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GSK3β and Cdk5 are the two kinases in the center of research on Alzheimer’s disease (AD), 
involved in the pathological symptoms of AD, Aβ plaque formation, tau hyperphosphorylation 
and neurodegeneration. So far, both kinases have mostly been examined in isolation, leading 
to a schism of the research fi eld into defenders of the GSK3β-versus the Cdk5 hypotheses of 
AD. However, in this debate the fact that activities of GSK3β and Cdk5 can infl uence each other 
deserves more attention. Recent evidence from p25 transgenic mice suggests that there is a 
dynamic crosstalk: during aging or prolonged overactivation of Cdk5, GSK3β activity may alter 
in favor of AD pathogenesis. In this review we summarize the connections between GSK3β 
and Cdk5 and discuss implications for AD hypotheses.
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synaptic signalling, learning and memory (Angelo et al., 2006). 
Under physiological conditions, p25 occurs in only minor quanti-
ties. Formation of p25 may play a role in learning processes (Angelo 
et al., 2003; Fischer et al., 2005). It has been suggested that p25 levels 
and therefore Cdk5 activity are increased in AD brain (Patrick et al., 
1999), but studies by other groups did not confi rm this fi nding or 
even reported a down regulation of p25 in AD (Takashima et al., 
2001; Yoo and Lubec, 2001).

Like GSK3β, Cdk5 integrates various signalling pathways, 
induced by NMDA receptor activity, Rac and growth factors 
(Dhavan and Tsai, 2001; Nikolic, 2002). Several risk factors of 
AD such as infl ammation and oxidative stress have been shown 
to lead to increased Cdk5 activity (Muyllaert et al., 2008; Strocchi 
et al., 2003).

Both GSK3β and Cdk5 can regulate synaptic plasticity via regu-
lation of long-term potentiation (LTP), synaptic vesicle release 
and modifi cation of the NMDA Receptor (Angelo et al., 2006; 
Giese, 2009).

Besides sharing both up- and downstream pathways, Cdk5 and 
GSK3β are linked more directly in neurons. In this review we will 
summarize the mechanisms of crosstalk between GSK3β and Cdk5 
and discuss its implications for tau hyperphosphorylation, a main 
pathological feature of AD.

CO-LOCALIZATION AND MUTUAL REGULATION OF 
GSK3β AND Cdk5
The fi rst studies addressing crosstalk between Cdk5 and GSK3β were 
performed by Morfi ni et al. (2004) using cultured neurons: Their 
investigations to determine a regulatory pathway for kinesin-driven 
motility in axons revealed that Cdk5 is neccessary for kinesin-driven 
motility within the axon but cannot directly phosphorylate kinesin. 
Inhibition of Cdk5 by olomoucine enhanced phosphorylation of 

INTRODUCTION
Alzheimer’s disease (AD) is the most prevalent form of  dementia, 
currently affecting more than 24 million people worldwide (Ferri 
et al., 2005). The predominant symptoms include memory impair-
ments, later followed by a decline of intellectual skills and loss of 
control over body functions (Mayeux, 2003). Pathologically, AD 
is characterized by three hallmarks: (1) Neurofi brillary tangles 
(NFT), consisting of fi lamentous aggregates of hyperphosphor-
ylated tau (Lovestone and Reynolds, 1997). (2) Senile plaques, which 
are mostly derived from β-amyloid or “Aβ” (Selkoe, 1994); Aβ

1–42
 

is an aberrant cleavage product from amyloid precursor protein 
(APP) and can aggregate to complexes with toxic  properties (Hardy 
and Higgins, 1992). (3) Brain atrophy, which is caused by loss of 
both synapses and whole neurons (Gómez-Isla et al., 1997).

As putative mediators of these symptoms, two proline-directed 
serine/threonine kinases became the focus of molecular AD research: 
Glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 
(Cdk5), whose activities appear to be increased in the AD brain (Lee 
et al., 1999; Pei et al., 1997, 1998; Yamaguchi et al., 1996).

