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Light phase testing of social behaviors:  
not a problem

Mu Yang*, Michael D. Weber and Jacqueline N. Crawley

Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health,  
Bethesda, MD, USA

The rich repertoire of mouse social behaviors makes it possible to use mouse models to 
study neurodevelopmental disorders characterized by social deficits. The fact that mice 
are naturally nocturnal animals raises a critical question of whether behavioral experiments 
should be strictly conducted in the dark phase and whether light phase testing is a major 
methodologically mistake. Although mouse social tasks have been performed in both phases 
in different laboratories, there seems to be no general consensus on whether testing phase is 
a critical factor or not. A recent study from our group showed remarkably similar social scores 
obtained from inbred mice tested in the light and the dark phase, providing evidence that light 
phase testing could yield reliable results as robust as dark phase testing for the sociability 
test. Here we offer a comprehensive review on mouse social behaviors measured in light and 
dark phases and explain why it is reasonable to test laboratory mice in experimental social 
tasks in the light phase.

Keywords: circadian cycles, light phase testing, social behaviors, inbred mouse strains, nocturnal

Natural circadiaN variatioNs  
of mouse behaviors
Mice are naturally nocturnal animals (McLennan 
and Taylor-Jeffs, 2004; Refinetti, 2004) which 
tend to be active after dark and rest during the 
day (Arakawa et al., 2007; Laviola et al., 1994; 
Panksepp and Lahvis, 2007; Terranova et al., 
1998). The dark and light phases are sometimes 
referred to as “active phase” and “inactive phase”, 
respectively, reflecting the nocturnal nature of the 
mouse (Arakawa et al., 2007). Numerous studies 
have described circadian variations in physiolog-
ical processes (Arraj and Lemmer, 2006; Castillo 
et al., 2005; Kohsaka et al., 2007; Li et al., 2006; 
Refinetti, 2007), circulating hormones (Li et al., 
2006; Malisch et al., 2008), levels of gene expres-
sion (Kalamatianos et al., 2004; Nakamura et al., 
2008; Sheward et al., 2007; Yambe et al., 2002), 
wheel running activities (Kopp, 2001; Kriegsfeld 
et al., 2008; Meng et al., 2008; Valentinuzzi et al., 
2000), cognitive performances (Chaudhury and 

Colwell, 2002; Eckel-Mahan et al., 2008; Roedel 
et al., 2006; Valentinuzzi et al., 2004) and social 
behaviors (Arakawa et al., 2007; Van Loo et al., 
2004) in laboratory rats and mice.

spoNtaNeous social behaviors  
iN a home eNviroNmeNt:  
clear circadiaN variatioNs
In mice, active social behaviors mostly occur after 
dark. A recent study by Arakawa et al. (2007) pro-
vides a useful description of spontaneous social 
behaviors of inbred mice in a laboratory envi-
ronment across the circadian cycle. Groups of 3-4 
C57BL/6J (B6) mice were placed in a semi-natural 
living environment – a large apparatus built to 
resemble the burrow systems in which small 
rodent species dwell in the wild. Spontaneous 
social behaviors were recorded in both light and 
dark phases for 2 weeks and scored from the vide-
otapes afterwards. Time sampling results showed 
that mice exhibit more social approach towards 
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Table 1 | Commonly used social tests have been conducted in both circadian phases.

Social tests Light phase studies Dark phase studies

Juvenile social interaction test Yang et al. (2007a) Kurian et al. (2008), McFarlane et al. (2008), Panksepp and 

  Lahvis (2007), Panksepp et al. (2007), Yang et al. (2007a,b)

Adult social approach task Babovic et al. (2008), Drew et al. (2007), McFarlane et al. (2008), Yang et al. (2007a,b)

 Moy et al. (2007, 2008a,b), Nadler et al. (2004),

 Ryan et al. (2008), Yang et al. (2007a)

Social recognition and memory tests Bielsky et al. (2004, 2005), Dluzen and Bluthe et al. (1993), Choleris et al. (2003) 

 Kreutzberg (1993), Ferguson et al. (2001),  

 Scearce-Levie et al. (2008), Lee et al. (2008)

Social interaction Bolivar et al. (2007), Egashira et al. Cheh et al. (2006), D’Amato (1998), Daza-Losada et al.

 (2007), Long et al. (2004), Moretti et al. (2008), Gomez et al. (2008)

 (2005), O’Tuathaigh et al. (2008), 

 Scearce-Levie et al. (2008), Spencer et al. 

