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Drivers and modulators  
in the central auditory pathways

Charles C. Lee* and S. Murray Sherman
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The classic view of auditory information flow depicts a simple serial route from the periphery 
through tonotopically-organized nuclei in the brainstem, midbrain and thalamus, ascending 
eventually to the neocortex. Yet, complicating this picture are numerous parallel ascending 
and descending pathways, whose roles in auditory processing are poorly defined. To 
address this ambiguity, we have identified several anatomical and physiological properties 
that distinguish the auditory glutamatergic pathways into two groups that we have termed 
“drivers” and “modulators”. Driver pathways are associated with information-bearing 
pathways, while modulator pathways modify these principal information streams. These 
properties illuminate the potential roles of some previously ill-defined auditory pathways, 
and may be extended further to categorize either unknown or mischaracterized pathways 
throughout the auditory system.
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IntroductIon
The mammalian auditory system is challenged 
with the task of accurately encoding the pat-
tern and source of incoming sound. Many of 
the initial steps involved in the manipulation 
of acoustic information already have been well-
characterized (Webster, 1992; Winer, 2005). In 
the standard model, auditory information is 
first transmitted from the cochlea (Ryugo, 1992) 
to the cochlear nucleus (Cant, 1992), where it is 
distributed across multiple parallel ascending 
streams to the superior olivary complex, the lat-
eral lemniscal nuclei (Schwartz, 1992), and the 
inferior colliculus (IC) (Oliver and Huerta, 1992). 
Subsequently, information is communicated to 
the medial geniculate body (MGB) of the thala-
mus (Winer, 1992), where it is then transferred 
to the primary auditory cortex and on to higher 
auditory cortical areas (Kaas and Hackett, 2000; 
Lee and Winer, 2008b).

The tonotopic organization of frequency-
 specific channels established at the cochlea 
is one of the few organizing features that per-

sist throughout the auditory pathway (Kandler 
et al., 2009). In the classical view, the principle 
route for  auditory information traverses through 
these tonotopic nuclei at each level of processing. 
However, numerous parallel ascending (Winer, 
2005) and descending (Winer, 2006) pathways 
complicate this simple picture, and their roles 
in audition have yet to be adequately elucidated. 
For example, the ascending pathways through 
the non-tonotopically organized nuclei and the 
large number of descending projections pose 
unanswered questions regarding their roles in 
auditory information processing.

Assessing the putative functions of such pro-
jections has been recently aided by anatomical 
and physiological findings that segregate the 
main glutamatergic pathways into two types 
(Sherman and Guillery, 1998) (Figure 1). The 
first type termed drivers are similar to the potent 
retinogeniculate projections in the visual system, 
and are likely the main conduits for the trans-
mission of auditory information (Reichova and 
Sherman, 2004; Sherman and Guillery, 2006; 
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this has been extended across multiple synapses 
in the auditory system (Winer et al., 1999; Huang 
and Winer, 2000; Bartlett and Smith, 2002; Lee 
and Sherman, 2008, 2009b, 2010; Llano and 
Sherman, 2008).

The distinction between the two types of 
input derives in part from morphological obser-
vations of axonal arborizations. Driver input 
often resembles that of the retinal input to the 
lateral geniculate nucleus (LGN), which has been 
termed type 2 morphology by Guillery (1966). 
This morphological type has thick axons, dense 
terminal arbors (Guillery, 1966; Ralston, 1971; 
Famiglietti and Peters, 1972), and large endings 
that contact the proximal dendrites of relay cells 
(Winer et al., 1999; Llano and Sherman, 2008), 
often in triadic structures in glomeruli (Ralston, 
1971; Famiglietti and Peters, 1972; Hamos et al., 
1987). Like the retinal driver inputs, the driver 
projections produce large, all-or-none EPSPs 
by activating only ionotropic glutamate recep-
tors (iGluRs), and they exhibit synaptic depres-
sion (Bartlett and Smith, 2002; Li et al., 2003; 
Reichova and Sherman, 2004) (Figure 1). In 
contrast, glutamatergic modulator inputs have 
different morphologies, called type 1 by Guillery 
(1966) and exemplified by the corticogeniculate 
feedback pathway from layer 6 of visual cortex. 
This morphological type has thin axons, sparse 
arbors, and small terminals ending on distal 
dendrites (Sherman and Guillery, 2006). Their 
physiological properties differ as well, exhibiting 
synaptic facilitation and producing small, graded 
EPSPs by engaging both iGluRs and metabo-
tropic glutamate receptors (mGluRs) (Bartlett 
and Smith, 2002; Li et al., 2003; Reichova and 
Sherman, 2004) (Figure 1). These glutamater-
gic modulators should not be confused with the 
various neuromodulator pathways, such as those 
using acetylcholine (Varela and Sherman, 2007) 
and serotonin (Varela and Sherman, 2009) as 
neurotransmitters; their synaptic properties and 
roles may be very different.

