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Invasive and non-invasive brain machine interface research is a fast 
growing field, but a series of important challenges will have to be 
met to bring this to a level that will significantly impact patients. 
An increasing number of neurologists, neurosurgeon, neuroscien-
tists, theoreticians and computer engineers have become interested 
in the field, and their work gives hope for significant breakthrou-
ghs. The first challenge we face is in the realm of socio-economics. 
It is essential to have a worldwide network of collaborations and 
information exchange between all disciplines, including allocation 
of much larger resources for the task. Mankind needs to learn how 
to combine the natural tendencies of individuals for personal achie-
vements with the fact that we humans are social animals that made 
the best by synergistic social interactions and associations to larger 
teams, tribes and nations. The challenge is to create a worldwide 
feeling of a united mission. In this sense, we should adopt the brain 
strategy; none of us humans feel like “a bunch of neurons”. Yet, our 
brains, which make us what we are, are a collection of billions of 
cells that “know” how to interact and generate intelligence, emo-
tions and creativity. This is in fact a great challenge for the world 
population in all aspects of science and society.

The major scientific challenge may sound naive and obvious and 
yet, it is still in debate. How advanced will our understanding of 
the brain have to be before we can understand its intentions from 
reading its electrical activity? At present there are views like “using 
the brain we can not understand the brain”, or “the brain is too 
complex to understand.” In fact, the brain’s complexity may reside 
only in our thinking. We have lots of data about the brain, but no 
single person knows it all. We have different ideas and theories, but 
no true testable global theory about the brain.

Without such theory, we keep “measuring things.” Consider for 
example, a non-invasive technique like recordings of the EEG; ima-
gine that you try to understand a lecture given by millions of people, 
while each of them delivers (at the same time) a small fraction of 
the lecture, and all you hear are the mixed, blurred, echoed voi-
ces. Alternatively, consider the invasive techniques like recordings 
of single neuron activity (or even simultaneous recordings of say 
500 neurons). Here, we try to understand a supercomputer with 
millions and billions of interacting integrated circuits, by recor-
ding currents from a very small sample of these circuits, not even 
knowing the accurate connectivity, while our measuring devices 
shortcut other parts.

The grand challenges for BMI research are intimately linked to 
these challenges in brain science in general. The most  important 
aspect of BMIs, especially neuroprosthetics, is its aspiration to 
achieve better clinical applications. While many clinical treatments 

have been used even before the system is fully understood, it is 
intuitively clear that once we fully understand how the device works, 
it becomes easier to fix it. This is why we take our car or TV to be 
fixed by experts rather than try to move around wires and see if 
it works. This is why the experts at the garage or electronics shop 
must understand the mechanism of the devices and use good tools 
in order to detect problems and fix them.

Going top-down into the practical challenges of translational 
and clinical research towards useful brain machine interfaces, we 
can observe dramatic developments along with difficult problems. 
As more and more groups are involved in this scientific endeavor, 
the future looks demanding and promising at the same time. Above, 
we discussed the origin of the two major challenges (1) Theory: to 
get the meaning of signals measured (good theory of how the brain 
works). If one wishes to reveal, for example, if the brain intends to 
move an arm, at the very least one must predict the brain activity 
expected for each movement. For more general predictions, we 
would need a deeper and more global theory. (2) Data acquisition 
and interpretation: To better listen to the brain, we need good ears 
and better systems that know how to listen.

The first steps in theories, regarding the principles of brain 
function that are most relevant to neuroprosthetics, come from 
computational sensorimotor control (Kawato, 1999; Shadmehr 
and Krakauer, 2008; Todorov, 2004; Wolpert and Ghahramani 
2000). In a recent review, Lalazar and Vaadia presented the wider 
view suggesting that all brain functions are not based on a serial 
machine that reads sensory inputs and respond to them; rather, 
the brain is a memory based prediction machine in which expe-
riences of relations between actions and their results build in the 
brain internal models. In the case of sensorimotor associations, 
these models predict the expected sensory inputs and the results 
of its own actions, and bring about perception. Thus – what we 
perceive is not necessarily the world as it is, but the assessment of 
“brain reality” (Lalazar and Vaadia, 2008). In the words of Noe 
(giving the example of visual perception) “The experience of seeing 
occurs when the organism masters what we call the governing laws of 
sensorimotor contingency” (Noë, 2005). This is a debatable appro-
ach that can still be adopted when we try to construct a machine 
that interprets brain activity. Naturally, the challenge is to test such 
theory and pursue other theories.