GSK3β is starring in a variety of physiological processes such as 
regulation of cellular morphology, neuronal outgrowth and motil-
ity and synaptic plasticity (Peineau et al., 2008). GSK3β integrates 
a variety of intracellular and extracellular pathways, including wnt 
signalling, the insulin pathway, G-protein coupled receptors and 
others – the effect is a change in GSK3β activity by phosphorylation, 
protein binding and/or cleavage (Jope and Johnson, 2004).

Cdk5 is named after its structural similarity to members of the 
serine/threonine cyclin-dependent kinase family. Cdk5 reaches a 
peak kinase activity in neurons due to restricted expression of its 
activators p35 and p39 (Hellmich et al., 1992). Cleavage of p35 
to p25 by calpain leads to overactivation of Cdk5 (Patrick et al., 
1999). Cdk5 is a main player in processes of neural development, 
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kinesin, suggesting that the effect was mediated by negative regula-
tion of other kinases. Therefore activities of the other kinases Erk, 
CK1 and GSK3β were tested after oloumucine treatment. Altered 
phosphorylation of CREB phosphopeptide, a substrate of GSK3β, 
suggested that GSK3β may be the mediator of Cdk5 activity in 
kinesin-mediated axonal transport.

Activity of GSK3β is regulated by phosphorylation; phospho-
rylation of Tyr216 can enhance enzyme activity, and conversely 
phosphorylation of Ser9 is inhibitory. Inhibition of Cdk5 resulted 
in dephosphorylation of the inhibitory Ser9 site on GSK3β and 
an increase of activating phosphorylation at Tyr216. Cdk5 does 
not phosphorylate GSK3β directly on these sites and Morfi ni et al. 
(2004) investigated whether the altered inhibitory phosphoryla-
tion at Ser9 may be mediated by a phosphatase. They found that 
GSK3β and phosphatase 1 (PP1) co-immunoprecipitate and that 
Cdk5 can indirectly inhibit GSK3β activity via inhibition of PP1 
(Figure 1). GSK3β is activated upon PP1-dependent dephosphor-
ylation and is therefore inhibited by Cdk5. In support of this idea, 
immunostaining revealed that Cdk5, PP1 and GSK3β co-localize at 
growth cones. Additionally, incubation of cortical neurons with the 
non-specifi c phosphatase inhibitor okadaic acid increased phos-
phorylation of GSK3β-Ser9. Later evidence indicated that PP1 is 
a substrate of Cdk5 (Li et al., 2007). Additionally, regulation of 
PP1 by Cdk5 may occur via phosphorylation of PP1 inhibitor 1 
(Nguyen et al., 2007). Furthermore, Morfi ni et al. (2004) showed 
for the fi rst time that Cdk5 can infl uence tau phosphorylation 

indirectly via regulation of GSK3β. However, these studies were 
performed on cell culture and the results had to be confi rmed by 
in vivo experiments.

TAU HYPERPHOSPHORYLATION
Tau is a microtubule binding protein, which occurs in the healthy 
brain and functions in axonal transport, assembly and stabilization 
of microtubules (Buée et al., 2000). Compared to healthy controls, 
the AD brain contains four to eight times more tau, which is hyper-
phosphorylated (Khatoon et al., 1994). More than 40 phosphor-
ylation sites have been detected on tau (Hanger et al., 1998) and 
several kinases and phosphatases have been suggested as deregu-
lators of tau in AD (Buée et al., 2000; Iqbal and Grundke-Iqbal, 
2008) – amongst these, Cdk5 and GSK3β are thought to be the 
major tau kinases in vivo (Flaherty et al., 2000). The fact that the 
number of NFTs, but not senile plaques correlates highly with the 
severity of dementia in AD (Dickson et al., 1988) has stimulated 
a great amount of research into the misregulation of tau. GSK3β 
and Cdk5 were proposed as tau kinases after isolating them in a 
complex with neurofi brillary tangles from AD brain (Yamaguchi 
et al., 1996). This association between GSK3β, Cdk5 and tau has 
been confi rmed in post-mortem tissue (Pei et al., 1998, 1999), as 
well as in cell and mouse models (Flaherty et al., 2000; Li et al., 2006; 
Noble et al., 2003; Pei et al., 1997; Yamaguchi et al., 1996). However, 
it is currently debated which kinase is most strongly associated 
with tangle formation.