These properties likely support the roles of 
driver and modulator pathways in information 
processing. Thus, driver synapses are likely highly-
reliable and efficient transmitters of information, 
given their close proximity to the neuronal cell 
body and their high probability of transmitter 
release (Gil et al., 1999; Sherman and Guillery, 
2006). Furthermore, the synaptic depression has 
been suggested to act as a dynamic gain control 
mechanism specific to the input, which is very 
useful in information flow as firing rates of the 
afferents change (Abbott et al., 1997). Modulator 
projections, with their distal dendritic locations, 
lower probability of transmitter release, and pro-

Lee and Sherman, 2008, 2010). In contrast, the 
second type termed modulators have vastly 
 different properties, and may instead modify the 
main information-bearing streams (Reichova 
and Sherman, 2004; Sherman and Guillery, 2006; 
Lee and Sherman, 2009b). We have used these 
properties to characterize several pathways in 
the central stages of auditory processing, and to 
identify the likely routes for auditory informa-
tion flow from the IC through thalamus to the 
auditory cortex (Lee and Sherman, 2008, 2009b, 
2010; Llano and Sherman, 2008). Here we review 
these recent findings, the open questions, and the 
future directions.

drIvers and modulators
Assessing the information-bearing role of the 
central auditory pathways is an important chal-
lenge, but it is one that can be addressed partly 
using anatomical and physiological criteria 
(Figure 1). As mentioned above, glutamatergic 
synapses can be characterized as either drivers 
or modulators of activity. Driver pathways are 
suggested to be the principal conduits for infor-
mation flow, while modulator pathways modify 
these main information-bearing streams. Such a 
characterization has been derived from previous 
work, mostly in mice and cats, on the retino-
geniculate and corticothalamic (CT) projections 
in the visual and somatosensory systems (Li 
et al., 2003; Reichova and Sherman, 2004), and 

Figure 1 | Summary of anatomical and physiological properties of driver (red) and modulator 
(green) synapses onto a neuron (blue) (adapted from Lee and Sherman, 2009b).

Driver pathway
Driver pathway is a glutamatergic 
pathway that is the main conduit  
for information flow.

Modulator pathway
Modulator Pathway is a glutamatergic 
pathway that is responsible for 
modifying the principal information-
bearing pathways, i.e., driver pathways.
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FIrst order  
and hIgher order pathways
The driver and modulator framework has been 
particularly useful in the delineation of forebrain 
sensory pathways, particularly in the parcellation 
of thalamic relays, which can be classified as either 
a first order nucleus (FO) or higher order nucleus 
(HO) (Sherman and Guillery, 2002, 2006), based 
on the source of their driving input. FO nuclei, 
such as the LGN, ventral division of the medial 
geniculate body (MGBv) and ventroposterior 
medial nucleus (VPm), receive their principal 
driving input from peripheral sources, while 
HO nuclei, such as the pulvinar (LP-Pul), dorsal 
division of the MGB (MGBd), and posteromedial 
nucleus (POm), receive their driving input mainly 
from layer 5 of the cortex (Figure 2). Note that 
both FO and HO thalamic nuclei receive feed-
back modulatory input from cortical layer 6, but 
only HO nuclei, in addition, receive a feedforward 
driver input from cortical layer 5. Interestingly, 
this suggests that the HO thalamic relays trans-
mit layer 5 driver input from one cortical area to 
the thalamic recipient layers of a second cortical 
area (Sherman and Guillery, 2002; Reichova and 

