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Kv4 channels underlie the subthreshold-operating A-type 
K+-current in nociceptive dorsal root ganglion neurons
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The dorsal root ganglion (DRG) contains heterogeneous populations of sensory neurons including 
primary nociceptive neurons and C-fi bers implicated in pain signaling. Recent studies have 
demonstrated DRG hyperexcitability associated with downregulation of A-type K+ channels; 
however, the molecular correlate of the corresponding A-type K+ current (IA) has remained 
hypothetical. Kv4 channels may underlie the IA in DRG neurons. We combined electrophysiology, 
molecular biology (Whole-Tissue and Single-Cell RT-PCR) and immunohistochemistry to 
investigate the molecular basis of the IA in acutely dissociated DRG neurons from 7- to 8-day-
old rats. Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM) 
and 4-aminopyridine-sensitive (5 mM) IA. Matching Kv4 channel properties, activation and 
inactivation of this IA occur in the subthreshold range of membrane potentials and the rate of 
recovery from inactivation is rapid and voltage-dependent. Among Kv4 transcripts, the DRG 
expresses signifi cant levels of Kv4.1 and Kv4.3 mRNAs. Also, single small-medium diameter 
DRG neurons (∼30 µm) exhibit correlated frequent expression of mRNAs encoding Kv4.1 and 
Nav1.8, a known nociceptor marker. In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at 
the whole-tissue and single-cell levels are relatively low and infrequent. Kv4 protein expression 
in nociceptive DRG neurons was confi rmed by immunohistochemistry, which demonstrates 
colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2. Furthermore, specifi c 
dominant-negative suppression and overexpression strategies confi rmed the contribution of 
Kv4 channels to IA in DRG neurons. Contrasting the expression patterns of Kv4 channels in the 
central and peripheral nervous systems, we discuss possible functional roles of these channels 
in primary sensory neurons.
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 sympathetic ganglion (SCG), where Kv4 subunits are the primary 
molecular correlate of the I

A
 (Malin and Nerbonne, 2000, 2001). 

Multiple studies have characterized voltage-dependent K+ currents 
of dorsal root ganglion (DRG) neurons (Everill et al., 1998; Gold 
et al., 1996; Kostyuk et al., 1981; Safronov et al., 1996; Winkelman 
et al., 2005); and different groups have separately examined the rela-
tionship between nerve injury and I

A
 magnitude or the expression 

of Kv4 channels (Abdulla and Smith, 2001; Chien et al., 2007; Kim 
et al., 2002; Rasband et al., 2001; Tan et al., 2006). Kim et al. (2002) 
fi rst showed that the lumbar DRG from adult rats expresses Kv4.1, 
Kv4.2 and Kv4.3 mRNAs, and that nerve injury selectively downreg-
ulates Kv4.2 and Kv4.3. More recently, Chien et al. (2007) employed 
quantitative immunohistochemistry in a neuropathic pain model 
to show an inverse link between mechanical hypersensitivity and 
the expressions of Kv3.4 and Kv4.3 in lumbar nociceptive DRG 
neurons from adult rats. In light of this evidence, it is reasonable 
to assume that Kv4 channels may underlie I

A
 in nociceptive DRG 

neurons. Testing this hypothesis more directly and systematically 
is a prerequisite toward understanding the mechanisms underlying 
nociception and pain plasticity.

The DRG contains a heterogeneous population of primary sen-
sory neurons that are responsible for relaying peripheral sensory 
information to the CNS (Scott, 1992). Among various sensory 

INTRODUCTION
Voltage-gated potassium (Kv) channels are quintessential  regulators 
of electrical excitability in the nervous system. Within the super-
family of Shaker-related Kv channels, four sub-families (Kv1, Kv2, 
Kv3, and Kv4) are present in the nervous system of diverse organ-
isms in the animal kingdom (Gutman et al., 2003; Salkoff et al., 
1992). Although these Kv channels can produce delayed-rectifi er 
and transient “A-type” currents (I

DR
 and I

A
, respectively), all mem-

bers of the Kv4 subfamily (Kv4.1, Kv4.2, and Kv4.3) mediate I
A
 

(Birnbaum et al., 2004; Jerng et al., 2004). Kv4 channels in the cen-
tral nervous system (CNS) localize to the soma and dendrites and, 
therefore, are responsible for the somatodendritic A-type K+ current 
(I

SA
) (Hoffman et al., 1997; Sheng et al., 1992). In hippocampal 

CA1 neurons, for instance, Kv4 channels are primarily expressed 
in distal dendrites where they dampen back-propagating action 
potentials and plateau potentials (Cai et al., 2004; Johnston et al., 
2003). Depending on the frequency of repetitive spike fi ring Kv4 
channels can also regulate the interspike interval (slow repetitive 
fi ring) and the duration of the action potential (fast repetitive fi r-
ing) in CNS neurons (Khaliq and Bean, 2008; Kim et al., 2005; 
Song et al., 1998). In contrast, the functions and molecular cor-
relates of I

A
 in the peripheral nervous system (PNS) are, in general, 

poorly understood. An important exception is the superior cervical 
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 functions, the C- and Aδ-fi bers associated with small-medium 
diameter sensory neurons serve nociceptive function and play an 
important role in infl ammatory and neuropathic pain signaling 
(Scott, 1992). To probe the putative contribution of Kv4 channels 
to the I

A
 in these nociceptive DRG neurons (∼30 µm) from newborn 

rats (7- to 8-day post-partum), we implemented a multipronged 
approach based on electrophysiological, molecular, and immuno-
histochemical techniques. At the mRNA and protein levels, the 
results demonstrate a prominent expression of Kv4.1 and Kv4.3 
isoforms, which most likely underlie the subthreshold-operat-
ing I

A
 in DRG neurons from neonate rats. Accordingly, a specifi c 

dominant-negative strategy confi rmed that Kv4 proteins are the 
molecular correlates of the DRG I

A
. The primary expression of 

Kv4.1 and Kv4.3 channels in this system is signifi cant because it 
differs sharply from the dominant and widespread expression of 
Kv4.2 and Kv4.3 channels in the CNS.

MATERIALS AND METHODS
ISOLATION OF DRG NEURONS
Sprague-Dawley rats (Taconic, Germantown, NY, USA) were treated 
according to the IACUC guidelines of Thomas Jefferson University. 
Time-pregnant female rats were delivered and maintained at the 
Thomas Jefferson University Animal Facility 1 week prior to birth of 
pups. For all experimental procedures reported here, we used 7- to 
8-day-old pups. Before dissection, the pups were anesthetized using 
isofl urane and sacrifi ced by decapitation. The DRG tissue was dis-
sected out from all accessible levels, trimmed of its peripheral nerve, 
and placed into Hank’s Buffered Saline Solution (HBSS) containing 
10 mM HEPES. Whole-tissue samples used for immunofl uorescence 
were collected and preserved in Tissue-Tek OCT media (Electron 
Microscopy Science, Hatfi eld, PA, USA). Dissociation of individual 
DRG neurons was accomplished by two separate 30-min rounds of 
enzymatic treatment at 37°C. Following two washes with HBSS con-
taining 10 mM HEPES, the fi rst and second rounds involved incuba-
tions with 1.5 mg/mL of collagenase (Sigma, St. Louis, MO, USA) 
and 1 mg/mL trypsin (Sigma, St. Louis, MO, USA), respectively. The 
DRG neurons were placed into Neuronal Growth Media (NGM; see 
below) and dissociated by carefully triturating with a fi re polished 
Pasteur pipette for approximately 15 times. Individual DRG neu-
rons were then allowed to settle onto lysine (Sigma, St. Louis, MO, 
USA) coated cover slips for approximately 1 h prior to whole-cell 
recording. Electrophysiological recordings were performed within 
72 h after harvesting.

