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sleep, aggression and response to addictive drugs. Each of these 
behaviours has been mapped to well defi ned neural circuits with 
particular genes known to infl uence or control different aspects of 
each behaviour as determined by a powerful combination of genetic 
screens, promoter-based transgenic manipulations and studies of 
gene product expression (Baker et al., 2001; McGuire et al., 2004; 
Holmes et al., 2007). In Drosophila, like any other animal, informa-
tion fl ows through the nervous system via patterned changes in 
membrane depolarisation along a neuron, interspersed with syn-
aptic transmission between neurons. Ion channels are the electrical 
components of the circuit controlling membrane depolarisation 
and synaptic currents. Information is processed and stored in a 
network via changes in synaptic strength and connectivity (syn-
aptic plasticity) as well as changes in excitability in the rest of the 
neuron connecting input and output synapses (intrinsic plasticity). 
Drosophila has a similar range of interacting intrinsic and synaptic 
plasticity mechanisms, some pre- and some post-synaptic. These 
have mostly been studied at glutamatergic or cholinergic synapses 
with conserved roles for CaMKII, PKA, CREB, potassium (K+) 
channels and NMDA receptors in mechanisms of plasticity and 
learning between Drosophila and humans (Littleton and Ganetzky, 
2000; Giese et al., 2001; Haghighi et al., 2003; Rohrbough et al., 
2003; Gasque et al., 2006; Wu et al., 2007; Schmid et al., 2008; 
Turrigiano, 2008).

Approximately 350 genes encode ion channels in human 
 (ca. 1–2% of the coding genome), with over 60 of these genes 
causing disease (channelopathies) when mutated (Ashcroft, 2006; 
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DORK, Drosophila open-rectifi er K+ channel, TASK (KCNK); DORK-NC, Drosophila 
open-rectifi er K+ channel, non-conducting version; Eag-DN, Ether-à-go-go potas-
sium channel (KCNH/Kv10) dominant negative; GABA

A
 subunits, γ- aminobutyric 

acid ionotropic receptor type A; Gal4, Galactose 4 (yeast transcription factor); Gal80ts, 
Temperature sensitive Galactose 80 (inhibits Gal4); GPCR, G-protein coupled recep-
tor; GIRK, G-protein coupled inwardly-rectifying potassium channel, Kir3 (KCNJ); 
I
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channel; Na+/K+ ATPase, Na+/K+ co-transporter/adenosine  triphosphate- digesting en-
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X

2
, Purinergic receptor, ligand (ATP)-gated ion channel; 

PDF, Pigment Dispersing Factor, circadian neuropeptide; PDZ, Post synaptic density 
protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occlu-
dens-1 protein (zo-1); PKA, cAMP sensitive protein kinase; Rdl, Resistant to dieldrin 
(Drosophila GABA

A
 subunit gene name); RMP, Resting membrane potential; SCN, 

Suprachiasmatic nucleus; SDN, Shaker dominant negative subunit; SUR1, Sulpho-
nylurea sensitive β accessory subunit for K

ATP
 channel; TASK-1, TWIK-related acid-

sensitive potassium channel subfamily 1, (KCNK); TRP, Transient Receptor Potential 
non-selection cation channel; UAS, Upstream activating sequence (Gal4 sensitive).

INTRODUCTION
Drosophila with its 200,000 neuron brain displays a range of dif-
ferent behaviours such as learning, courtship, circadian rhythms, 
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Cannon, 2006). Drosophila has around 150 ion channels (most 
of which have been mutated), again about 1–2% of its coding 
genome. Drosophila channels are clearly related to the human 
channels, with fl ies often having one prototypic member of an ion 
channel family containing many exons that are alternatively spliced 
(for instance the voltage-gated Shaker K+ channel), while humans 
have many separate genes possibly through gene duplication of the 
prototypic channel gene (i.e. there are eight human Shaker genes 
called KCNA1-8 encoding channel proteins Kv1.1–Kv1.8). This 
makes it relatively trivial in fl ies to make an animal completely 
lacking a class of ion channels and then determining the functional 
consequence (Salkoff et al., 1992; Littleton and Ganetzky, 2000; 
Giese et al., 2001; Wicher et al., 2001).