longed responses from mGluRs, are less suited as 
conveyors of information (Stratford et al., 1996; 
Gil et al., 1999; Sherman and Guillery, 2006). 
However, the prolonged responses afforded by 
activation of mGluRs not only modulates such 
properties as overall excitability, but also  provides 
control of many time- and voltage-gated ion 
channels in the target cell, a feature that is poorly 
controlled by driver inputs with their brief EPSPs 
(Sherman and Guillery, 2006); such prolonged 
mGluR responses would also act like low-pass 
temporal filters, resulting in less information 
transferred across the synapse (Sherman and 
Guillery, 2006).

These multiple anatomical and physiological 
criteria for distinguishing glutamatergic syn-
apses have been useful for characterizing the 
auditory pathways from the IC, thalamus and 
cortex (Lee and Sherman, 2008, 2009b, 2010; 
Llano and Sherman, 2008), which we review 
below. These properties also provide the foun-
dation for ongoing and future investigations of 
the information-bearing roles of the intracorti-
cal and corticocortical connections in the various 
auditory cortical areas.

First order nucleus
It is a thalamic nucleus that receives  
its primary driving input from 
peripheral afferents; examples are 
MGBv, LGN, VPm.

Higher order nucleus
It is a thalamic nucleus that receives 
driving input from layer 5 of a first 
order cortical area and relays that  
to another cortical area; examples  
are MGBd, LP-Pul, POm.

Figure 2 | Model of auditory information flow from the inferior colliculus (IC), medial geniculate body (MGB) and 
auditory cortex (AI, AII). Driver inputs (red) are the main information-bearing pathways, while modulator inputs (green) 
modify the information being transmitted (adapted from Lee and Sherman, 2010).
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auditory thalamic nuclei instead arises from layer 
5 of the primary auditory cortex (see above) 
(Figure 2) (Bartlett and Smith, 2002; Llano and 
Sherman, 2008). Thus, the tectothalamic projec-
tion from ICs should act to modulate the corti-
cothalamocortical processing stream through the 
higher order auditory thalamus (Sherman and 
Guillery, 2006; Lee and Sherman, 2010).

medIal genIculate body
Information ascending to the auditory cortex 
must first be conveyed through the MGB of the 
thalamus, yet the importance of the MGB in 
audition extends beyond a role as merely a relay 
(Sherman and Guillery, 2006; Lee and Sherman, 
2008; Lee and Winer, 2008a). Of the main MGB 
nuclei, the MGBv is the primary conduit for 
tonotopic information ascending to the primary 
auditory cortex, whereas the MGBd and MGBm 
divisions are not tonotopically organized and 
project broadly to non-tonotopic, multimodal 
and limbic related areas (Kaas and Hackett, 2000; 
Lee and Winer, 2008a; Llano and Sherman, 2008). 
The MGB also receives major projections from 
layers 5 and 6 of the auditory cortex (Winer et al., 
2001; Llano and Sherman, 2008), which either 
transmit or modulate information through the 
thalamus (see below) (Figure 2).

The thalamocortical projections from the 
non-tonotopic nuclei of the MGB have been 
presumed to perform alternative functions, such 
as regulating attention (Olshausen et al., 1993), 
and not generally regarded as information-
bearing pathways to higher auditory areas. This 
view is challenged by findings that demonstrate 
anatomical and physiological similarity among 
the thalamocortical projections from the MGBv 
and MGBd (Huang and Winer, 2000; Rose and 
Metherate, 2001; Llano and Sherman, 2008; Lee 
and Sherman, 2009b). Morphologically, these tha-
lamocortical projections have large, dense, bushy 
arborizations in layer 4 that extend into layer 3 
(Huang and Winer, 2000; Llano and Sherman, 
2008). Physiologically, these projections dem-
onstrate large EPSPs that depress in response to 
paired-pulse stimulation and lack a metabotropic 
glutamate component (Rose and Metherate, 2001; 
Lee and Sherman, 2009b).