The second problem is our relatively poor ability to extract the 
relevant information from the monitored brain activity. At pre-
sent we use various methods to  monitor brain activity at different 
levels, from highly invasive to non-invasive ones. The activity, in 
all cases, provides only partial and “noisy” information about the 
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subject’s intentions. Moreover, the activity changes continuously, 
either due to technical problems such as unstable recordings or due 
to the  inherent adaptive nature of the brain itself, which  modifies 
its  activity to the subject’s experience. Furthermore, the coding 
scheme by which the brain actually uses to encode information 
is still highly debated. Approaches to address this challenge are 
demonstrated in several publications of recent years (for example, 
Braun et al., 2005; Kim et al., 2006; Krauledat et al., 2008; Wu and 
Hatsopoulos, 2008; Wu et al., 2006). While facing this challenge, 
one has to keep in mind the dynamics of behavior and the pre-
dictive nature of the sensorimotor internal models. Consequently, 
we must learn the relevant dynamics of neural processing. It is 
therefore essential to improve our understanding of the adaptive 
nature of the brain. Interestingly, we find that this may be an easier 
task than we might think, since the brain is quite good at this task. 
Cortical maps are highly dynamic, even at adulthood (Buonomano 
and Merzenich, 1998), and firing rates of single cells as well as 
neuronal interactions modify quite rapidly during sensorimotor 
learning (Gandolfo et al., 2000; Jarosiewicz et al., 2008; Laubach 
et al., 2000; Mitz et al., 1991; Paz and Vaadia, 2009; Paz et al., 2003; 
Zach et al., 2008).

To facilitate the development of brain-driven artificial devices 
that produce natural-like movements, this line of studies should 
be continued, with special emphasis on developing optimal lear-
ning schemes, adapted to the constraints of human motor learning 
and performance under variable conditions and using classical and 
instrumental conditioning to teach the brain how to interact with 
the machine. One line of research in Vaadia lab uses the theory 
of sensorimotor predictive loops and implements it in showing 
that BMI is dramatically improved by adopting this principle. 
The algorithm is not only monitoring the brain activity, but also 
adapting continuously in the background to its changes, while it 
controls behavior at the same time. Using this principle, monkeys 
and machines learned to “work together” in tens of seconds even 
when the model is started from scratch  during every recording 
day. Thus, these results suggest that even totally paralyzed patients 
will be able to train themselves and the computer quite rapidly (in 
1–2 min) even if the brain activity changes from minute to minute 
and day to day (Shpigelman et al., 2009).

The idea of adaptation also serves the basic concept of bio-
 feedback which is the basis for the use of neurofeedback in animals 
and humans. It has already proven successful in human subjects 
when used to train people to change a particular brain activity 
through feedback and reward (instrumental learning). For both 
types of strategies, some proof-of-principle demonstrations of 
their clinical effectiveness exist but lack larger controlled trials. 
Neurofeedback of slow cortical potentials and sensorimotor EEG-
rhythm (SMR) has produced improvements of attention and school 
performance in children with attention deficit disorder and hype-
ractivity (ADHD) compared to different control conditions such 
as placebo training and stimulant medication (Strehl et al., 2006). 
In drug resistant focal epilepsy, not only were substantial reduction 
in seizures reported, but also large gains in IQ and cognitive fun-
ctioning were also demonstrated (Kotchoubey et al., 2001; Strehl 
et al., 2005) after training of slow cortical potential control, indi-
cating that neurofeedback is a promising tool to improve cognitive 
functioning in some brain disorders.

The situation is similar in clinical brain-computer-interface 
research. While animal experiments using implanted microelec-
trodes in non-human primates have demonstrated perfect brain 
 control of artificial hands or paralyzed limbs from ensembles of 
firing neurons in motor cortices after training, only one study with 
eight chronic stroke patients without residual movement capa-
city using a non-invasive magnetoencephalographically control-
led prosthetic hand BCI is available. Most patients were able to 
open and close their paralyzed hands fixed on the orthosis with 
sensorimotor oscillations from their motor cortices; however, no 
gains in motor control outside the laboratory were reported (Buch 
et al., 2008).