 (2008), Torres et al. (2005), Winslow and

 Camacho (1995)

Homecage activity, nesting Koh et al. (2008), Long et al. (2004), 

 Moretti et al. (2005)

Ultrasonic vocalizations Jamain et al. (2008), Long et al. (2004), Liu et al. (2006), Scattoni et al. (2008b)

 Scattoni et al. (2008a), 

 Scearce-Levie et al. (2008)

Social transmission of food Drew et al. (2007), Ryan et al. (2008), Clipperton et al. (2008), McFarlane et al. (2008) 

preference Wrenn et al. (2004)

Sexual behaviors Wersinger et al. (2008) Leypold et al. (2002)

Social behaviors in home Arakawa et al. (2007, 2008a,b), Lijam et al.  

environment (observed across (1997), Van Loo et al. (2004) 

the circadian cycle)

Inbred strains of laboratory mice
Mice generated by >20 generations of 
brother X sister matings. Individuals of 
an inbred strain are homozygous at 
>99% of genetic loci.

Mouse sociability
Expressing interests in approaching 
and/or interacting with an unfamiliar 
conspecific.

other animals in the dark phase and more hud-
dling during the light hours. This study confirmed 
that standard laboratory inbred mice, like wild-
dwelling mice, prefer to engage in social activities 
in the dark phase. Another important implica-
tion from this study is that sociability might be an 
enduring trait that manifests differently in oppo-
site phases. Active approach may be the major 
social behavior in the dark phase, while inactive 
huddling predominates as a reflection of sociabil-
ity in the light phase.

social behaviors measured  
iN a Novel eNviroNmeNt:  
Not stroNgly iNflueNced  
by circadiaN phase
Although most people are aware of the fact that 
mice are nocturnal, many researchers conduct 
behavioral tests in the light phase because of 
practical difficulties. As such, the current lit-
erature on mouse social behaviors consists of 
studies done in both phases. As shown in Table 1, 
while dark phase experiments continue to con-
tribute to our current knowledge of mouse social 
behaviors (Arakawa et al., 2008a,b; Bluthe et al., 

1993; Cheh et al., 2006; Clipperton et al., 2008; 
D’Amato, 1998; Daza-Losada et al., 2008; Gomez 
et al., 2008; Kurian et al., 2008; Leypold et al., 
2002; Liu et al., 2006; McFarlane et al., 2008; 
McNaughton et al., 2008; Panksepp and Lahvis, 
2007; Panksepp et al., 2007; Scattoni et al., 
2008b; Torres et al., 2005; Yang et al., 2007b), 
light phase experiments have also been pro-
ducing remarkable findings on genetic, neuro-
anatomical, and environmental factors that are 
important for mouse social behaviors (Babovic 
et al., 2008; Bielsky et al., 2004, 2005; Dluzen and 
Kreutzberg, 1993; Egashira et al., 2007; Ehninger 
et al., 2008; Fairless et al., 2008; Ferguson et al., 
2001; Jamain et al., 2008; Koh et al., 2008; Lee 
et al., 2008; Long et al., 2004; Moretti et al., 2005; 
Moy et al., 2007, 2008; O’Tuathaigh et al., 2008; 
Refinetti, 2004; Ryan et al., 2008; Scattoni et al., 
2008a; Scearce-Levie et al., 2008; Spencer et al., 
2008; Stack et al., 2008; Wersinger et al., 2008; 
Winslow and Camacho, 1995; Wrenn et al., 
2004).

A prevailing concern is that social scores 
obtained from experiments done in opposite 
phases may not be comparable. To address this 
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Light phase testing
Conducting behavioral experiment  
in during the daytime, under regular  
or dim room light.

Nocturnality
Resting in the daytime and being active 
at after dark, opposite to diurnality.