ANTIBODIES
The monoclonal mouse anti-Kv4.2 and Kv4.3 antibodies (stocks at 
1 mg/mL; 1:100 dilutions) were obtained from the UC Davis/NINDS/
NIMH NeuroMab Facility (supported by NIH grant U24NS050606 
and maintained by the Department of Pharmacology, School of 
Medicine, University of California, Davis, CA, USA). Several recent 
studies have characterized these antibodies (Burkhalter et al., 2006; 
Chien et al., 2007; Huang et al., 2005, 2006). The polyclonal rabbit 
anti-Nav1.8 antibody (Sigma, St. Louis, MO, USA) targeting the 
C-terminus of the channel was used as a nociceptive neuron marker 
(1:100 dilutions, as indicated by the manufacturer). Secondary anti-
bodies (1:400 dilution) used for immunofl uorescence were don-
key anti-rabbit Alexa Fluor 488-conjugated and goat-anti-mouse 

Alexa Fluor 546-conjugated (Invitrogen, Carlsbad, CA, USA) or 
goat anti-rabbit Cy2-conjugated (Jackson ImmunoResearch Labs, 
Inc., West Grove, PA, USA). Nonspecifi c binding of secondary 
antibodies was tested by processing the samples in the absence of 
primary antibodies. Under these conditions, these assays revealed 
no immunofl uorescence (data not shown).

IMMUNOHISTOCHEMISTRY
Ten micrometer fresh frozen tissue sections were prepared on a 
Shandon Cryotome (Thermo Scientifi c Inc., Waltham, MA, USA) 
and directly mounted onto glass slides. DRG tissue sections were 
fi xed in 4% paraformaldehyde and blocked in Phosphate Buffered 
Solution (PBS) containing 0.1% Triton X-100 and 10% of appropri-
ate serum (goat or donkey). Doubling the concentration of deter-
gent resulted in similar staining patterns (data not shown). Primary 
antibodies were diluted (1:100) in blocking solution and incubated 
overnight. Secondary antibodies were diluted (1:400) in blocking 
solution and incubated for 1 h. Nuclear DNA was stained by either 
treating tissue sections with TO-PRO-3 (Invitrogen, Carlsbad, CA, 
USA) for 1 h and mounting slides in ProLong Gold Antifade rea-
gent (Invitrogen, Carlsbad, CA, USA) or directly mounting slides 
in ProLong Gold Antifade reagent containing DAPI (Invitrogen, 
Carlsbad, CA, USA). Images were captured using a scanning confocal 
microscope (Zeiss LSM 510 META-UV) at Kimmel Cancer Center 
Bioimaging Facility (Thomas Jefferson University, Philadelphia, PA, 
USA) and images were acquired using the AxioVision v4.6 software 
(Carl Zeiss, Inc, Thornwood, NY, USA). The co-localization of Kv4.3 
in nociceptive neurons (Nav1.8-positive) was examined in double 
labeling experiments (Figure 5).

WHOLE-TISSUE AND SINGLE-CELL RT-PCR
Whole-tissue DRG tissue (two to three ganglia of various spinal 
levels) was used to purify total RNA by the RNAqueos-4PCR Kit 
(Ambion, Inc., Austin, TX, USA). Genomic DNA contamination 
was eliminated by a 30-min DNase treatment. Extracted RNA was 
used to generate cDNA and subsequently for conventional RT-PCR 
and qRT-PCR. cDNA was synthesized from 300 ng of purifi ed total 
RNA, 160 ng random primers, 10 ng oligo(dT)

12–18
, 0.5 mM dNTPs, 

10 mM DTT, 2 U RNase inhibitor, and 400 U Superscript II reverse 
transcriptase (Invitrogen, Carlsbad, CA, USA). Synthesis was per-
formed by incubating at 25°C for 10 min, 42°C for 50 min, and 
70°C for 15 min. Reactions were run in the presence and absence of 
reverse transcriptase (negative control). Conventional PCR was used 
to validate PCR primers and screen transcript expression of various 
genes. PCR reactions (20 µL) were performed using 1 µL of cDNA 
product, 0.5 mM gene specifi c primers (Table 1 in Supplementary 
Material), and HotStarTaq Plus Master Mix (Qiagen Inc., Valencia, 
CA, USA). Hot start reactions were initiated by a 5-min incubation at 
95°C and amplifi cations were performed utilizing 35 cycles of 94°C 
for 30 s, 50°C for 30 s, and 72°C for 1 min. Transcript expression was 
detected using 5 µl of PCR product on a 2% agarose gel.

To determine the relative quantities of specifi c mRNAs by 
qRT-PCR, we used the Mx2005P QPCR System (Stratagene, La 
Jolla, CA, USA). A typical reaction consisted of diluted cDNA 
(1:5), 150 nM primers, and Brilliant II QPCR Master Mix. For 
 calibration,  measurements were performed in 96-well plates with 
serial dilutions (10–106 copies) of known templates (gel extracted 
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PCR products of known concentrations determined spectrophoto-
metrically at 260 nm). All measurements were done in duplicates 
or triplicates, and sample variability was reduced by normalization 
using ROX as the internal standard. C

T
 values obtained from the 

amplifi cation curves were then plotted against copy number in a 
semi-log format. The best-fi t linear regression yielded the effi ciency 
of the reaction (slope = −3.3 to −3.5) and the correlation coeffi cient 
(r2 = 0.91–1). A slope = −3.31 represents a perfectly effi cient reac-
tion (Wong and Medrano, 2005). cDNA samples (1:5 dilutions) 
were ran together with serial dilutions to interpolate quantity of 
transcripts. All experimental sample curves were within range of 
serial dilutions. Negative controls (no RT and no template) were 
also sampled to rule out false positives. Results were normalized 
relative to β-actin expression. Measurements were performed on 
cDNA samples from a total of fi ve different rat pups.

Single-cell RT-PCR was conducted as reported previously 
(Eberwine, 2001; Liss et al., 2001; Song et al., 1998). The patch-
clamp recording pipette was used to harvest single neurons after 
whole-cell patch clamping. Negative pressure was applied to recover 
cellular contents and lift neurons (diameter ≈ 30 µm) off the cover 
slip. The pipette tip was crashed into a 0.2-mL PCR tube with 10 µL 
of RNase Inhibitor (Roche Applied Science, Indianapolis, IN, USA) 
containing H

2
O and ∼2 µL of contents were expelled by positive 

pressure. Samples were then frozen in methanol containing dry ice 
prior to cDNA synthesis. Single-stranded cDNA was synthesized 
using random primers (Invitrogen, Calsbad, CA, USA) and M-MLV 
RT (Fisher Scientifi c, Pittsburgh, PA, USA); and incubating at 42°C 
for 60 min. To verify the absence of contaminating mRNA, samples 
of bath solution were also reverse transcribed; and negative controls 
excluding RT were included. The reaction was terminated by heat-
ing the mixture to 92°C for 10 min. The single-cell cDNA synthe-
sized from the reverse transcription step was subjected to nested 
PCR using a programmable thermal cycler (Applied Biosystems, 
Foster City, CA, USA), gene specifi c primers designed to be intron-
fl anking (0.5 µM, Table 1 in Supplementary Material), and 6.25 U 
Taq Polymerase (Roche Applied Science, Indianapolis, IN, USA). 
The fi rst round of nested PCR contained 1 µL of the single-cell 
cDNA reaction (25 µL reaction); and the second round used 1 µL 
of the products from the fi rst round and nested primers.

