGE differ from these 
sources in that in addition to linking the images to 
semantic information, they have also linked their 
images to spatial information by registering their 
images to a reference atlas (Baldock et al., 2003; Lein 
et al., 2007). While this extra step can be both dif-
fi cult and time consuming, it adds the potential for a 
great deal of analytical power and the ability to gener-
ate spatial queries (Carson et al., 2005; Christiansen 
et al., 2006; Leergaard and Bjaalie, 2007).

As most resources are built for sharing a specifi c 
set of data, most discussed above are not yet set 
up to easily link their data to that offered by other 
groups, adding a barrier to analyzing data across 
experiments. Also, with the exception of EMAGE, 
mechanisms are not readily available for an indi-
vidual to easily put data into a semantic and spatial 
framework that facilitates comparison of their own 
data to others. For these reasons, it still requires a 
great deal of research and work to compare data col-
lected in different experiments, which is one of our 
communities greatest desires, but also most diffi cult 
tasks. These are some of the recent drivers for the 
call to create interoperability across data resources 
and offering access to this system to any scientist, 
within the context of a digital atlasing framework.

Integrating these and other data sources via 
such a framework would allow a researcher to eas-
ily query across these resources. One could look for 
studies of different collection modalities, strains, 
developmental stages, or disease models, or exam-
ine the expression patterns of genes or regions of 
interest across multiple studies. For example, a sci-
entist investigating a disease model of Parkinson’s 
with the microarray technique fi nds that an unex-
pected gene in the caudate/putamen area seems 
to have a reverse correlation with motor defi cits. 
Wanting to know more, he uses this system to fi nd 
data from other experiments that have examined 
the same disease model. He fi nds a MRI dataset 
illustrating a change in the shape and decrease in 
the volume of that area in later stages of the dis-
ease, and a high-resolution confocal dataset from 
this same region shows abnormal cell morphology 
with disease progression. In addition, he fi nds that 
expression of this gene in this region in normal ani-
mals decreases with age and that it is expressed at 

a higher level throughout life in a different mouse 
strain which shows resistance to Parkinson’s. 
Compiling and analyzing data from these different 
experiments, many of which he did not even realize 
were applicable to his situation, allows him to more 
fully examine the potential role of this gene and to 
better inform his next experiments.

While individual researchers often do a similar 
type of information gathering on their own, it can be 
diffi cult to examine other datasets, or we miss a rel-
evant dataset because the data producers published 
it in relation to a very different topic. As diverse data 
generation continues to grow at an accelerated rate, 
we are in dire need of systems that make it easy for 
our community to contribute, organize, and fi nd 
relevant data. While we are a long way from a fully 
implemented system that could perform the previ-
ous example, different groups have already created 
many of its components.

AN ATLAS BASED FRAMEWORK FOR DATA SHARING
For atlases to be used to query and access spatially 
indexed data, they must be backed by databases, spa-
tial and semantic registration methods, and a client 
that allows query and access to the data. Building 
a digital atlas mapping framework to facilitate 
experimentation and hypothesis generation was a 
focus of the Human Brain Project. As a result, atlas 
resources besides those discussed above, developed 
with the purpose of placing mouse gene image data 
within a context of an atlas and offering it to the 
public. These include a joint project between the 
Mouse Brain Library (MBL, www.mbl.org/) and 
NeuroTerrain (www.neuroterrain.org), the Mouse 
Atlas Project (www.loni.ucla.edu/MAP/), and the 
Smart Atlas (https://portal.nbirn.net).