WAYS TO MANIPULATE ION CHANNEL EXPRESSION TO 
SILENCE NEURONS
Since ion channels are the determinants of excitability, manipula-
tion of their levels and properties allows one to modulate neuronal 
and circuit function. There are a number of ways to suppress elec-
trical activity in neurons, for instance manipulating the expres-
sion of channels that regulate resting membrane potential (RMP) 

setting it below the threshold required to fi re action potentials. 
This can be achieved in several ways (listed below, Table 1 and 
sections ‘Ion channel manipulations that have been used to elec-
trically inactivate Drosophila neurons’ and ‘Gal4/UAS promoter 
system for broad spatial and temporal control of inactivation of 
neurons’) mainly involving over-expression of K+ channels that are 
open at RMP, causing increased K+ effl ux and therefore membrane 
hyperpolarisation. Alternatively one can over-express channels or 
pumps that conduct chloride (Cl−) ions into the cell or over-express 
a sodium (Na+)/K+ ATPase co-transporter, again to hyperpolarise 
RMP and prevent action potential fi ring. Neurons can also be 
silenced by disrupting or reducing the level of functional voltage-
gated Na+ or calcium (Ca++) channels that mediate the depolarisa-
tion phase of action potentials. Similarly, a strategy involving the 
opposite channel manipulation should allow net depolarisation 
and hyperexcitation in a given neuron (Wicher et al., 2001; Wulff 
and Wisden, 2005).

Combining these approaches with the versatile (Gal4/UAS) 
transgenic systems available in Drosophila allows one temporal 
and spatial control of (channel) transgene expression (McGuire, 
et al., 2004). This now makes it possible to electrically silence (or 

Table 1 | Summary of ion channels to manipulate neuronal activity in Drosophila.

Name of channel  Description Gal4 targeted neurons expressing  Source e.g. reference

(UAS) transgene  this channel will be electrically: (Bloomington stock number)

Kir2.1 Inward rectifi er K+ channel  Inactivated Baines et al., 2001

 (GFP tagged)

DORK Outward rectifi er K+ channel  Inactivated Nitabach et al., 2002 (8928)

 (GFP tagged)

Shaw Shaw K+ channel (FLAG tagged) Inactivated Hodge et al., 2005

TrpA1-RNAi TrpA1 cation channel, RNAi Inactivated Rosenweig et al., 2005

Cac-RNAi Cacophony Cav2 channel, RNAi Inactivated Worrell and Levine, 2008

δ-ACTH-Hv1a Tethered toxin inactivates  Inactivated Wu et al., 2008

 para Nav channel

EKO Shaker K+ channel (GFP tagged)  Inactivated White et al., 2001a

GeneSwitch EKO Shaker K+ channel (GFP tagged),  Inactivated with (slow) temporal control Osterwalder et al., 2001

 RU486 chemically inducible

DORK-NC Inward rectifi er K+ channel (GFP tagged)  Wild-type Nitabach et al., 2002 (6587)

 non-conducting version

SDN Shaker K+ channel (GFP tagged),  Activated Mosca et al., 2005

 dominant negative

Eag-DN Eag K+ channel, dominant negative Activated Broughton et al., 2004 (8187)

Shaw-DN Shaw K+ channel (FLAG tagged),  Activated Hodge et al., 2005

 dominant negative

Shaw-RNAi Shaw K+ channel, RNAi  Activated Hodge and Stanewsky, 2008

Na+/K+ ATPase-DN Na+/K+ ATPase, dominant negative Activated Parisky et al., 2008

GeneSwitch SDN Shaker K+ channel (GFP tagged),  Activated with (slow) temporal control Mosca et al., 2005

 dominant negative, RU486 chemically

 inducible

TrpA1 Heat activated TrpA1 cation channel Activated with (medium) temporal control Pulver et al., 2009

TrpM8 Cold activated TrpM8 cation channel Activated with (medium) temporal control Peabody et al., 2009

P2X2 Purinergic receptor, activated by  Activated with (fast) temporal control Sjulson and Miesenböck, 2008

 uncaging ATP

ChR2 Channelrhodopsin, blue light Activated with (fast) temporal control Schroll et al., 2006; Pulver et al., 

 activated cation channel  2009 (24855)
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hyperexcite) any neuron or neural circuit in the fl y brain (Peabody 
et al., 2008, 2009; Gordon and Scott, 2009), and much like an exqui-
site lesion experiment, potentially elucidate whatever interesting 
behaviour or phenotype each mediate. Likewise, this approach can 
determine if the expression, mechanism of action or structure of 
a molecule, pathway or process is regulated by electrical activity. 
This special issue on new genetic techniques revolutionising the 
study of neural circuits, should facilitate the transfer of technology 
and channels between model systems and help researchers wish-
ing to formulate a theoretical or computational understanding of 
this research.