CONSTRUCTION AND EXPRESSION OF pEGFP-Kv4.2
The rat Kv4.2 sequence was PCR amplifi ed from cDNA (pRC-
CMV; gift from M. Sheng, Massachusetts Institute of Technology, 
Cambridge, MA, USA) using sense and anti-sense primers con-
taining the Nhe I and Age I restriction sites, respectively (Table 1 
in Supplementary Material). PCR products were gel purifi ed 
(Qiagen, Valencia, CA, USA) and digested with Nhe I and Age I 
simultaneously. Digested PCR products were ligated into pEGFP-
N1 digested with Nhe I and Age I (BD Biosciences Clontech, San 
Jose, CA, USA) plasmid that was treated with shrimp phosphatase 
(Roche Applied Science, Indianapolis, IN, USA) and gel extracted. 
To create a dominant-negative subunit, the W342F mutation was 
introduced into pEGFP-Kv4.2 using a site-directed mutagenesis 
strategy (QuickChange; Stratagene, La Jolla, CA, USA). All con-
structs were confi rmed by automated sequencing at the Nucleic 
Acid Facility of the Kimmel Cancer Center (Thomas Jefferson 
University, Philadelphia, PA, USA).

The transfection of tsA-201 cells (gift from R. Horn, Thomas 
Jefferson University, Philadelphia, PA, USA) was accomplished using 
FuGENE 6 reagent (Roche Applied Science, Indianapolis, IN, USA) 
as recommended by the manufacturer. Cells were recorded 1–2 days 
post-transfection and under epi-fl uorescence microscopy to confi rm 
protein expression. Recording solutions used are indicated below.

NUCLEOFECTION OF DISSOCIATED DRG NEURONS
Acutely dissociated DRG neurons were transfected using the 
Amaxa Nucleofector II System (Amaxa Biosystems, Inc., Cologne, 
Germany). Either program G-013 or O-003 along with 3 µg of 
pEGFP-N1 (BD Biosciences Clontech, San Jose, CA, USA) or 
pEGFP-Kv4.2 and the Rat Neuron Nucleofector Kit were used to 
nucleofect approximately 2 × 106 cells. Immediately after pulsing, 
neurons were allowed to recover by adding DMEM media lacking 
Ca2+ or Mg2+ and incubated for 10 min at 37°C. Cells were then 
plated onto dishes containing lysine treated cover slips and NGM. 
Two-thirds of the media was replenished after ∼4 h to remove dead/
dying cells and any possible apoptotic factors. NGM media was 
supplemented with fresh NGF (100 ng/mL).

WHOLE-CELL ELECTROPHYSIOLOGY
Electrophysiological recordings from small-medium diameter DRG 
neurons (25–32 µm, 16–86 pF) were obtained in the whole-cell 
confi guration of the patch-clamp method (Hamill et al., 1981) at 
room temperature (23.6 ± 0.4°C). Sylgard-coated (Dow Corning, 
Midland, MI, USA) patch electrodes were pulled with a PIP5 micro-
pipette puller (HEKA, Southboro, MA, USA). All recordings were 
performed using thick-walled patch glass (Sutter Instruments Co., 
Novato, CA, USA), and were fashioned to have a tip resistance of 
∼1–3 MΩ. Signals were amplifi ed by an Axopatch 200B amplifi er 
(Axon Instruments Inc., Burlington, CA, USA), fi ltered at 2 kHz, 
digitized at 10 kHz, and stored in a computer using pClamp soft-
ware v8.x (Axon Instruments Inc., Burlington, CA, USA). Data were 
analyzed from recordings with series resistance of less than 5 MΩ 
and with 75–95% compensation to minimize offsets due to large 
voltage-clamp errors. Liquid junction potentials were calculated 
and corrected off-line.

RECORDING SOLUTIONS AND MEDIA
Prior to use, all solutions and media were fi ltered with a 0.2 µm 
fi lter. NGM: Leibovitz L-15 Media, 10% fetal bovine serum, 2 mM 
L-glutamine, 24 mM NaHCO

3
, 38 mM glucose, 2%  penicillin-

 streptomycin, 50 ng/mL nerve growth factor (NGF) (Sigma, 
St. Louis, MO, USA). To record neuronal K+ currents under  voltage-
clamp conditions, bath solution contained (in mM): 110 choline, 
5 KCl, 1 MgCl

2
, 2 CaCl

2
, 10 HEPES, 20 tetraethylammonium (TEA), 

pH 7.4 with choline base. TEA was added to the bath solution to 
remove TEA-sensitive K+ currents. When adding 5 mM 4-aminopy-
ridine (4-AP) to the bath solution, the concentration of choline 
was decreased to 105 mM. The patch pipette solution contained (in 
mM): 120 KCl, 2.5 MgCl

2
, 1 EGTA, 10 HEPES, 2 MgATP, 0.3 LiGTP, 

pH 7.3 with NaOH. To record from mammalian tsA-201 cells, 
the bath solution contained (in mM): 150 NaCl, 2 KCl, 1 MgCl

2
, 

1.5 CaCl
2
, 10 HEPES, pH 7.4 with NaOH; and the following pipette 

solution: 120 KF, 2 MgCl
2
, 1 CaCl

2
, 11 EGTA, 10 HEPES, pH 7.2 

with KOH. All chemicals were acquired from Invitrogen (Carlsbad, 
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CA, USA), Fisher Scientifi c (Pittsburgh, PA, USA) or Sigma Aldrich 
(St Louis, MO, USA).

DATA ACQUISITION AND ANALYSIS
A computer interfaced to a 16-bit A/D converter (Digidata 1320A 
using Clampex 8.x; Axon Instruments, Foster City, CA, USA) 
controlled the voltage-clamp protocols and data acquisition. Data 
analysis was conducted in Clampfi t 9.x (Axon Instruments) and 
SigmaPlot 9.x (SPSS Inc.). The peak chord conductance (G

p
) was 

calculated as follows:

G
p
 = I

p
/(V

c
 – V

r
)

I
p
 is the peak outward current, V

c
 is command voltage and V

r
 is 

the estimated reversal potential (−80 mV); and the resulting G
p
–V 

relations were described assuming a fourth-order Boltzmann 
function:

G
p
(V) = G

pmax 
[1/(1 + exp((V

a
 − V

c
)/k))]4

G
pmax

 is the maximal peak conductance, k is the slope factor, and V
a
 

is the activation mid-point voltage of a single subunit. The displayed 
G

p
–V relations are normalized to the estimated G

pmax
 (G

p
/G

pmax
). 

The mid-point voltages of the G
p
–V relations (V

1/2
) were calculated 

from the following equation:

V
1/2

 = [V
a
 + (k × 1.665)]

Steady-state inactivation curves were described assuming a 
fi rst-order Boltzmann function; and the kinetics of macroscopic 
inactivation was described assuming the sum of two exponential 
terms plus a constant (Jerng and Covarrubias, 1997). All results 
throughout the manuscript were expressed as mean ± S.E.M. The 
one-way ANOVA test was applied to evaluate differences between 
data samples (Origin 7.5, OriginLab, Northhampton, MA, USA); 
and the Tukey multiple comparison test to evaluate multiple sam-
ples. The χ2 test of independence (predicted frequencies > 5), the 
Fisher’s exact test (predicted frequencies < 5)1, and linkage analy-
sis (Mendel 8.0)2 were applied to test for correlations (Figure 6; 
Table 2, respectively).