For paralyzed spinal cord patients, a few single case demonstra-
tions are available (Pfurtscheller et al., 2005). EEG or MEG have 
to be combined with intelligent peripheries and robots; in motor 
control only four-dimensions of control are possible (i.e., right-left, 
front-back). Even with sophisticated algorithms, EEG cannot pro-
vide better classification solutions due to its biophysical limitations 
(Birbaumer et al., 1990). For most applications, however, EEG may 
remain the BCI of choice.

Verbal communication with completely paralyzed locked-in 
patients mostly suffering from amyotrophic lateral sclerosis (ALS) 
with non-invasive BCIs using different brain signals from the EEG 
for selecting letters or “yes” and “no” answers in a computer menu 
was described in several reports (Birbaumer et al., 2008). However, 
in completely-locked-in patients without any remaining eye-move-
ment control, BCI training was not successful.

Future BCIs for direct brain communication should rely on 
strategies requiring no or minimal cognitive-attentional effort and 
use mainly implicit learning. Locked-in, vegetative state (VS) and 
advanced Alzheimer patients should be trained to produce reflexive 
or automatic brain responses to questions or cues which can then be 
used as affirmative answers or rejections. Implantation of electrodes 
epidurally will improve signal to noise ratio and help the patient 
to regulate his/her Electrocorticogram (ECoG).

Classical conditioning of brain potentials and oscillations using 
clearly differentiable conditioned and unconditioned auditory or 
somatosensory stimuli (vision is often compromised) may over-
come the problem of voluntary, effortful conscious processing that 
is not possible in these patient groups.

In chronic stroke, spinal cord injury and other forms of motor 
paralysis, a recent demonstration in reversibly paralyzed monkeys 
by Moritz et al. (2008) should be translated into human applica-
tion. Here, the monkey was trained to produce spike sequences 
with operant conditioning from a few cells in the motor cortex to 
activate functional electric stimulation (FES) electrodes fixed to the 
paralyzed fingers. Invasive BMIs using implanted micro-or macro-
electrodes in human patients need to be tested experimentally as 
tested with non-invasive EEG/MEG, near-infrared-spectroscopy 
and magnetic resonance imaging BCIs. Most paralyzed patients 
refuse neurosurgical procedures as they are too risky; even if less 
flexible and error-prone, non- invasive measures will complement 
invasive BCIs. In neurofeedback the situation is less complicated 
because some first controlled demonstrations are already available 
and only large controlled trials are missing.

Yet, there is a lot to improve in our ability to read brain activity. 
The noninvasive studies, thus far suffer several problems; at present 
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some have low spatial resolution (including EEG and fMRI) and 
low temporal resolution (fMRI). In addition many of the devices 
are not always practical for daily use. Likewise, invasive technolo-
gies are not too useful for clinical applications at the current state. 
At present one can implant micro-arrays of many electrodes, but 
most are still damaging the tissue to some extent and do not last for 
many years. One example of efforts in the right direction are descri-
bed by Kennedy and colleagues who developed Neurotrophic elec-
trodes (Bartels et al., 2008). Telemetry techniques are still limited 
and do not allow transmission of full wave signals or even just the 
action potentials from hundreds of electrodes at sufficient speed. 
Yet, an example of the right steps were recently made by developing 
a 96-channel implantable data acquisition system that performs 
spike detection and extraction and wirelessly transmits data to 
an external unit (Rizk et al., 2009). Some reader may argue that 
we are almost there. Yet, most scientists believe that it takes better 
technologies to get to the desired devices that will provide sam-
ples of large number of single neurons using telemetry and stable 
recordings, for many years and with no damage to the brain tissue. 
One important light at the end of the tunnel may be provided in 
the future by the subfield of nanotechnologies, which will develop 
nano-detectors which may be implanted inertly in the brain and 
measure local electrical activity. When that day comes, we will 
able to implant thousands of inert detectors that can transmit the 
compressed version of the information outside of the brain – it will 
represent a significant revolution in the field of BMI. Likewise, the 
technological challenge for using noninvasive techniques involves 
increasing of spatial and temporal resolution and miniaturization 
of the devices. This poses engineering challenges that may look 
sometime trivial, yet important like for example, miniaturization 
of power supply to the some electronic components that must be 

implanted. These developments will be used not only for motor 
prosthesis but also other treatments like closed loop deep brain 
stimulation. This must be improved to include recording of brain 
activity, which would allow for dynamic, adaptive stimulation that 
will condition the brain activity to restore normal activity when 
it goes astray (like in Parkinson’s disease).