 ErbB receptor 
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PI3K

Aktphosphatases

FIGURE 1 | In young mutant mice with low p25 expression, GSK3β is inhibited by phosphorylation at Ser 9. Cdk5-p25 may infl uence the balance between 
p-GSK3 and an activatory dephosphorylation via regulation of phosphatases and the PI3K/Akt pathway.
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may refl ect the scenario of young p25 mutants, in which Cdk5 
activity and GSK3β activity correlate inversely. At the same time 
this study shows that Cdk5 activity is not a prerequisite for tau 
hyperphosphorylation.

Cdk5 and GSK3β may be linked by more intricate pathways: It 
has been shown that phosphorylation of Ser9 after Cdk5 activa-
tion can be mediated by ErbB and PI3K/Akt pathway (Wen et al., 
2008): Cdk5 can phosphorylate T871 on ErbB2 and S1120 on Erb3 
(Li et al., 2003) and Erb phosphorylation and GSK3 phosphoryla-
tion correlate in p25 transgenic mice (Figure 1).

The activity of GSK3β was found up-regulated in AD brain 
(Giese, 2009), while the role of Cdk5 regulators in AD brain is 
still controversial. Further studies with post-mortem tissue may 
elucidate the inverse relationship between the two kinases during 
disease progression.

CONCLUSIONS
Recent evidences have shown that the activities of Cdk5 and 
GSK3β are linked and the crosstalk depends on ageing. The pro-
posed mechanisms for inhibition of GSK-3β by Cdk5 include 
phosphatases and ErbB signaling. However, it is unclear why the 
impact from Cdk5 on GSK3β activity renders from an inhibi-
tory into an activatory state in ageing p25 transgenic mice. One 
possibility is that ageing neurons may become more sensitive to 
p25 exposure, in which case research on mouse models of p25 
expression should put more emphasis on studying aged mice. 
On the other hand it is conceivable that GSK3β activity changes 
during steady exposure to p25, be it short periods of high lev-
els of p25 or prolonged exposure to low p25 levels. As Plattner 
et al. (2006) have demonstrated, Cdk5 may exert its effects on tau 
phosphorylation mostly via GSK3β since inhibition of GSK3β by 
lithium reversed this effect. Therefore, tau hyperphosphoryla-
tion in other p25 models may also result from changes in GSK3β 
activity (Figure 2).

Young female mice with constant expression of low p25 or 
inducible mice with short exposure to high p25 levels (Fischer 
et al., 2005; Ris et al., 2005) exhibit improved learning and mem-
ory (L&M). This observation has led to the hypothesis that p25 
expression is not a cause of AD but a reaction to stimuli that 
impair L&M, ultimately turning from benefi cial to detrimental 
as p25 exposure continues (Angelo et al., 2006). The learning 
ability during p25 expression in mice from early improvements 
toward neurodegeneration may be mediated by changing GSK3β 
activity. Therefore, studies of these mice at various time points 
should not only include substrates of Cdk5 but also focus on 
GSK3β pathways.

P25 has a half life of less than 30 min in cultured neurons 
(Patrick et al., 1999). If lifelong exposure to p25 insults leads to 
changes in GSK3β activity, information about Cdk5 activity may 
be stored within the cell, for instance in phosphorylation of sub-
strates with low turnover rate such as tau or within the genome. 
Identifying how this information is stored and resetting it in age-
ing p25 mutants may be useful to reverse insults that have already 
occurred during a life time.

Mutant mice with low p25 expression model ageing effects as 
the most important risk factors of AD. Understanding why GSK3β 

Conditional GSK3β transgenic mice demonstrate tau hyper-
phosphorylation and neurodegeneration (Lucas et al., 2001), indi-
cating that GSK3β activity is suffi cient to hyperphosphorylate tau. 
Despite the accumulating evidence for GSK3β as major tau kinase, 
Cdk5 overactivation may also play a role in tau phosphorylation. 
Tau is a substrate of Cdk5 and is regulated by phosphorylation 
under physiological conditions, e.g. during G-protein mediated 
growth cone collapse (Nakayama et al., 1999). Furthermore, 
numerous studies have shown that Cdk5 can phosphorylate 
tau at sites which are hyperphosphorylated in AD (Imahori and 
Uchida, 1997; Lew and Wang, 1995; Sengupta et al., 1997; Tang 
and Wang, 1996).