Thus, projections from both the MGBv and 
MGBd share driver-like properties (Table 1), 
and suggest that the projections from the MGBd 
have a role similar to that of the MGBv, i.e., as 
an  information-bearing pathway to the higher 
auditory cortical areas (Figure 2). The main dis-
tinction between them is that MGBv is an FO 
relay, while MGBd is an HO relay (see above). 
An interesting question remaining concerns the 

Sherman, 2004; Lee and Sherman, 2008), analo-
gous to the FO transmission by the LGN of retinal 
input to the primary visual cortex (Figure 2), and 
likewise may utilize the unique operational modes 
of the thalamus, including gating and the different 
burst versus tonic firing modes of relay cells (Cox 
et al., 1998; Sherman, 2001). These distinctions 
between FO and HO pathways have particular 
relevance for the central auditory pathways, as 
we discuss below.

InFerIor collIculus
Among the main auditory centers, the IC is par-
ticularly salient as the site of convergence from 
downstream sources in the cochlear nucleus, 
superior olivary complex and the lateral lemnis-
cal nuclei, as well as feedback projections from 
the auditory cortex (Oliver and Huerta, 1992), 
and thus represents a major hub for integrating 
ascending and descending processing streams. 
The central nucleus of the inferior colliculus (ICc) 
is the main tonotopically organized subdivision 
(Romand and Ehret, 1990; Malmierca et al., 2008), 
and is the principal source of information ascend-
ing to the MGBv (Winer, 2005). Surrounding 
the ICc are the lateral (ICl), dorsal (ICd), and 
caudal cortices of the IC (ICca), which we col-
lectively refer to as the shell regions (ICs). These 
subdivisions are primarily non-tonotopically 
organized (Romand and Ehret, 1990; Malmierca 
et al., 2008), and project to the MGBd and medial 
(MGBm) divisions of the MGB (Wenstrup, 2005). 
Interestingly, the role of these non-lemniscal pro-
jections to the MGB are not well-defined (Hu, 
2003; Wenstrup, 2005).

Previous models have suggested that the 
ascending tectothalamic pathways from the ICc 
and ICs to the MGBv, MGBd and MGBm, respec-
tively, represent parallel paths for the flow of 
auditory information (Hu et al., 1994; Hu, 2003; 
Wenstrup, 2005). However, recent studies now 
support an alternative scheme (Figure 2). These 
data demonstrate that the tectothalamic synapse 
from the ICc exhibits properties associated with 
driver synapses (Bartlett and Smith, 2002; Lee and 
Sherman, 2010), while the ICs projection instead 
has modulator characteristics (Bartlett and Smith, 
2002; Smith et al., 2007; Lee and Sherman, 2010) 
(Table 1). Thus, in the alternative model of 
auditory tectothalamic transmission, the main 
information-bearing pathway is proposed to 
arise primarily from the ICc, while the pathway 
from the ICs instead modulates information 
flow through the higher order auditory thalamus 
(Figure 2) (Bartlett and Smith, 2002; Smith et al., 
2007; Lee and Sherman, 2010). Interestingly, the 
source of the driving inputs to the higher order 
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Table 1 | Driver and modulator properties of the central auditory pathways.

 ICc to MGBv MGBv to AI MGBd to AII L5 to MGBd ICl to MGBd L6 to MGBv L6 to L4

Large 

EPSPs

Bartlett  

and Smith (2002), 

Lee and Sherman 

(2010)

Lee  

and Sherman 

(2008), Rose  

and Metherate 

(2001)

Lee  

and Sherman 

(2008)

Small 

EPSPs

Bartlett and Smith 

(2002), Lee and 

Sherman (2010)

Bartlett and 

Smith (2002)

Lee and 

Sherman 

(2009b)

Depressing 

synapses

Bartlett  

and Smith (2002), 

Lee and Sherman 

(2010)

Lee  

and Sherman 

(2008), Rose  

and Metherate 

(2001)

Lee  

and Sherman 

(2008)