RESULTS
ISOLATION AND CHARACTERIZATION OF A SUBTHRESHOLD-OPERATING 
A-TYPE K+ CURRENT IN DRG NEURONS
We conducted whole-cell patch-clamp measurements to ask 
whether the electrophysiological properties of the I

A
 in small-

medium diameter nociceptive DRG neurons (∼30 µm, ∼45 pF) are 
consistent with the expression of Kv4 channels. These channels are 
characteristically resistant to TEA (Amarillo et al., 2008; Birnbaum 
et al., 2004; Jerng and Covarrubias, 1997, 2004; Pak et al., 1991). 
Therefore, external TEA (20 mM) was present at all times to elimi-
nate TEA-sensitive Kv channels (see Materials and Methods). In 
addition, by exploiting the distinct voltage dependence of inac-
tivation of Kv4 channels, we employed voltage-clamp protocols 
to isolate the I

A
 (Figure 1). To measure the total K+ current (I

K
), 

neurons were held at −65 mV, and a 1-s conditioning pulse to 
−100 mV was delivered prior to 500-ms step  depolarizations that 

typically activate Kv channels. The conditioning pulse permits 
∼90% recovery of the total I

A
 that inactivated at −65 mV. Then, the 

I
A
 was isolated from I

K
 by a depolarizing 1-s conditioning prepulse 

to −30 mV. This depolarization is suffi cient to inactivate the I
A
 

and, therefore, the remaining outward current evoked by subse-
quent step depolarizations is mostly comprised of a TEA-resistant 
delayed rectifying current (I

DR
). I

A
 was fi nally revealed from the 

off-line subtraction of I
DR

 from I
K
 (Figure 1). About two-thirds the 

recorded neurons (30/46) exhibited a relatively fast I
A
 component 

that inactivates ≥80% in 500 ms and accounts for 87 ± 1% of the 
total peak I

K
 (range = 75–100%). After subtraction, the resulting 

currents of the remaining neurons displayed mostly slow-inacti-
vating I

DR
 and small non-inactivating I

DR
 (data not shown). For 

further characterization, we focused on the population of neu-
rons expressing relatively high levels of I

A
. The absolute I

A
 ranges 

between 2.2 and 16.5 nA, and the mean I
A
 density is 275 ± 34 pA/

pF (at +30 mV, n = 30).
The peak conductance–voltage relationship (G

p
-V curve) of I

A
 

shows detectable activation between −50 and −60 mV, and was 
well described by a 4th-order Boltzmann function with the follow-
ing best-fi t parameters: V

1/2
 = −30 ± 10 mV and k = 16 ± 3.5 mV 

(n = 5) (Figure 2A; Table 1 in Supplementary Material). The volt-
age-dependence of steady-state inactivation was measured as the 
fraction of available peak current after 5-s pre-pulses to various 
membrane potentials (Figures 2A,B). The resulting steady-state 
inactivation curve was well described by a Boltzmann function 
with the following best-fi t parameters: V

1/2
 = −88 ± 4.8 mV and 

k = 7.8 ± 3.9 mV (n = 6). As expected, the voltage-independent 
fraction of the total current remaining at steady-state (0.08 ± 0.03) 
is very similar to the fraction of non-I

A
 resistant to the −30 mV 

conditioning pulse (Figure 1B). The sum of two exponential terms 
was necessary to describe the development of macroscopic inactiva-
tion at different membrane potentials between −20 and +60 mV 
(data not shown); and the resulting time constants exhibit weak 
voltage dependence (Figure 3A). The relative weights of the two 
components are equal at negative voltages, and the slow compo-
nent is dominant at more positive voltages (Figure 3B). At +50 mV, 
τ

fast
 = 51 ± 24 ms (23%) and τ

slow
 = 270 ± 115 ms (61%, n = 12); 

and the extrapolated relative weight of an apparent sustained level 
of the I

A
 is 16.3 ± 2.9%.

Inactivation from closed states and rapid recovery from inac-
tivation at hyperpolarized membrane potentials are hallmarks 
of Kv4 channels (Dougherty et al., 2008; Kaulin et al., 2008). In 
contrast, Kv1.4 channels (which may also contribute to I

A
) exhibit 

recovery from inactivation that is 50–100 times slower (Petersen 
and Nerbonne, 1999). To investigate the recovery from inactiva-
tion of the I

A
 in DRG neurons, a 1-s step to −70 mV was delivered 

to induce substantial closed-state inactivation (>50%). This step 
was preceded by a 500-ms conditioning pulse to −100 mV to 
insure maximal availability of I

A
 before the recovery sequence. 

After the inactivating pulse, the membrane potential was stepped 
to the chosen recovery voltage (−100 or −120 mV) for increas-
ing periods of time (Δt = 20 ms) before applying a standard test 
pulse (+50 mV, 100 ms). For each cycle of this protocol, the total 
control current (I

0
) was fi rst evoked by a 100-ms step depolariza-

tion to +50 mV after a conditioning pulse to −100 mV. The time 
course of recovery from closed-state inactivation is relatively fast 

1http://udel.edu/∼mcdonald/statintro.html
2http://www.genetics.ucla.edu/software/mendel

http://udel.edu/%E2%88%BCmcdonald/statintro.html
http://www.genetics.ucla.edu/software/mendel
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FIGURE 1 | Isolation of I
A
 in small DRG neurons. (A) Voltage-clamp protocol 

(top) to elicit the total K+ current (IK, bottom). From a holding voltage of 
−65 mV, a 1-s conditioning pulse at −100 mV precedes 500-ms step 
depolarizations delivered in 10-mV increments (for clarity, 20-mV 
increments are shown only). The start-to-start interval was 5 s. 

(B) Voltage-clamp protocol (top) to isolate the delayed-rectifi er K+ current 
(IDR, bottom). The conditioning pulse at −30 mV inactivates the A-type K+ 
current (IA) (Figure 2). (C) The subtraction of IDR from IK yielded IA (bottom). 
These currents are from a DRG neuron (31 µm, 38 pF) exhibiting a 
dominant IA (∼90% IA and ∼10% IDR; see Results).

FIGURE 2 | Voltage-dependent activation and inactivation of I
A
 in small DRG 

neurons. (A) The peak conductance–voltage relation, (Gp–V relation, fi lled circles; 
n = 5) and the steady-state inactivation curve (empty circles; n = 6). A 4th-order 
Boltzmann function (solid line) describes the Gp–V relation with the following 
best-fi t parameters: V1/2 = −33 mV and k = 15 mV. A fi rst-order Boltzmann 
function (solid line) best describes the steady-state inactivation curve with the 
following best-fi t parameters: V1/2 = −86 mV and k = 7 mV; the extrapolated 

non-inactivating component comprises 9.7% of the total current, and 
corresponds approximately to the level of the IDR (Figure 1; see Results). In some 
instances, small error bars are obliterated by the data symbols. (B) Voltage-clamp 
protocol to determine the voltage dependence of IA steady-state inactivation (top) 
and the resulting currents (bottom). The duration of the variable pre-pulse was 5 s 
(for display, a portion of the pre-pulse was blanked). These currents are from a 
DRG neuron (31 µm, 38 pF) exhibiting a dominant IA (Figure 1; see Results).
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FIGURE 3 | Kinetics of macroscopic I
A
 inactivation (development and 

recovery) in small-medium diameter DRG neurons. (A) Voltage 
dependence of the fast (empty symbols) and slow (solid symbols) time 
constants for inactivation (n = 3–5). (B) Voltage dependence of the fractional 
amplitudes of the exponential terms (solid and empty circles) and the constant 
term (solid triangle). In some instances, small error bars are obliterated by the 
data symbols. (C) Normalized peak current (I/I0) against the recovery interval 

at two membrane potentials. I0 is the current evoked by the control pulse to 
+50 mV. The representative time courses at −100 (empty symbols) and 
−120 mV (fi lled symbols) are from two neurons. The solid lines are the best-fi t 
exponential time courses. These neurons exhibited distinct levels of current 
resistant to inactivation. (D) Averaged time constants of recovery from 
inactivation at −100 and −120 mV. The means are signifi cantly different at 
P = 0.048.