concern, we compared social scores reported in 
light and dark phase studies. In the social recog-
nition test, the subject is presented with a novel 
mouse for multiple short trials separated by  
20–30 min intervals. In a dark phase studies, 
the baseline sniff time was approximately 120 s 
in DBA/2 mice tested in a 4-min trial (Bluthe 
et al., 1993) and 150 s in wild type mice tested 
in a 5-min trial (Choleris et al., 2003). In light 
phase experiments, the baseline sniff time was 
approximately 90 s in CD-1 mice tested in a 
2-min trial (Dluzen and Kreutzberg, 1993) and 
60 s in 129X1/SvJ mice tested in a 90-s trial 
(Scearce-Levie et al., 2008). Significant reduc-
tions in sniff time towards the re-introduced 
stimulus mouse was found in mice tested in 
both phase (Bluthe et al., 1993; Choleris et al., 
2003; Dluzen and Kreutzberg, 1993; Scearce-
Levie et al., 2008). Moreover, in a study that 
directly compared the social recognition test 
done in opposite phases, phase effect was not 
significantly different between light and dark 
phases for the level of social sniffing, and simi-
lar strain differences were found in both phases 
(Hossain et al., 2004). Taken together, these 
findings supports the interpretation that mice 
tested in both circadian phases exhibit compa-
rable levels of active social investigation (i.e. 
social sniff) towards novel social stimuli, and 
that light phase testing can be used to evaluate 
social recognition/memory.

In our three-chambered social approach 
test (Chadman et al., 2008; Crawley et al., 2007; 
McFarlane et al., 2008; Moy et al., 2004, 2007, 
2008; Nadler et al., 2004; Ryan et al., 2008; Stack 
et al., 2008; Yang et al., 2007a,b), more time spent 
in the chamber containing a novel mouse than in 
the chamber containing a novel object indicates 
the presence of sociability (i.e. greater interest in 
interacting with a novel conspecific than with 
a novel inanimate object). Studies published 
since the invention of this task have consistently 
showed high sociability in B6 mice. Interestingly, 
both light phase studies (Moy et al., 2007, 2008; 
Nadler et al., 2004; Ryan et al., 2008) and dark 
phase experiments (McFarlane et al., 2008; Yang 
et al., 2007b) showed that B6 mice spend around 
300 s in the chamber containing the novel mouse 
and about 200 s in the chamber containing the 
novel objects in a 600-s test session, indicating 
that social approach scores are similar in animals 
tested in opposite phases, as described in more 
detail below.

Taken together, evidence summarized above 
indicates that the levels of social behaviors are 
actually quite similar between light and dark 
phase studies.

practical difficulties  
of dark phase testiNg
The standard daytime working hours of humans 
overlap with the “inactive” phase of mice. The 
large body of literature documenting murine 
nocturnality has led many investigators to 
believe that dark phase mouse behaviors are 
more  analogous to daytime human behaviors 
and that dark phase testing promises superior 
outcomes as compared to light phase testing 
(Hossain et al., 2004). While there is no doubt 
that dark phase testing is ethologically correct 
and theoretically ideal, this approach generates 
a number of practical difficulties. First, dark 
phase testing, which commonly requires revers-
ing or shifting the light/dark cycles (Blanchard 
et al., 2005; Yang et al., 2007a), can not be eas-
ily accommodated in many research facilities. 
Many researchers have to share animal housing 
rooms with several other investigators who may 
not want to reverse the LD cycle. Second, dark 
phase testing takes more space. For light phase 
experiments, subjects waiting to be tested can be 
held in communal acclimating room or even in 
the hallway outside the experimental room. Dark 
phase testing, which requires dedicated dark 
rooms for acclimating subjects and/or mice used 
as novel social stimuli, is simply not practical for 
researchers with tight experimental space (not an 
uncommon situation). Third, dark phase testing 
increases difficulties in conducting behavioral 
tests. Cages need to be covered with light-proof 
materials when transferring animals between 
rooms and whenever the door is opened. The red 
light generated from commonly used incandes-
cent red light bulbs is less than ideal for human 
visual perception (McLennan and Taylor-Jeffs, 
2004), making it difficult to perform tasks that 
require visual acuity, e.g. identifying animals (by 
tattoos or ear tags), live scoring behaviors, and 
taking notes. Also, catching escaped animals in 
a dark room can be quite difficult. In experi-
ments in which the some subjects are hyperactive 
or irritable, this problem could cause frequent 
interruptions to the experiment and unnecessary 
disruptions to the subjects.

similar levels of social approach 
scores iN iNbred mice tested  
iN light aNd dark phase
High sociability in B6 mice and low sociability 
in BTBR mice have been consistently reported 
in a number of recent studies (McFarlane et al., 
2008; Moy et al., 2007, 2008; Yang et al., 2007a,b), 
some of which were done in the light phase (Moy 
et al., 2007, 2008) and others in the dark phase 
(McFarlane et al., 2008; Yang et al., 2007b). Two 
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Non-photic factor
Factors other than lighting conditions 
that influence circadian rhythms  
in animals.