Each of these projects has strengths in comple-
mentary areas. The MBL consists of high- resolution 
histological images and associated databases of 
brains from many genetically characterized strains 
of mice (Rosen et al., 2003). NeuroTerrain offers a 
high-resolution 3D Nissl atlas in Macrovoxel format 
that may be accessed over the network and viewed in 
an arbitrary plane (Gustafson et al., 2004) and has 
much of the MBL data registered to it. The Mouse 
Atlas Project developed tools to bring together brain 
architecture, gene expression, and 2D and 3D imag-
ing information into a single interface (MacKenzie-
Graham et al., 2003) and offers several 3D MR atlases 
that may be used interchangeably in these tools. The 
Smart Atlas integrates data using both semantic and 
spatial geographical information systems (GIS) meth-
ods (Martone et al., 2008). It is based on coronal and 
sagittal plates from the Paxinos and Franklin (2001) 
atlas and includes functionality that allows a user to 
register image slices to the atlas plates and allows spa-
tial query of these data (Zaslavsky et al., 2004).
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Figure 1 | Examples of databases which manage gene expression image without an anatomical framework. GENSAT and 
MGI both provide a rich repository of image data for gene expression. Neither uses a standard framework for data organization, 
rather, both describe the pattern and location of gene expression revealed by the image. GENSAT (A) describes the expression 
pattern for major structures in each image, while the MGI (B) summarizes a batch of assays (the MGI dataset shown here were 
used to derive the Lef1 gene examples shown in Lee et al., 2007). While these annotations aid interpretation, the ability to query 
or analyze these data in this format is very limited.

Boline et al.
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Figure 2 | An extensible and fl exible atlas based framework for data sharing. Data and client are located on a user’s computer. 
Red describes a workfl ow for data contribution. Gray elements are specialized servers, databases, tools, and standards built by 
the scientifi c community that facilitate integration of data. Yellow cylinders represent data sources that offer a certain data type 
(i.e., GeneNetwork and the BIRN Microarray Database are both Microarray databases with services that allow access to their data). 
Blue describes a path for data retrieval. Standardized application program interfaces (APIs-blue arrows) allow the creation of tools 
that access services offered by a source.

To go a step farther and build a system where 
atlases act as a point of access to data from multiple 
sources of different type and scale requires more 
than just connection to more databases. It requires 
a large community effort, and it is now a focus of 
collaboratives including the Mouse Biomedical 
Informatics Research Network (BIRN, www.nbirn.
net and http://www.loni.ucla.edu/BIRN/Projects/
Mouse; Martone et al., 2004) and the International 
Neuroinformatics Coordinating Facility (INCF, 
www.incf.org; Boline et al., 2007).

The BIRN project has been focused on building 
infrastructure supporting data sharing through a 
federated model and the focus of Mouse BIRN has 
been on developing and applying this infrastructure 
to promote data sharing through an atlasing frame-
work. As a result, the Mouse BIRN Atlasing Toolkit 
(MBAT, www.nbirn.net/tools/mbat_2.0 and http://
cms.loni.ucla.edu/MBAT/) has been built to offer easy 
access to this infrastructure to the public. The MBAT 
project builds on the complementary strengths and 
functionality of the MBL, NeuroTerrain, MAP, and 
Smart Atlas projects and is shaped by experimental 

mouse models of neurodegenerative disease studied 
in the Mouse BIRN project.

If a system such as this is to grow in a fl exible 
and extensible manner (Figure 2), it requires sup-
port by a large set of integration resources, such as 
standard terminologies and/or ontologies, database 
integration resources (such as the BIRN mediator, 
www.nbirn.net/research/data_integration), stand-
ard schemas for data exchange (such as MAGE, 
www.mged.org/Workgroups/MAGE/mage.html, 
or XCEDE, www.xcede.org), database webservices, 
and standard application programming interfaces 
(APIs). Finally, bringing together resources that are 
registered to different atlases requires additional 
spatial and semantic integration resources that 
can facilitate interoperability between these atlases 
(such as an atlas interoperability server and API, 
www.loni.ucla.edu/twiki/bin/view/MouseBIRN/
AtlasStateExchange). These integration resources 
give an entryway for groups other than BIRN 
to participate in creating interoperable data and 
tools which can allow linkage to data they offer in 
other projects. Ideally, multiple methods may be 
employed for interested collaborators to share their 
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Table 1 | Data sources currently queried and accessed by MBAT.

Data type Source Web link

Gene expression images Allen brain atlas (ABA) www.brain-map.org

Gene expression images Gensat (Rockefeller) www.gensat.org

Light and electron microscopy Cell centered database (CCDB) http://ccdb.ucsd.edu

Microarray GeneNetwork www.genenetwork.org

Microarray BIRN microarray database (BMDB) http://microarray.nbirn.net/

CNS hierarchy and nomenclature The brain architecture management system (BAMS) http://brancusi.usc.edu/bkms/

Publications PubMed www.ncbi.nlm.nih.gov/PubMed/

Ontologies Bonfi re http://www.nbirn.net/research/ontology/

Boline et al.

data through this framework, whether it is via their 
own database, or through upload processes.