and approximately exponential, and the derived time constant 
exhibits signifi cant voltage dependence (Figure 3C). At −100 
and −120 mV, the time constants of the recovery from inacti-
vation are 108 ± 42 ms (n = 9) and 63 ± 20 ms (n = 5), respec-
tively (P = 0.048; Figure 3D). Overall, the voltage-dependent and 
kinetic properties of the TEA-resistant I

A
 in small-medium diam-

eter nociceptive DRG neurons agree with the expression of Kv4 
channels. In addition, the TEA-resistant I

A
 in these DRG neurons 

is reversibly inhibited by 5 mM 4-AP (65 ± 14%, n = 4), which 
is also characteristic of the subthreshold-operating I

A
 and Kv4 

channels (Birnbaum et al., 2004; Jackson and Bean, 2007; Jerng 
et al., 2004; Pak et al., 1991; Song et al., 1998) (data not shown).

Kv4 CHANNEL EXPRESSION IN DRG NEURONS AT THE WHOLE-TISSUE 
AND SINGLE-CELL LEVELS
To investigate the contribution of Kv4 channels to the DRG I

A
 

more directly, we applied several complementary approaches at 
the transcript and protein levels. First, we investigated whether 
pore-forming and auxiliary subunits are detectable in whole DRG 
tissue, which includes neuronal and non-neuronal cells. A broad 
end-point RT-PCR screening detected transcripts encoding all Kv4 
isoforms and several auxiliary β-subunits thought to contribute 
to the neuronal Kv4 channel complex (Figure 1 in Supplemental 
Material) (Covarrubias et al., 2008). Other Kv channels were also 

detected, including Kv1.4, Kv1.5, Kv3.4, and Kvβ subunits that may 
confer an I

A
 phenotype to certain Kv1 channels (data not shown) 

(Bett and Rasmusson, 2008; Rettig et al., 1994). Then, we performed 
qRT-PCR to evaluate the relative amounts of Kv4 transcripts quan-
titatively (see Materials and Methods). The Kv4.1 and Kv4.3 iso-
forms are expressed at signifi cantly greater levels than Kv4.2; and 
Kv4.1 is also expressed at a signifi cantly greater level than Kv1.4 
(Figure 4). The low expression of Kv4.2 mRNA in the DRG is note-
worthy because this isoform is dominant in the CNS (Amarillo 
et al., 2008; Birnbaum et al., 2004; Jerng et al., 2004; Serodio and 
Rudy, 1998; Sheng et al., 1992; Shibata et al., 2000). Furthermore, 
the combined expression level of Kv4.1 and Kv4.3 is ∼4-fold greater 
than that of Kv1.4 (Figure 4), which is also a putative component 
of A-type K+ currents in the nervous system and the heart (Cooper 
et al., 1998; Nerbonne and Guo, 2002).

To more fi rmly support the contribution of Kv4 subunits to 
the channels that underlie the subthreshold-operating I

A
 in the 

DRG, we examined the expression of Kv4 proteins by immu-
nohistochemical analysis (see Materials and Methods). The lack 
of reliable anti-Kv4.1 antibodies precluded the analysis of Kv4.1 
expression at the protein level. Nevertheless, consistent with the 
qRT-PCR results, the neuronal immunostaining of Kv4.3 protein 
in the DRG is broad and robust (Figure 5B). As observed by oth-
ers using anti-Kv channel antibodies in DRG and spinal neurons 
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FIGURE 4 | qRT-PCR analysis of Kv4 channel expression in whole DRG. Bar 
graph comparing the relative expression of transcripts encoding Kv1.4, Kv4.1, 
Kv4.2 and Kv4.3. Absolute mRNA quantities (copy number) were determined 
from standard amplifi cation plots and interpolation (see Materials and Methods). 

Kv channel expression is normalized to the expression of β-actin. Inset: Tukey 
multiple comparisons test. The samples were different from each other at 
P = 0.0001 (ANOVA) and the signifi cance of paired comparisons at P < 0.01 is 
indicated in the grid.

(Binzen et al., 2006; Chien et al., 2007; Huang et al., 2005; Rasband 
et al., 2001; Vydyanathan et al., 2005), the anti-Kv4.3 immunos-
taining is partly cytosolic and possibly peri-nuclear. This pattern 
of expression suggests the presence of signifi cant intracellular 
pools of Kv channel proteins in neuronal somata. Confi rming the 
transcript analysis, the immunohistochemical analysis revealed 
little to no expression of Kv4.2 protein (Figure 5A). The Nav1.8 
channel is a marker of a subpopulation of nociceptive DRG 
neurons (Akopian et al., 1999; Amaya et al., 2000; Djouhri et al., 
2003). Accordingly, the immunostaining of DRG neurons with 
anti-Nav1.8 antibodies is distinct (and partially cytosolic) but less 
broad when compared to the immunostaining of Kv4.3 protein 
(Figure 5C). Suggesting the co-localization of Nav1.8 and Kv4 
channels in subpopulations of nociceptive DRG neurons, dou-
ble-labeling experiments revealed limited overlapping expression 
of Nav1.8 and Kv4.3 proteins (Figure 5D). In all cases, satellite 
glial cells, the other major cellular component of the DRG tissue, 
exhibit no immunostaining (Figure 5).

The transcript and protein analyses at the whole-tissue level 
yielded a broad picture of candidate subunits in the native Kv4 
channel complex of DRG neurons. However, the DRG includes a 
heterogeneous population of neurons with distinct physiological 
roles (Scott, 1992); and therefore, evaluating Kv4 channel expres-
sion at the single-cell level would provide a more discrete picture. 
Particularly, single-cell expression analysis allows an independent 
assessment of the correlated expression of Kv4 and Nav1.8 channels 
in a selected population of nociceptive neurons. Earlier reports have 
shown the expression of Kv4 transcripts at the single-cell level in 
the CNS (Liss et al., 2001; Song et al., 1998). Similarly, we combined 
electrophysiology and molecular biology methodologies to study 
single DRG neurons (see Materials and Methods). After achieving 
the whole-cell recording confi guration, the cytosolic material of 
a neuron (diameter ∼30 µm) was collected in the patch pipette 
and subjected to nested RT-PCR (see Materials and Methods). In 
the fi rst round of screening, the β-actin transcript was detected 
in 89% of the neurons (n = 57); and further screening of these 
samples revealed at least one Kv4 channel transcript in 29% of 
the neurons (14/49; Figure 6B). Although the Kv4.1 transcript is 
observed most frequently (22%, 12/54), only ∼6% of the neurons 
are positive for either Kv4.2 or Kv4.3 (3/50 and 3/54, respectively). 