Finally, while all these smart detectors and algorithms will be 
interfaced to the brain on one side, one can’t forget or neglect 
the other side: interfacing the output of these devices to effectors. 
The ultimate solution in neuroprosthetics will be control of the 
natural limb; an intermediate solution may range from controlling 
a computer or robotic devices (arm, wheel-chair, hand etc).

Furthermore, the long-term challenge may bring this field 
to much broader clinical applications, in improvements of not 
only paralysis but also other brain functions. This would include 
cognitive function and psychiatric conditions, like psychopathy, 
obsessive compulsive disorder, depression and schizophrenia that 
have been already attempted using deep brain stimulation and 
behavioral treatments, but require extensive work to achieve fine-
tuned,  closed-loop recording-stimulation that will allow condi-
tioning of brain activity to switch from the disease patterns of 
electrical activity to normal patterns. First reports of operant 
conditioning of subcortical and cortical nuclei with real-time 
functional magnetic resonance imaging (rt-fMRI-BCI) are pro-
mising in this respect (Weiskopf et al., 2007). Bearing in mind the 
theory that the brain deals with coordinating its internal models 
with the incoming inputs and results of its actions, it is clear 
that these tasks are not impossible. Expansion of clinical use will 
bring about serious ethical issues, which will pose yet another 
grand challenge to mankind, and  scientists must push this ethical 
challenge aside.
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Upon this gifted age, in its dark hour,
Rains from the sky a meteoric shower
Of facts…they lie unquestioned, uncombined.
Wisdom enough to leech of our ill
Is daily spun; but there exists no loom
To weave it into fabric;
—Edna St. Vincent Millay (from Huntsman, What Quarry? 1939)

The challenge of pRedicTion
The age of personalized medicine and genomics is upon us and we 
are facing a grand challenge – or a brick wall. Once we have finally 
gained a near complete compendium of fundamental mechanisms, 
connections, and developmental sequences – an encyclopedia of 
biology, bodies, brains, and behavior – can we achieve the data 
density and integration needed to develop holistic and robust 
models that generate useful predictions? Will we be able to distin-
guish between personalized genomics and a horoscope? What new 
types of resources, data sets, and synthetic frameworks are needed 
to make correct prognoses and recommend actions? What is my 
personal risk for Alzheimer’s disease, and what should I do about 
it today?

The complexity of biological systems implies that a parts list of 
mechanisms and processes, however complete, will not be up to 
the task of making good predictions. We need a way to test drive 
our models using a system that has the same level of complexity 
as human populations. I will describe an effective approach that 

relies on genetic reference panels (GRPs) that can be used to make 
and test predictions from base pair to behavior. I will describe how 
scientists can retain their independence while explicitly contribu-
ting to a fabric of tightly woven quantitative data.

The collecTive cosT of scienTific independence
Scientists are trained to think independently and critically. It is 
inevitable that we like to do things our own way, generating and 
using data from experiments we designed ourselves. This appro-
ach is not a self-indulgent luxury – it is an essential attribute of 
innovative science, enshrined in the ways we evaluate and fund 
new and ongoing research. Independence contributes to the stir-
ring cacophony of competing ideas that moves us toward a deeper 
understanding of biological processes.

Yet, independence has a cost. The scope of studies from single 
groups is limited by their technical and analytic proficiency and by 
modest budgets. The collective result is a fragmented, half-hidden 
literature and a fragmentary and rapidly evaporating collection 
of raw data, generated using different species and strains raised 
under different conditions, treated using varied paradigms, and 
measured using different equipment. Of course the pieces do 
not fit together! They were never intended to fit into any unified 
design. It is no surprise that integration of data sets and of key 
results is difficult; sometimes impossible. Ronald Fisher pointed 
out that “a competent overhauling of the process of collection, 
or of experimental design, may often increase the yield (preci-
sion of results) ten or twelve fold, for the same cost in time and 
labour” (Rao, 1992). Fisher meant this in the context of a single 