However, expanding even a fl exible system with 
a new data type requires its own community-driven 
approach to modify these existing resources to set 
standards, web-services, APIs, and application of 
their own unique combination of integration meth-
ods. For instance, the preferred approach discussed 
for gene expression images has been spatial regis-
tration, but so far, the main approach for integrat-
ing Microarray data is primarily semantic, with the 
exception of voxelized data registered to an atlas 
(Chin et al., 2007). Moreover, bridging the gap 
between different developmental stages (i.e., embry-
onic and adult) as well as that between species will 
require at least an initial reliance on semantic map-
ping due to the huge variations in spatial differences 
between species and some developmental stages.

From the user’s point of view, the framework 
allows a simple, but complete cycle of data sharing. 
A user may enter this path by registering their data 
within the client or via other server resources. She 
manages and visualizes her data in the client, where 
she can compare her data to an atlas and some other 
sets of data. However, she also has the option to 
share her data set by uploading it through resources 
that take advantage of an integration infrastructure 
and stores the data and its associated information 
in the appropriate databases. This upload process 
requires semantic and spatial integration meth-
ods (gray elements) to give the appropriate con-
text to the data. Once the data are uploaded, the 
 integration infrastructure allows other users to 
query and retrieve her dataset through a client that 
accesses the infrastructure through APIs.

HOW CLOSE ARE WE TO THIS FRAMEWORK?
The current version of MBAT (2.0 Beta) integrates 
data using both semantic and spatial methods. It 
points a user to accessible Mouse BIRN upload 
interfaces and even includes tools for a user to cre-

ate their own atlas. It allows spatial-based queries, 
but its current focus is to allow semantic queries 
and access to data from multiple distributed sites 
(Figure 2, yellow cylinders and Table 1).

Currently MBAT does not completely fulfi ll 
the complete atlas-based framework outlined in 
Figure 2. However, we continue to develop, and 
offer access to tools and resources that aid in mov-
ing toward this goal. We recently reported the use of 
a high-resolution atlas as an anatomical framework 
for localizing gene expression data for the mouse 
brain at postnatal day 0 (P0) (Lee et al., 2007) along 
with new tools that help register, manage, and ana-
lyze gene expression image data (Figure 3).

This publication shows that a management 
document specifying the linear data-to-atlas spatial 
transformation is suffi cient for relating local gene 
expression image data to a predefi ned atlas space. 
To setup the atlas-based data management and 
interaction with atlas-associated resources, it only 
requires an application that reports the atlas trans-
formation in an offl ine management document.

Once registered, the gene expressions patterns may 
be mapped into the atlas space. Since MBAT uses a 
coordinate system and integration resources to asso-
ciate with multiple resources (i.e., Paxinos’ canoni-
cal templates, microarray data), atlas- associated data 
relating to the region of interest (ROI, area with 
enriched gene expression) may be retrieved by a 
spatial query. This registration also maps the ROI to 
the brain anatomy, thus data correlation may also be 
examined using anatomical structure names.

It is important to note that the methods discussed 
in this publication are not focused on pushing for-
ward registration methods. As the fi eld of image 
registration is problematic with no simple solutions 
for all data types, the management tools need not be 
dependent on a single registration method. Instead, 
the creators of registration tools may be able to take 
advantage of these management methods in order 
to interact with this framework.
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Figure 3 | Local atlas-based data management facilitates data correlation via several atlas tools developed in the BIRN 
project. (A) MBAT allows spatial query with manually drawn polygons. Based on the intersection of the polygon and the anatomi-
cal delineation provided by the atlas, the anatomical composition within the ROI can be determined, thus enabling the retrieval of 
information associated with the atlas coordinates or anatomical concepts. Once the user’s data is brought into the atlas space, the 
contours outlining the regions of interest can be mapped to the brain anatomy. (B) The ROI management described in Lee et al. 
(2007) employed a similar vector organization as the polygon method used for spatial query in MBAT (inset). Bringing the data into 
a common standard space not only facilitates data visualization, but also allows one to use the atlas as an interface for reusing 
and correlating other data derived from the same location.