Kv1.4 and Nav1.8 are found in 11% and 52% of the total  neurons, 
respectively (Figure 6B). The specifi c transcript categories and 
the expression frequencies are strongly correlated (P < 0.0001; 
n = 47). A relatively large fraction of neurons expressing the Nav1.8 
transcript (26/50) suggests a signifi cant proportion of nocicep-
tive neurons in the selected population. Thus, we re-screened the 
samples and applied linkage analysis to pairs to test whether Kv4 
and Nav1.8 transcripts co-exist at the single-cell level (see Materials 
and Methods; Table 2). Whereas 11/26 Nav1.8-positive neurons 
were also Kv4 positive, only 2/24 Nav1.8-negative were Kv4-positive. 
Given the relatively large number of Nav1.8- and Kv4.1-expressing 
neurons (an example from a single neuron is shown in Figure 6A), 
the corresponding samples demonstrate the most reliable linkage 
analysis results. A positive correlation between the expression of 
these transcripts does not occur by chance (P = 0.02, D′ = 0.65); 
and therefore, the co-expression of Kv4.1 and Nav1.8 channels in 
small-medium diameter nociceptive neurons is likely. Since the 
expression frequencies of Kv1.4, Kv4.2 and Kv4.3 are low in the 
selected population (Figure 6B) other paired correlations could 
not be interpreted reliably. Collectively, however, the results from 
the immunohistochemical and single-cell RT-PCR analyses are 
clearly consistent with the expression of two Kv4 isoforms (Kv4.1 
and Kv4.3) in nociceptive neurons (Nav1.8-positive). Kv4 subu-
nits are thus strong candidate components of the channel complex 
that underlies I

A
 in DRG neurons as suggested by the biophysi-

cal and pharmacological analyses of the whole-cell K+ currents 
(Figures 1–3).

A Kv4-SPECIFIC DOMINANT-NEGATIVE SUBUNIT SUPPRESSES IA 
DRAMATICALLY
If the Kv channels underlying I

A
 in nociceptive DRG neurons are 

composed of Kv4 subunits, the expression of exogenous Kv4.2 
subunits should selectively modulate the expression and biophysi-
cal properties of the native I

A
 by specifi c tetramerization with 

endogenous Kv4 subunits (namely, Kv4.1 and Kv4.3). Thus, to test 
this hypothesis, we transfected mammalian tsA-201 cells and dis-
sociated DRG neurons with the following constructs (see Materials 
and Methods): EGFP (mock control), Kv4.2-EGFP (wild-type), 
and Kv4.2DN-EGFP (DN, dominant-negative). The fl uorescent 
EGFP moiety was fused at the C-terminus of the Kv4.2  subunits 
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to permit visual detection of transfected cells. In mammalian 
tsA-201 cells, Kv4.2-EGFP induced typical Kv4.2 whole-cell cur-
rents exhibiting rapid activation and inactivation; and the voltage 
range of operation is similar to that of Kv4.2 channels lacking 
EGFP (Dougherty and Covarrubias, 2006; Dougherty et al., 2008; 
Kim et al., 2005) (Figure 7; data not shown). The dominant-
 negative effect of the Kv4.2DN-EGFP mutant was validated in 
tsA-201 cells co-transfected with Kv4.2-EGFP and Kv4.2DN-EGFP 

(Figure 7). The  presence of at least one Kv4.2DN-EGFP subunit 
in the Kv4  channel tetramer should reduce the fraction of func-
tional Kv4.2 channels in the cell. Expression of Kv4.2-EGFP alone 
induces transient currents that were often beyond the patch-clamp 
amplifi er’s range at  depolarized voltages (Figure 7A). In contrast, 
co- expression of Kv4.2-EGFP and Kv4.2DN-EGFP results in a pro-
found  suppression of the I

A
. At +10 mV, the current density is 

suppressed by 66% (Figure 7B).

FIGURE 5 | Expression of Kv4.3 and Nav1.8 proteins in DRG neurons. Fresh 
frozen DRG sections (10 µm) were treated with specifi c antibodies against either 
Kv4 or Nav1.8 proteins. The expression was then evaluated by 
immunofl uorescence and confocal microscopy (left column, α-channel; see 
Materials and Methods). The cell nuclei were stained with DAPI or TO-PRO-3 
(α-nucleus, middle column). The merging of the images in the left and middle 
columns is shown on the right column. (A) The Kv4.2 protein does not express in 

the DRG. (B) The Kv4.3 protein is widely expressed in a heterogeneous population 
of DRG neurons. (C) The expression of the Nav1.8 protein is more restricted but 
limited to DRG neurons. The Nav1.8 protein is a marker of nociceptors (see 
Results). (D) Although several DRG neurons were found to express either Nav1.8 
or Kv4.3 proteins exclusively, a sub-population of nociceptive neurons co-
expresses Kv4.3 and Nav1.8. Similar results were obtained in experiments from 
two additional rats. Scale bar = 50 µm.
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FIGURE 6 | Single-cell RT-PCR analysis from small DRG neurons. (A) The 
cellular content of a single DRG neuron was captured in the recording pipette 
after whole-cell recording. The recorded outward current exhibited a relatively 
slow IA phenotype (not shown) similar to that observed from other small-
medium diameter DRG neurons (Figure 1). Upon processing of the cellular 
content and amplifi cation by nested RT-PCR (see Materials and Methods), the 
products were analyzed in a 2% agarose gel. The bands detected correspond 
to the predicted amplicons for β-actin, Kv4.1, and Nav1.8 (Table 1 in 
Supplementary Material). (B) Bar graph comparing the detection frequencies 
of various transcript categories in single-cell RT-PCR experiments. The fi rst bar 
indicates that all three Kv4 transcripts were detected in 14/49 neurons. The χ2 
test of independence applied to the remaining bars revealed a statistically 
signifi cant association between the transcript categories and the expression 
frequencies (P < 0.0001; χ2 = 47).

Since the Kv4.2-EGFP and Kv4.2DN-EGFP subunits behaved as 
expected in tsA-201 cells, we proceeded to express them in dissociated 
DRG neurons to specifi cally manipulate I

A
 properties (nucleofec-

tion; see Materials and Methods). Typically, neurons were exam-
ined 24–72 h post-nucleofection and only fl uorescent neurons 
expressing the extrinsic proteins were included in the experiment. 
Although the endogenous Kv4.2 isoform expresses poorly in DRG 
neurons from newborn rats (Figures 4–6), extrinsic Kv4.2 subunits 
can form homomultimeric and novel heteromultimeric channels 
in these cells. The expression of exogenous Kv4.2-EGFP subunits 
in this experiment exploits interactions mediating highly specifi c 
heterotetramerization among members of the same Kv channel 
subfamily only (Covarrubias et al., 1991). Thus, suppression of the 
native I

A
 by expressing Kv4.2DN-EGFP subunits would involve the 

formation of novel non-functional Kv4 channels resulting from 
the interaction of at least one Kv4.2DN-EGFP subunit with native 
Kv4.1 and/or Kv4.3 subunits in the neuron. Although the I

A
 density 

of control neurons (mock-nucleofected with the EGFP plasmid 

only) remains stable during the 24–72 h post- nucleofection, over-
 expression of Kv4.2-EGFP signifi cantly enhances the neurons’ I

A
 den-

sity (Figures 8A,B). Moreover, consistent with the over- expression 
of rapidly inactivating Kv4.2 channels and the formation of novel 
heteromultimeric Kv4 channels, the larger I

A
 exhibits an intermediate 

development of macroscopic inactivation (Figure 8B). At +20 mV, 
the time constants of inactivation of over-expressed I

A
 are 26.5 ± 3.8 

and 142 ± 11 ms, and the corresponding relative weights are 35 ± 5 
and 57 ± 6% (n = 7). Relative to the kinetics of I

A
 inactivation in 

control DRG neurons (Figure 3) and tsA-201 cells transfected with 
Kv4.2-EGFP at +20 mV (Figure 7), these time constants are inter-
mediate and signifi cantly different (P < 0.049). In sharp contrast, 
Kv4.2DN-EGFP expression suppresses I

A
 dramatically, especially 

48–72 h post-nucleofection (Figure 8C). At +20 mV, over-expression 
and suppression resulted in ∼2.7-fold increase and ∼3.5-fold reduc-
tion in the peak I

A
 density, respectively (Figure 8D). As expected, 

these effects are specifi c because the expression of the Kv4.2-EGFP 
and Kv4.2DN-EGFP subunits infl uences the I

A
 component but has 

no effect on the residual I
DR

 component (Figure 8E). These results are 
compelling evidence for a signifi cant contribution of Kv4 subunits 
to the Kv channels that underlie I

A
 in DRG neurons.