Facilitating 

synapse

Bartlett and Smith 

(2002), Lee and 

Sherman (2010)

Bartlett and 

Smith (2002)

Lee and 

Sherman 

(2009b)

iGluRs only Bartlett  

and Smith (2002), 

Lee and Sherman 

(2010)

Lee  

and Sherman 

(2008)

Lee  

and Sherman 

(2008)

iGluRs and 

mGluRs

Bartlett and Smith 

(2002), Lee and 

Sherman (2010)

Bartlett and 

Smith (2002)

Lee and 

Sherman 

(2009b)

Dense 

terminal 

arbors

Bartlett  

and Smith (2002), 

Bartlett et al. 

(2000)

Huang 

 and Winer (2000), 

Llano and 

Sherman (2008)

Huang and 

Winer (2000), 

Llano  

and Sherman 

(2008)

Bartlett et al. 

(2000), Llano and 

Sherman (2008), 

Ojima (1994), 

Winer et al. (1999, 

2001)

Sparse 

terminal 

arbors

Bartlett and Smith 

(2002), Bartlett 

et al. (2000), Huang 

and Winer (2000), 

Smith et al. (2007)

Bartlett and 

Smith (2002), 

Llano  

and Sherman 

(2008), Ojima 

(1994), Winer 

et al. (2001)

Prieto  

and Winer 

(1999)

Thick axons Bartlett  

and Smith (2002), 

Bartlett et al. 

(2000)

Huang  

and Winer (2000), 

Llano and 

Sherman (2008)

Huang and 

Winer (2000), 

Llano  

and Sherman 

(2008)

Bartlett et al. 

(2000),  

Llano and 

Sherman (2008), 

Ojima (1994), 

Winer et al. (1999, 

2001)

Thin axons Bartlett and Smith 

(2002), Bartlett 

et al. (2000), 

Huang and Winer 

(2000), Smith et al. 

(2007)

Bartlett and 

Smith (2002), 

Llano and 

Sherman 

(2008), Ojima 

(1994), Winer 

et al. (2001)

Prieto 

and 

Winer 

(1999)

Grey shading: Driver properties

White shading: Modulator properties



www.frontiersin.org May 2010 | Volume 4 | Issue 1 | 84

Lee and Sherman

teristics and project to the originating thalamic 
nucleus, e.g., AI to MGBv (Table 1) (Ojima, 
1994; Bartlett et al., 2000; Winer et al., 2001; 
Bartlett and Smith, 2002). Thus, the AI layer 5 
inputs to MGBd, in conjunction with the driver 
thalamocortical projections from MGBd to AII 
(see above), establish a transthalamic route for 
the interareal transfer of auditory information 
(Figure 2). This alternate route does not negate 
the potential information-bearing roles of the 
direct corticocortical projections (Rockland and 
Pandya, 1979; Lee and Winer, 2008b), which 
are composed of an intricate pattern of lami-
nar-specific driver and modulator projections 
(Covic et al., 2009). Thus, auditory forebrain 
computations involve multiple processes beyond 
those suggested by simple  cortical hierarchies 
(Felleman and Van Essen, 1991; Rouiller et al., 
1991).

Finally, intrinsic cortical microcircuits fur-
ther transform auditory information before 
redistribution through the cortical network 
(Feldmeyer and Sakmann, 2000; Silberberg et al., 
2004; Hirsch and Martinez, 2006a). Yet, informa-
tion processing among cortical layers within an 
auditory area still remains unresolved. This issue 
is complicated by the complexity and floridness 
of intrinsic cortical interconnections, which 
account for almost half of the input to a corti-
cal column (Ahmed et al., 1994; Latawiec et al., 
2000; Binzegger et al., 2004; Lee et al., 2004). 
One potential driving circuit extends from 
layer 4 to layers 2/3 and then to layer 5 (Hirsch 
and Martinez, 2006b; Lee and Sherman, 2009a), 
and then outputs to the higher order thalamus 
(Ojima, 1994; Winer et al., 1999; Llano and 
Sherman, 2008), but the bulk of intrinsic con-
nections may be instead more likely to exhibit 
modulator properties, such as the layer 6 to layer 
4 projections (Ahmed et al., 1994; Stratford 
et al., 1996; Prieto and Winer, 1999; Tarczy-
Hornoch et al., 1999; Lee and Sherman, 2008, 
2009b). In this manner, functional connectivity 
within the auditory cortex may resemble that in 
the thalamus, where synaptic weight is inversely 
proportional to anatomical weight (Binzegger 
et al., 2004; Sherman and Guillery, 2006).