WHAT NEXT?
Even with these advances, there are still many pieces 
of the puzzle missing. Groups with components of 
this framework already in place may wish to con-
tribute to, and shape the direction and specifi cs of 

the infrastructure. Others may wish to make avail-
able and link tools to this framework that facili-
tate registration, query, visualization, or analysis. 
Ideally the system is built in a model that allows 
tool-builders to easily add to or create new tools 
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for the framework. Data rich resource groups may 
wish to develop services for the type of data they 
offer so their resources may also be easily accessed 
by this sharing infrastructure.

Individuals may also wish to help shape the direc-
tion and specifi cs of the developing infrastructure 
and tools. As they begin to use these resources to 
share their data with the rest of the scientifi c com-
munity, they may fi nd gaps that can only be fi lled 
with their expertise. Finally, since the complexity of 
such a system must be hidden from those using it, 
feedback from both the research and programming 
community is essential to creating usable interfaces 
and points of integration.

In addition to these technical issues it is obvious 
that conceptual differences related to anatomies, ter-
minologies, and ontologies will exist as long as there 
are neuroscientists. However, an advantage of this 
framework is the fl exibility offered by the “Integrate” 
layer. This can be shaped by the community so scien-
tists can map their own well-defi ned atlases, terms, 
and ontologies into this system and for a user to 
choose any of these to defi ne their own data. In fact, 
a system such as this would be an ideal platform for 
facilitating these types of discussions and debates.

As we begin to close in on such a framework and 
add accessible resources, we will fi nd that we have 
developed powerful mapping tools that help us fi nd 
and analyze diverse information about the brain of 
different scale and type from different laboratories 
across the world. If we succeed in building such a 
powerful, intuitive, and fl exible framework, we may 
help spread access to data and speed discovery as 
never before possible.

CONFLICT OF INTEREST STATEMENT
The authors declare that the research was conducted 
in the absence of any commercial or fi nancial rela-
tionships that could be construed as a potential 
confl ict of interest.

ACKNOWLEDGEMENTS
This work was supported by NIH Grant U24 
RR021760 to the Mouse Biomedical Informatics 
Research Network (BIRN, http://www.nbirn.
net), which is funded by the National Center for 
Research Resources at the National Institutes of 
Health (NIH)

REFERENCES
Baldock, R. A., Bard, J. B., Burger, A., Burton, N., 

Christiansen, J., Feng, G., Hill, B., Houghton, D., 
Kaufman, M., Rao, J., Sharpe, J., Ross, A., 
Stevenson, P., Venkataraman, S., Waterhouse, A., 
Yang, Y., and Davidson, D. R. (2003). EMAP and 
EMAGE: a framework for understanding spatially 
organized data. Neuroinformatics 1, 309–325.

Bjaalie, J. G. (2002). Localization in the brain: new solu-
tions emerging. Nat. Rev. Neurosci. 3, 322–325.

Boline, J., Hawrylycz, M., and Williams, R. W. (2007). 
Workshop report: 1st INCF Workshop on 
Mouse and Rat Brain Digital Atlasing Systems. 
Available from Nature Precedings http://dx.doi.
org/10.1038/npre.2007.1046.1.

Brumwell, C. L., and Curran, T. (2006). Developmental 
mouse brain gene expression maps. J. Physiol. 
575, 343.

Carson, J. P., Ju, T., Lu, H. C., Thaller, C., Xu, M., Pallas, 
S. L., Crair, M. C., Warren, J., Chiu, W., and Eichele, 
G. (2005). A digital atlas to characterize the mouse 
brain transcriptome. PLoS Comput. Biol. 1, e41.

Chin, M. H., Geng, A. B., Khan, A. H., Qian, W. J., Petyuk, 
V. A., Boline, J., Levy, S., Toga, A. W., Smith, R. D., 
Leahy, R. M., and Smith, D. J. (2007). A genome-
scale map of expression for a mouse brain section 
obtained using voxelation. Physiol. Genomics 30, 
313–321.