DISCUSSION
This study is a comprehensive investigation of the contribution of 
Kv4 channels to the subthreshold-operating I

A
 in DRG neurons. 

A multipronged approach based on electrophysiological, molecular 
and biochemical analyses demonstrates that Kv4 subunits (mainly 
Kv4.1 and Kv4.3) are highly expressed in DRG neurons from 7- to 
8-day-old rats, and most likely underlie I

A
 in this system.

FUNCTIONAL EVIDENCE OF Kv4 CHANNELS IN NOCICEPTIVE 
DRG NEURONS
In agreement with previous electrophysiological studies (Everill 
et al., 1998; Gold et al., 1996; Kostyuk et al., 1981; Safronov et al., 
1996; Winkelman et al., 2005), whole-cell patch-clamp recordings 
from small-medium diameter nociceptive DRG neurons revealed 
an I

A
 with voltage-dependent, kinetic and pharmacological proper-

ties characteristic of subthreshold-operating neuronal Kv4 chan-
nels (Jerng et al., 2004) (Figures 1–3; Table 1). The functional 
properties of neuronal Kv4 channels are tailored to impact action 
potential fi ring, slow repetitive fi ring and the overall membrane 
excitability (Khaliq and Bean, 2008; Kim et al., 2005; Song et al., 
1998; Yuan et al., 2005). In particular, the fast voltage-depend-
ent recovery from inactivation of the I

A
 (Figure 3) supports the 

presence of Kv4 channels in DRG neurons (Amarillo et al., 2008; 
Dougherty et al., 2008; Jerng et al., 2004; Kaulin et al., 2008). This 
feature allows quick re-priming of Kv4 channels whenever the 
membrane potential is hyperpolarized. As a result, activation of 
these channels by a subsequent subthreshold depolarization can 
suppress or delay action potential fi ring. In sharp contrast, I

A
 

resulting from Kv1.4 channel expression exhibits a time constant 
of recovery from inactivation >50-fold slower than that of Kv4 
channels (Petersen and Nerbonne, 1999). Although Kv1.4 channels 
have been found in small diameter DRG neurons (Figures 4 and 6) 
(Binzen et al., 2006; Rasband et al., 2001), their functional role is 
probably different from that of Kv4 channels. Slow recovery from 
inactivation can cause cumulative inactivation in Kv1.4 channels 



Frontiers in Molecular Neuroscience www.frontiersin.org July 2009 | Volume 2 | Article 3 | 10

Na Phuket and Covarrubias Molecular basis of IA in DRG

FIGURE 7 | Dominant-negative suppression of Kv4.2 currents expressed in 

tsA-201 cells. The whole-cell peak current density was determined in cells 
expressing Kv4.2-EGFP only (A) or co-expressing Kv4.2-EGFP and 
Kv4.2DN-EGFP (B). The voltage-clamp protocol typically consisted of step 
depolarizations from −90 to +60 in 10-mV increments. The holding voltage 

was −100 mV and the start-to-start interval was 5 s. The traces shown 
correspond to −40, −20, 0 and +20 mV. The corresponding I–V relations from 
individual cells are shown below the families of currents, and the average peak 
current density is displayed in the graphs. The difference between the means 
is signifi cant at P = 0.03.

FIGURE 8 | Experimental manipulation of Kv4 channel expression in 

small-medium diameter DRG neurons. Neurons were nucleofected (see 
Materials and Methods) and IA was isolated as shown in Figure 1. The peak 
current density from fl uorescent DRG neurons was measured 24–72 h post-
nucleofection. (A) IA–V relation from DRG neurons expressing EGFP (n = 9). (B) 
IA–V relation from DRG neurons expressing Kv4.2-EGFP (n = 8). (C) IA–V relation 
from DRG neurons expressing Kv4.2DN-EGFP (n = 10). Insets: Representative IA 

families of traces elicited by step depolarizations from −90 to +60 mV in 20-mV 
increments. Vertical and horizontal scale bars represent 3 nA and 100 ms, 
respectively. The holding voltage between pulse sequences was −65 mV. (D) 
Relative to the mock nucleofected neurons (EGFP), the differences between the 
IA density means at +20 mV are statistically signifi cant: EGFP vs. Kv4.2-WT 
(P = 0.0051), EGFP vs. Kv4.2DN-EGFP (P = 0.0012). (E) The IDR isolated as 
shown in Figure 1 is not affected by expressing EGFP or the Kv4.2 proteins.
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during episodes of repetitive spike fi ring, which may then increase 
excitability of neurons in an activity-dependent manner (Engel 
et al., 1996; Roeper et al., 1997).

The relatively slow development of I
A
 macroscopic inactiva-

tion observed here (Figures 1–3 and 8) is similar to that previ-
ously reported for peripheral sensory neurons (Gold et al., 1996; 
Sculptoreanu et al., 2004; Vydyanathan et al., 2005; Winkelman 
et al., 2005). However, compared to the inactivation profi le of 
the CNS I

A
, it is signifi cantly slower (Jerng et al., 2004). Slower 

inactivation could result from the co-assembly of Kv4 subu-
nits and specifi c KChIP isoforms. For instance, KChIP4a elimi-
nates fast inactivation of reconstituted and native Kv4 channels 
(Baranauskas, 2004; Holmqvist et al., 2002). Also, slow inactiva-
tion could be an intrinsic property of the Kv4 isoform expressed in 
DRG neurons. Among members of the Kv4 subfamily, Kv4.1 chan-
nels exhibit the slowest development of inactivation (Jerng et al., 
2004); and the expression of the Kv4.1 subunit in small-medium 
diameter DRG neurons from newborn rats is exceptionally high 
(Figures 4 and 6; below). Slow inactivation of Kv4 channels may 
play an important physiological role by enhancing the I

A
’s abil-

ity to dampen excitability over extended periods. Future studies 
focusing on the auxiliary β-subunits in the DRG Kv4 channel 
complex may shed more light on these possibilities.