HOMEOSTATIC PLASTICITY MECHANISMS
A key issue to consider when ion channels are expressed in order 
to silence neurons or reduce the activity of neurons, is will the 
resulting change in electrical activity induce homeostatic plastic-
ity mechanisms that compensate and try to return the  neuron 
back to its normal activity state. Put another way, neuronal 
networks have a tendency not to like to be silenced or, have 
extreme patterns of hyperexcitability imposed upon them. In 
fact, they may have evolved a diverse repertoire of homeostatic 
mechanisms to compensate for large net changes in synaptic 
and intrinsic excitability in order to preserve  important network 
functions (Marder and Prinz, 2002; Davis, 2006; Turrigiano, 
2008).

Ion channel mutants (i.e. nulls or ‘knock outs’), although 
useful for determining the basic function of a channel, can be 
limited as tools for the spatial and temporal control of neural 
activity in a given circuit, as channels tend to be broadly expressed. 
Furthermore, removing a channel throughout development can 
induce compensatory mechanisms. An example from mouse 
is the GABA

A
 subunits that mediate persistent inward Cl− cur-

rents important for tonic inhibition of cerebellar granule cells 
when knocked-out trigger a homeostatic mechanism resulting 
in up-regulation of leak TASK-1 K+ channels that preserve these 
particular neuron’s characteristic electrophysiological properties 
(Brickley et al., 2001). Even single point mutations in Drosophila 
channels can result in a slew of transcriptional changes in activ-
ity dependent genes (Guan et al., 2005). These genes presumably 
form an inherently robust genetic network with loss of any branch 
(gene) of the network being compensated by a complementary 
rearrangement of the remaining interacting branches (genes) 
maintaining functional output from the network (van Swinderen 
and Greenspan, 2005).

Another example, this time from lobster, is when Shal (Kv4 or 
KCND) RNA is injected into neurons there is an increase in the fast 
transient I

A
 current. However this change is also accompanied by 

a compensatory up-regulation of a hyperpolarisation activated I
h
 

cation current in order to maintain the neuron’s fi ring  behaviour. 
Interestingly expression of a non-conducting version of Shal also 
induced I

h
 up-regulation, suggesting that changes in channel 

 protein level, as opposed to the accompanying changes in mem-
brane activity, can be the trigger of this activity- independent 
homeostatic response. Not all changes in channel level are com-
pensated, for instance the reciprocal increase in I

h
 channel was 

not compensated and did alter the neuron’s behaviour (MacClean 
et al., 2003).

ION CHANNEL MANIPULATIONS THAT HAVE BEEN USED TO 
ELECTRICALLY INACTIVATE DROSOPHILA NEURONS
LOSS-OF-FUNCTION MUTATIONS IN NEURONAL Na+ OR Ca2+ CHANNELS
Removing the main depolarising channels from neurons is one 
strategy to inactivate Drosophila neurons. However these ion chan-
nels tend to have a number of specifi c roles and serve a range of 
pleiotropic functions making their presence necessary for viabil-
ity; this is refl ected in these channels having widespread tissue or 
developmental expression. For instance, Drosophila’s single member 
of the Cav2 family, the pan-neural expressed cacophony, when null 
mutated causes embryonic lethality, while partial loss of function 
alleles cause changes in synaptic transmission, increased convul-
sions and aberrant courtship and vision (Smith et al., 1998; Wicher 
et al., 2001). Likewise, null alleles of paralytic, the tetrodotoxin-
 sensitive Drosophila Na

v
1 are lethal, while partial loss of function or 

temperature sensitive-alleles (parats at restrictive temperature) have 
disrupted action potential propagation and paralysis (Suzuki and 
Wu, 1984; Wicher et al., 2001). Some point mutations may however, 
confer some spatial control of functional inactivation of neurons, 
for instance, Smellblind mutant alleles are thought to remove the 
olfactory specifi c splice form of para by specifi c exon-skipping 
events (Reenan et al., 1995). Similar splicing defects of human 
Cav and Nav channel genes can cause channelopathies resulting 
from brain region- or tissue specifi c-compromised channel func-
tion with accompanying pathophysiology such as cerebellar ataxia, 
familial hemiplegic migraine and cardiac arrhythmias (Ashcroft, 
2006; Cannon, 2006).