Christiansen, J. H., Yang, Y., Venkataraman, S., 
Richardson, L., Stevenson, P., Burton, N., 
Baldock, R. A., and Davidson, D. R. (2006). 
EMAGE: a spatial database of gene expression 
patterns during mouse embryo development. 
Nucleic Acids Res. 34, D637–D641.

Gustafson, C., Tretiak, O., Bertrand, L., and 
Nissanov, J. (2004). Design and implementa-

tion of software for assembly and browsing of 
3D brain atlases. Computer Methods Programs 
Biomed. 74, 53–61.

Koester, S. E., and Insel, T. R. (2007). Mouse maps of 
gene expression in the brain. Genome Biol. 8, 212.

Lee, E. F., Boline, J., and Toga, A. W. (2007). 
A high- resolution anatomical framework of 
the neonatal mouse brain for managing gene 
expression data. Front. Neuroinform. 1, 6. doi: 
10.3389/neuro.11/006.2007.

Leergaard, T. B., and Bjaalie, J. G. (2007). 
Topography of the complete corticopontine 
projection: From experiments to principal 
maps. Front. Neuroinform. 1, 211–223. doi: 
10.3389/neuro.01/1.1.016.2007.

Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., 
Bensinger, A., Bernard, A., Boe, A. F., 
Boguski, M. S., Brockway, K. S., Byrnes, E. J., 
Chen, L., Chen, L., Chen, T. M., Chin, M. C., 
Chong, J., Crook, B. E., Czaplinska, A., et al. 
(2007). Genome-wide atlas of gene expression in 
the adult mouse brain. Nature 445, 168–176.

MacKenzie-Graham, A., Jones, E. S., Shattuck, D. W., 
Dinov, I. D., Bota, M., and Toga, A. W. (2003). 
The informatics of a C57BL/6J mouse brain atlas. 
Neuroinformatics 1, 397–410.

Martone, M. E., Gupta, A., and Ellisman, M. H. 
(2004). E-neuroscience: challenges and triumphs 
in integrating distributed data from molecules to 
brains. Nat. Neurosci. 7, 467–472.

Martone, M. E., Zaslavsky, I., Gupta, A., Memon, A., 
Tran, J., Wong, W. W., Fong, L. L., Larson, S. D., and 
Ellisman, M. H. (2008). The smart atlas: spatial 
and semantic strategies for multiscale integra-
tion of brain data. In Anatomy Ontologies 
for Bioinformatics: Principles and Practice, 

Vol. 6, A. Burger et al. eds (London, Springer), 
pp. 267–286.

Paxinos, G., and Franklin, K. B. J. (2001). The Mouse 
Brain in Stereotaxic Coordinates, 2nd ed., 
Academic Press, San Diego.

Rosen, G. D., La Porte, N. T., Diechtiareff, B., 
Pung, C. J., Nissanov, J., Gustafson, C., 
Bertrand, L., Gefen, S., Fan, Y., and Tretiak, O. J. 
(2003). Informatics center for mouse genomics. 
Neuroinformatics 1, 327–342.

Sunkin, S. M. (2006). Towards the integration of 
spatially and temporally resolved murine gene 
expression databases. Trends Genet. 22, 211–217.

Sunkin, S. M., and Hohmann, J. G. (2007). Insights 
from spatially mapped gene expression in the 
mouse brain. Hum. Mol. Genet. 16, R209.

Toga, A. W. (2002). Imaging databases and neuro-
science. Neuroscientist 8, 423–436.

Zaslavsky, I., Haiyun, H. E., Tran, J., Martone, M. E., 
and Gupta, A. (2004). Integrating Brain Data 
Spatially: Spatial Data Infrastructure and Atlas 
Environment for Online Federation and Analysis 
of Brain Images.  Database and Expert Systems 
Applications, 15th International Workshop on 
(DEXA’04), pp. 389–393.

Received: 7 April 2008; accepted: 22 May 2008.

Citation: Front. Neurosci. (2008) 2, 1: 100–106, 
doi: 10.3389/neuro.01.012.2008

Copyright © 2008 Boline, Lee and Toga. This is an 
open-access article subject to an exclusive license 
agreement between the authors and the Frontiers 
Research Foundation, which permits unrestricted 
use, distribution, and reproduction in any medium, 
provided the original authors and source are credited.

Boline et al.