questions arise: (1) In the three-chambered social 
approach apparatus, would mice be more inter-
ested in interacting with the novel mouse in dark 
phase than in the light phase? (2) Would testing 
social approach behaviors in opposite circadian 
phases yield quantitatively different outcomes? We 
addressed these questions in the primary publica-
tion (Yang et al., 2007a). Social approach scores 
were compared between two cohorts of B6 and 
BTBR males, one cohort raised in a conventional 
12:12 light/dark cycle (lights on at 6:00 a.m.) 
and tested in the light phase, under fluorescent 
light, and the other cohort raised in the reversed 
12:12 light/dark cycles (lights on at 9:00 p.m.) and 
tested in the dark phase, under incandescent red 
light illumination. Data obtained from the two 
cohorts were strikingly similar. B6 tested in the 
light phase spent as much time in the chamber 
with the novel mouse as B6 tested in the dark 
phase, and displayed similar time spent sniff-
ing the novel mouse. Moreover, qualitatively 
and quantitatively similar strain differences in 
chamber time and sniff time were found in both 
phases, indicating that testing sociability in the 
light phase produced results highly comparable 
to dark phase experiments.

The second part of our study (Yang et al., 
2007a) described a series of five experiments to test 
whether circadian phase affect the expression of 
social behaviors in mice bearing mutations of the 
vasopressin receptor subtype 1b gene (Avpr1b). In 
addition, we assessed the extent to which results of 
the social approach task are replicable in our labo-
ratory. Two cohorts of Avpr1b mice were tested 
in the light phase and three cohorts in the dark 
phase. One light phase experiment reported geno-
type differences in chamber time but not in sniff 
time. The second light phase experiment and all 
three dark phase experiments found no genotype 
differences in either chamber time or sniff time. 
Thus, as in the B6 vs. BTBR experiments, similar 
levels of chamber time and sniff time were found 
in Avpr1b mice tested in the two circadian phases, 
as well as across cohorts. These highly consistent 
results from the Avpr1b experiments indicate that 
circadian phase is not likely to affect the outcome 
of a genetic study.

The last part of our study (Yang et al., 2007a) 
compared juvenile play behaviors of Apvr1b mice 
tested in the two circadian phases. To increase 
the motivation of social interaction, pups were 
taken from the home cage and isolated in clean 
cages for 1 h before the play test. Two non-sibling 
pups were then placed in a novel area (Noldus 
PhenoTyper Observer 3000 chamber, Noldus, 
Leesburg, Virginia) and allowed to interact freely 
for 30 min. Social behaviors were recorded and 

scored afterwards. Juvenile Avpr1b of all geno-
types tested in the two circadian phases exhibited 
similar levels of active social investigation and 
play soliciting behaviors, indicating that light 
phase testing is acceptable for studying juvenile 
social behaviors as well (Yang et al., 2007a).

Taken together, our findings demonstrate that 
mice can actively perform the social approach task 
in the light phase, and that results from light and 
dark phases are comparable.

iNterpretatioN of our fiNdiNgs  
with respect to the exitiNg literature
With a substantial body of literature clearly 
showing circadian variations in social behav-
iors in rodents, how does one explain the similar 
levels of sociability in mice tested in opposite 
phases, and the fact that many light phase stud-
ies have yielded meaningful results? Field stud-
ies have shown that many species of nocturnal 
rodents are able to adjust their activities accord-
ing to non-photic factors including predation 
and conspecific competition (Daily and Ehrlich, 
1996; Mistlberger and Skene, 2004; Mrosovsky, 
2003; Shkolnik, 1971). For laboratory mice, 
human activities in the vivarium and test facil-
ity may act analogously as circadian entrainers. 
In standard commercial and research facilities, 
routine cleaning, feeding, cage changing, and 
inspection of mice are conducted during the 
light phase. These animal husbandry require-
ments represent unavoidable disruptions to mice 
during their natural resting phase. It is prob-
able that animals that are better at adapting to 
such daily disruption have enjoyed reproductive 
success superior to those individuals who were 
unable to adapt well. Consequently, modern 
laboratory mouse colonies might largely consist 
of animals that have evolved to be able to adjust 
physiologically and behaviorally to the demands 
of the vivarium environment. Further, the etho-
logical importance of investigating a novel con-
specific may override the tendency of mice to 
sleep during the light phase. Thus, social interac-
tion assays may be among the least sensitive to 
circadian phase, at least for laboratory mice.
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