A negative correlation between activities of the tau kinases 
Cdk5 and GSK3β, as observed by Morfi ni et al. (2004), may 
provide a new perspective on the interplay between tau and its 
kinases. Studies with p25 transgenic mice, expressing low levels 
of p25 predominantly in the hippocampus (Angelo et al., 2003) 
that is affected in the early stages of AD (Braak and Braak, 1991), 
showed that there is crosstalk between Cdk5 and GSK-3β in vivo 
(Plattner et al., 2006). This was confi rmed with another p25 mouse 
line (Wen et al., 2008). In young age the p25-induced increase in 
Cdk5 activity inhibits GSK-3β activity by enhancing the inhibitory 
phosphorylation at Ser-9 of GSK-3β (Plattner et al., 2006; Wen 
et al., 2008). Importantly, at this age the increased Cdk5 activity 
does not cause tau hyperphosphorylation. However, in old age 
tau becomes hyperphosphorylated in these p25 mutants (Plattner 
et al., 2006; Wen et al., 2008). This tau hyperphorylation is a result 
of an age-dependent loss of the Cdk5 inhibition of GSK-3β. In fact 
in the older age GSK-3β activity is enhanced in the p25 mutants. 
Thus, increased GSK-3β activity, and not Cdk5 activity, leads to 
tau hyperphosphorylation.

Plattner et al. (2006) inspected whether in young age Cdk5 
and GSK3β interact with other signalling molecules in vivo. They 
found that GSK3β and Cdk5 aggregate in a complex with protein 
phosphatase 2A (PP2A), but not with PP1 as found by Morfi ni et al. 
(2004) in vitro. Furthermore, blocking phosphatases with okadaic 
acid resulted in less GSK3β activity in young p25 mice, which 
supports the evidence that the inhibitory Ser9 site is regulated by 
phosphatise activity. Thus, the inhibitory crosstalk on GSK-3β 
activity in young age is linked to altered balance in phosphatase 
activity. However, it is unclear why the inhibitory crosstalk gets 
lost with age and why in older age GSK-3β activity is increased 
in the p25 mutants.

The correlation between the time courses of increasing GSK3β 
activity and tau hyperphosphorylation suggests that GSK3β is 
the major tau kinase in these p25 transgenic mice. This idea was 
confi rmed by treatment with lithium, an inhibitor of GSK3β. 
Mutant mice treated with lithium do not exhibit hyperphospho-
rylation of tau epitopes. In fact, other mouse models with high 
p25 expression with tau hyperphosphorylation and tangle forma-
tion possessed elevated GSK3β activity too (Noble et al., 2003) 
but for other reasons as the activating Tyr-216 phosphorylation 
is increased in comparison to a control group, which was not 
found by Plattner et al. (2006) Moreover, in p35 knockout mice 
tau is hyperphosphorylated and GSK3β activity increased while 
activity of Cdk5 is decreased (Hallows et al., 2003). These mice 
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turns from an inhibited into a hyperactive state during ageing of 
these mice and testing the mutants with drugs that can revert this 
process seems a promising approach to prevent or treat tau hyper-
phosphorylation in AD.
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FIGURE 2 | Continued exposure to low p25 levels changes activity of GSK3β. 

(A,B) Time axes of p25 expression (blue). Two mechanisms for changing effects of 
Cdk5-p25 on GSK3β are conceivable: (A) Molecular changes accumulate as 
consequence of continuous exposure to overactive Cdk5. (B) Ageing effects (red) 

make neurons more vulnerable to effects of Cdk5-p25, resulting in overactive 
GSK3β. (C) Changes of GSK3β activity from inhibited into an overactive state in 
p25 mutants may mediate improved L&M and synaptic plasticity in young adult 
mice while leading to tau hyperphosphorylation and tangle formation in old mice.
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