conclusIon
The driver and modulator framework adds 
a unique perspective to our ongoing under-
standing of the central auditory pathways. As 
such, these properties may fruitfully be applied 
to other pathways of interest throughout the 
auditory system, such as the thalamoamygdaloid 
pathway (Doron and Ledoux, 1999). However, 
open questions remain for future investigation. 

thalamocortical projections to layer 1 from the 
MGBm (Huang and Winer, 2000; Jones, 2009), 
part of the “matrix” system defined by Jones 
(2009), whose role remains to be defined. Thus, 
although it is generally regarded simply a relay 
of ascending auditory information, the MGB has 
important roles ranging from the transformation 
of auditory information (Miller et al., 2001) to 
continuing the flow of intraareal processing in the 
cortex (see below) (Sherman and Guillery, 2006; 
Lee and Sherman, 2008).

audItory cortex
The auditory cortex is the ultimate target for infor-
mation ascending from the periphery through 
the MGB (Lee and Winer, 2008a,b; Llano and 
Sherman, 2008). Similar to lower  stations, tonot-
opy is an organizing feature of the primary audi-
tory cortex (AI), but is absent in the surrounding 
non-tonotopic and multimodal areas, such as the 
secondary auditory area (AII) (Stiebler et al., 1997; 
Kaas and Hackett, 2000; Lee et al., 2004). The size 
and number of these auditory cortical areas varies 
among species, e.g., there are two tonotopic areas 
in the mouse (Stiebler et al., 1997), three in the 
monkey (Hackett et al., 1998) and five in the cat 
(Reale and Imig, 1980). Yet, an unresolved issue is: 
how do these multiple areas interact to compute 
features in the auditory scene?

In the standard hierarchical cortical model of 
auditory processing, information is sent progres-
sively via direct corticocortical connections from 
lower auditory areas, such as AI, to higher audi-
tory areas, such as AII (Felleman and Van Essen, 
1991; Rouiller et al., 1991). Such successive con-
vergence of auditory inputs purportedly accounts 
for the increasingly complicated receptive fields of 
higher auditory areas, such as AII (Schreiner and 
Cynader, 1984). Interestingly, the synaptic prop-
erties of these direct corticocortical connections 
have not been examined until recently (Covic 
et al., 2009), and their salience is questionable, 
given recent findings that suggest an alternate 
route for interareal processing via a cortico-
thalamocortical route (Figure 2) (Reichova and 
Sherman, 2004; Sherman and Guillery, 2006; Lee 
and Sherman, 2008; Llano and Sherman, 2008; 
Theyel et al., 2010).

The alternate corticothalamocortical route 
for interareal auditory processing is enabled by 
driver projections that originate from layer 5 
of the primary auditory cortex and synapses in 
the higher order auditory thalamus, i.e., MGBd 
(Table 1) (Ojima, 1994; Winer et al., 1999; Llano 
and Sherman, 2008). These feedforward CT pro-
jections are distinguished from the feedback layer 
6 projections, which exhibit modulator charac-
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For instance, how do driver and modulator path-
ways interact functionally to construct auditory 
receptive fields? Do pathways differ according to 
age and experience? And, how do these proper-
ties extend across systems and species? Indeed, 
the utility of this framework is not constrained 
to the auditory modality, as its relevance in 
other sensory systems has already been estab-
lished (Reichova and Sherman, 2004; Petrof and 
Sherman, 2009), but has not yet been extended to 
non-mammalian species. In this respect, a com-
parative approach that extends the investigation 

of these properties in other organisms may lend 
unique insights into the ontogeny, development 
and evolution of the sensory pathways in higher 
organisms.
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