GAIN-OF-FUNCTION MUTATIONS IN NEURONAL K+ CHANNELS
K+ channels are the most diverse ion channel family, with over 30 
such channels in Drosophila, therefore mutations are seldom lethal 
with the possibility of having adult fl ies lacking two major classes 
of K+ channel (Littleton and Ganetzky, 2000; Vähäsöyrinki et al., 
2006). However K+ channel mutants, like other channel chromo-
somal mutants, maybe of limited use to suppress neuronal electri-
cal activity, especially as unlike human or worm channel mutants, 
few are gain-of-function alleles required for electrical inactivation 
(Ashcroft, 2006; Cardnell et al., 2006). Increased repolarising cur-
rent can also be achieved by mutants that contain a chromosomal 
rearrangement that result in duplicated copies of a K+ channel 
translocated onto an additional chromosome (Haugland and 
Wu, 1990). Similar changes in channel gene dosage likely occur 
in Downs (Trisomy 21) syndrome resulting in changes in neu-
ral development, long-term potentiation (LTP) and learning in 
mouse models of Downs (Morice et al., 2008). However all these 
approaches are limited in that they do not allow the experimenter 
both spatial and temporal control of electrical inactivation of just 
a chosen neural circuit.

Gal4/UAS PROMOTER SYSTEM FOR BROAD SPATIAL AND 
TEMPORAL CONTROL OF INACTIVATION OF NEURONS
The disadvantages of using mutants can be overcome by using selec-
tive over-expression strategies. The Gal4/UAS bipartite system has 
one part that consists of a fl y containing a transgenic copy of the 
Gal4 transcription factor inserted into its genome. The expression 
of the integrated Gal4 transgene is dependent on whatever endog-
enous enhancers it is inserted next to (e.g. enhancer- trapping). 
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The second half of the system is a fl y containing a transgene of 
interest downstream of a Gal4 upstream activation sequence (UAS), 
which by itself: is not expressed. By crossing a fl y containing a 
Gal4 insert with a fl y containing a UAS-transgene, the resulting 
progeny will have both, therefore expressing your gene of interest 
in a given pattern of cells. Over the last 15 years, UAS-transgenes 
to over-express most of the genes in the fl y genome have been col-
lected (http://fl ybase.org) some containing fl uorescent tags, some 
point mutations and some homologues from other species such as 
human (Brand and Perrimon, 1993; White et al., 2001b). Recent 
inclusions to this arsenal include publicly available UAS-RNAi lines 
to all 14,000 genes in the fl y genome (Dietzl et al., 2007).

Married to these are collections of 10,000s of Gal4 lines that have 
been screened for expression in different tissues and times of devel-
opment using UAS-GFP. Many Drosophila promoter sequences are 
relatively compact so can be placed before Gal4, allowing the result-
ing Gal4 insertion to report the expression of the original gene 
promoter. Gene promoters for neuropeptide, neurotransmitter syn-
thetic enzymes and different channels and receptors have revealed 
their neural expression pattern and also allowed mis-expression in 
dopaminergic, cholinergic and GABAergic neurons (Holmes et al., 
2007). However the expression of Gal4 lines can be complex, for 
instance, there are many mushroom body (MB) Gal4 lines, however 
these seldom express in MB alone or just in the adult MB learning 
centre. This is because most genes are expressed in development and 
often in a number of tissues serving a number of functions (pleio-
tropic; Hall, 2005). For instance Rdl, a Drosophila GABA