MOLECULAR EVIDENCE OF Kv4 SUBUNITS IN NOCICEPTIVE DRG 
NEURONS
Toward unveiling the molecular composition of I

A
, we imple-

mented a systematic approach to examine the expression of 
 relevant subunits at the mRNA and protein levels in whole tissue 

and single-cell studies (Figures 4–6). The main results indicate 
that all putative components of the neuronal Kv4 channel com-
plex are present in the DRG (Kv4 subunits, KChIPs, DPP6 and 
DPP10; Figure 1 in Supplemental Material); and that the Kv4.1 
and Kv4.3 subunits are the dominant isoforms. Furthermore, the 
mRNA and immunohistochemical analyses showed co-expression 
of Kv4 and Nav1.8 channels at the whole-tissue and single-cell 
levels (Figures 5 and 6; Table 2), which favors the idea of Kv4 
channels underlying the I

A
 in subpopulations of small-medium 

diameter nociceptive DRG neurons. Overall, this conclusion 
agrees with the results from earlier DRG studies that analyzed 
the expression of Kv4 mRNA and protein in adult rat models of 
neuropathic pain and suggested the contribution of Kv4 chan-
nels to the I

A
 and their role in pain plasticity (Chien et al., 2007; 

Kim et al., 2002). In addition, certain nociceptive DRG neurons 
display preferential binding of the isolectin glycoprotein (IB

4
) and 

distinct electrical properties (Fang et al., 2006; Stucky and Lewin, 
1999; Vydyanathan et al., 2005). Particularly, the density of 4-AP 
sensitive K+ currents is higher in IB

4
-positive neurons; and these 

neurons express larger TTX-resistant Na+ currents (either Nav1.8 
or Nav1.9 channels). Thus, the expression of Kv4 channels in a 
specifi c subpopulation of nociceptive IB

4
-positive DRG neurons 

is an attractive possibility (Chien et al., 2007). The relatively low 
incidence of neurons expressing the Kv4.3 transcript at the sin-
gle-cell level appears at odds with the results from whole-tissue 
qRT-PCR and immunohistochemistry, which detected signifi cant 
expression of the Kv4.3 transcript and protein, respectively. This 
outcome may have resulted from the heterogeneous expression 
of Kv4.3 channels in DRG neurons and the cell selection criterion 
based on diameter (∼30 µm) for the single-cell expression analy-
sis. Kv1.4 channels may also contribute to a TEA-resistant I

A
 in a 

distinct population of small diameter nociceptive DRG neurons 
(Binzen et al., 2006; Rasband et al., 2001). Whether or not the 
expression patterns of Kv4 and Kv1.4 channels overlap in these 
neurons is, however, not known. The Kv3.4 protein is another 
potential molecular correlate of I

A
 in DRG neurons (Chien et al., 

2007); however, its contribution to the TEA-resistant K+ currents 
characterized here is unlikely because Kv3 channels are TEA-
hypersensitive and activate at depolarized membrane potentials 
(Vega-Saenz et al., 1992).

Table 1 | Biophysical properties of the subthreshold-operating I
A
 in DRG 

neurons.

Property Mean ± S.E.M n

G
P
–V RELATION

V1/2 (mV) −33 ± 4.7 5

k (mV) 15 ± 1.4 

STEADY-STATE INACTIVATION

V1/2 (mV) −88 ± 2 6

k (mV) 7.8 ± 1.6 

DEVELOPMENT OF INACTIVATIONa

τFAST (ms) 51 ± 7 12

WFAST (%) 23 ± 3.2 

τSLOW (ms) 270 ± 33 

WSLOW (%) 61 ± 3.7 

WC (%) 16 ± 2.9 

RECOVERY FROM INACTIVATIONb

τ−100 mV (ms) 108 ± 14 9

τ−120 mV (ms) 63 ± 8.8 5

aParameters derived from a double exponential fi t; measured at +50 mV. WFAST 
WSLOW and WC are the relative weights of the exponential terms and constant 
term, respectively (Figure 3).
bTime constants derived from an exponential fi t of the time course of recovery 
from inactivation; measured at −100 and −120 mV. The difference between 
these time constants is statistically signifi cant at P = 0.048 (Figure 3).

Table 2 | Pairwise linkage analysis of single-cell expressiona.

Pairs P-value D′--value

Kv4.1–Kv4.2 0.155 0.555

Kv4.1–Kv4.3 0.159 0.555

Kv4.1–Nav1.8 0.0198 0.652

Kv4.2–Kv4.3 0.00760 0.644

Kv4.2–Nav1.8 1.00 0.304

Kv4.3–Nav1.8 0.609 −0.360

aPairwise statistical analysis of transcript co-expression using Mendel version 
8.0 (Lange et al., 2005) (see Materials and Methods). Statistical signifi cance 
(P < 0.05) for either positive-correlation (1 > D′ > 0) or negative-correlation 
(−1 < D′ < 0) was examined for Kv4 and Nav1.8 transcripts. Total sample 
size = 48. Since the number of Kv4.2- and Kv4.3-positive cells was very low in 
this sample (Figure 6), the Kv4.2-Kv4.3 correlation cannot be interpreted.
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The expression of Kv4.1 in DRG neurons is noteworthy (Kim 
et al., 2002; Winkelman et al., 2005). While the Kv4.2 and Kv4.3 
subunits are expressed throughout the brain and cerebellum of 
adult rats, the expression of the Kv4.1 subunit in the rat CNS is very 
low and discrete (Amarillo et al., 2008; Liss et al., 2001; Serodio and 
Rudy, 1998; Song et al., 1998). In contrast, our results demonstrate 
that the Kv4.1 and Kv4.3 subunits are broadly expressed in DRG 
neurons from newborn rats, whereas the Kv4.2 subunit is nearly 
absent in these cells (Figures 4–7). The functional expression of 
Kv4.1 channels may be more relevant in the PNS. However, the 
expression of Kv4.2 channels may be developmentally regulated in 
the DRG because previous studies suggest signifi cant expression of 
all Kv4 transcripts in the DRG from adult rats, and a reduction in 
Kv4.2 and Kv4.3 expression in nerve injury models (Chien et al., 
2007; Kim et al., 2002). Developmentally regulated expression of 
Kv4.2 and Kv4.3 subunits has been observed in spinal neurons 
(Huang et al., 2006).

Kv4 CHANNELS ARE THE MOLECULAR CORRELATES OF IA IN DRG 
NEURONS
The electrophysiological and molecular analyses suggest the con-
tribution of Kv4 subunits (at the transcript and protein levels) to 
I

A
 in small-medium diameter DRG neurons. A more defi nitive link 

between Kv4 subunits and the subthreshold-operating I
A
 emerged 

from the electrophysiological impact of expressing exogenous 
wild-type and mutant Kv4 subunits in DRG neurons. It has been 
established that Kv channel subunits only associate with members 
of the same subfamily (Covarrubias et al., 1991; Li et al., 1992). 
Thus, fi nding a profound suppression of the I

A
 upon expression of 

Kv4.2DN-EGFP, and I
A
 with intermediate kinetics of inactivation 

upon expression of Kv4.2-EGFP indicate the presence of endog-
enous Kv4 subunits that heterotetramerize with the recombinant 
Kv4 subunits. These results confi rm that Kv4 channels are the 
molecular correlates of I

A
 in DRG neurons from newborn rats.

How do Kv4 channels underlying I
A
 regulate DRG neuron excit-

ability? Further work beyond the scope of this study is necessary to 
answer this question. Nevertheless, we suggest that I

A
 impacts the 

regulation of spiking by subthreshold changes in the membrane 
potential (Khaliq and Bean, 2008; Korngreen et al., 2005). At a 
typical resting membrane potential of a neuron (e.g., −65 mV), 
I

A
 may have no impact on excitability because it undergoes 

steady-state inactivation. However, even a relatively brief hyper-
polarization could help I

A
 quickly recover from inactivation and, 

consequently, infl uence timing (latency and interspike interval) 
and duration of an action potential resulting from a subsequent 
depolarizing stimulus. The hyperpolarization may result from a 
prolonged afterhyperpolarization, activation of background K+ 
channels or inhibition of leak channels. Additionally, the activity 
of I

A
 may depend on the developmentally regulated composition 

of Kv4 tetramers and their association with accessory β-subunits, 
which could affect the biophysical and biochemical properties 
of the I

A
.
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