A
 receptor 

subunit is expressed in the MB and is important for learning (Liu 
et al., 2007), but is also expressed in clock neurons regulating sleep 
(Parisky et al., 2008). This is probably not a coincidence as sleep 
and memory infl uence one another and might be co-regulated 
by molecules expressed in over-lapping circuits controlling both 
behaviours. The combination of well-defi ned neural circuits, robust 
behavioural assays and powerful molecular genetics of Drosophila 
is now revealing the molecular nature of the plasticity mechanisms 
connecting sleep and memory (Donlea et al., 2009; Gilestro et al., 
2009). Such circuit-breaking studies are more diffi cult in the more 
complex mammalian brain as there are many more cells of each 
type, a paucity of well-defi ned promoters, and neuronal groups (for 
instance GABAergic neurons) are often dispersed between brain 
structures (Wulff and Wisden, 2005).

A number of variations of the Gal4 promoter and similar sys-
tems are continually being developed in Drosophila (McGuire et al., 
2004) to increase spatial and temporal control of transgene expres-
sion. For instance, Gal4 expression has been made to be dependent 
on the presence of an activator, a progesterone analogue called 
RU486. The resulting system called GeneSwitch makes fl ies only 
express Gal4 and hence transgenes such as Shaker when they are 
placed on RU486 containing food, thereby potentially bypassing 
any problems arising from lethality, developmental defects and 
compensation through long term (developmental) changes in 
excitability (Osterwalder et al., 2001). It is not exactly known why 
over-expressing K+ channels sometimes causes apoptosis, however 
it maybe due to the steady depletion of K+ from the cell (Nadeau 
et al., 2000). Likewise in order to circumvent lethality sometimes 
resulting from expression of K+ channel transgenes, such as Kir2.1, 
the TARGET system can be employed (McGuire et al., 2004). At 

18°C Gal80ts inhibits Gal4 activity blocking Kir2.1 expression and 
lethality. Whereas keeping the fl ies at 31oC inactivates Gal80ts releas-
ing Gal4 driven Kir2.1. This technique allowed the critical window 
in development to be probed where electrical inactivation of a spe-
cifi c group of neurons resulted in lethality (Peabody et al., 2008).

In the following sections I will catalogue in detail these inactiva-
tion strategies that have been successfully used with the Gal4/UAS 
system.

HUMAN (KCNJ2/Kir2.1) CHANNELS
A pioneering study by Baines et al. (2001) wished to tease apart the 
relationship between intrinsic excitability and synaptic strength. In 
order to study the effect of electrical inactivation of fl y neurons on 
synaptic transmission, the authors expressed an N-terminal GFP 
tagged human inwardly rectifying Kir2.1 channel. This channel had 
been used previously (Johns et al., 1999), to genetically suppress 
excitability of rat neurons in culture using an inducible promoter 
this time responsive for the Drosophila hormone, ecdysone. Gal4 
promoters with different distributions of pre- and post-synaptic 
expression at defi ned synapses in the embryonic fl y brain were 
used. Kir2.1 expression in the postsynaptic neuron (a motorneu-
ron) removed evoked but not spontaneous release of neurotrans-
mitter. No compensatory changes were seen. The same approach of 
developmental cell specifi c expression of Kir2.1 has also been used 
to determine the role of neural activity in generating the mouse 
olfactory sensory map (Yu et al., 2004). Also hyperpolarising Kir2.1 
expression in hippocampal neurons was found to decrease fi ring 
rate, but this time in these mammalian neurons a homeostatic 
mechanism returned fi ring rate to normal even though Kir2.1 con-
tinued to be expressed (Burrone et al., 2002).

At the Drosophila larval neuromuscular junction (NMJ) synapse 
(Paradis et al., 2001), muscle expression of Kir2.1 resulted in an 
outward (∼10nA) leak current accompanied by 10–15mV hyperpo-
larised shifts in muscle RMP. Despite this reduction in postsynaptic 
excitability, synaptic transmission was maintained by a compensa-
tory increase in presynaptic release (quantal content), implicating 
an activity-dependent retrograde homeostatic mechanism.

Expression of the Kir2.1 transgene in insulin secreting cells of the 
fl y was then used in order to help characterise a Drosophila model 
of diabetes (Kim and Rulifson, 2004). Drosophila has homologues 
of both the sulphonylurea receptor (SUR1 β-cell K

ATP
 channel 

β- subunit), and the K
ATP

 channel α-subunit (Kir6.2 or KCNJ11) 
it confers glucose sensitivity to. Sulphonylurea disrupted glucose 
stimulated insulin release in Drosophila by a mechanism involv-
ing SUR and Kir channels. Expression of the non-ATP sensitive 
human Kir2.1 in the Drosophila insulin secreting neurons prevented 
membrane depolarisation and release from these neurons result-
ing in fl ies with disrupted control of circulating glucose (Kim and 
Rulifson, 2004; Ashcroft, 2006).

In addition to learning and memory, another function 
 prescribed to the MB and cAMP signalling within these cells is 
control of sleep. MB electrical inactivation using promoters that 
express Kir2.1 in these cells led to increased daily sleep while 
manipulations thought to increase excitability lead to a reduc-
tion in sleep (Joiner et al., 2006). It should be noted expression 
of Kir2.1 has the most extreme functional consequences of all 
the K+ channel transgenes, for instance, Kir2.1 expression in as 

http://flybase.org
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little as 30–40  crustacean  cardioactive peptide (CCAP) neurons 
is suffi cient to cause lethality (Luan et al., 2006). So what are the 
longer-term consequences of electrical inactivation of different 
neurons using this approach, expression of Kir2.1 in a defi ned 
type of serotonin neuron, resulted in morphological changes in 
the neuron’s neurites (Roy et al., 2007).

Lastly, in order to study the post-mating switch in behaviour of 
female fl ies (decrease in receptivity to courting males and increased 
egg laying), the Jan lab used Kir2.1 based techniques. The switch 
in behaviour is brought about by sex peptide that is transferred 
with the male’s sperm into the female’s reproductive organ where 
it acts on fruitless and pickpocket (ppk, a Drosophila Na+ channel) 
neurons. Expression of Kir2.1 in ppk sensory neurons increased the 
post-mating change in behaviour, suggesting sex peptide normally 
inhibits neuronal transmission in these circuits. Clonal analysis 
using fl ies expressing GFP-Kir2.1 in ppk neurons downstream of 
FRT sites; showed that the virgins that displayed the most post-
 mating responses where the one’s that had the most Kir2.1 expres-
sion in the ppk neurons on the uterus and which projected axons 
towards the fl ies brain (Yang et al., 2009).

DROSOPHILA SHAKER EKO (KCNA/Kv1) CHANNELS
Possibly the earliest attempt to electrically inactivate neurons using 
K+ channel over-expression (Gisselmann et al., 1989), used a heat 
shock promoter to express either a Shaker cDNA or a dominant 
negative truncated version of Shaker (W404 to stop in the pore 
of the channel). Because a functional Shaker channel consists of 
four pore-forming α-subunits, the presence of one or more pore-
 truncated subunits would block the remaining pore intact endog-
enous Shaker subunits removing channel function. Heat-shock of 
the full-length or truncated Shaker over-expressing fl ies caused 
the predicted hypo- or hyper-excitability at the electrophysiologi-
cal (NMJ recordings) and behavioural (ether-induced shaking) 
level.

In order to direct the inactivation of defi ned neurons, the Gal4/
UAS was used to express Shaker channels that were genetically 
modifi ed to have a more hyperpolarised voltage-dependence of 
activation, no N-terminal fast inactivation and an N-terminal GFP 
tag. This ‘electrical knockout channel’ or EKO allowed sustained 
activation in response to depolarisation suppressing electrical 
activity of the cells in which it was expressed. Pre or post-synaptic 
expression of EKO caused an increase in the sustained K+ current, 
RMP hyperpolarisation and reduced fi ring. These changes were 
partially reversed by the Shaker channel blocker, 4-AP. No home-
ostatic changes were reported although the level of endogenous 
Shaker transient I

A
 current was reduced in muscles over-expressing 

EKO (White et al., 2001a,b).
As for Kir2.1 channels, EKO expression throughout the nerv-

ous system or musculature caused some paralysis and impaired 
locomotion. These effects increased with EKO gene dosage (it is 
possible to have multiple copies of UAS-EKO in a fl y) resulting in 
increased embryonic lethality. Reduction in neuronal excitability 
with EKO over-expression caused some aberrant NMJ connec-
tivity and in the eye a dose-dependent decrease in photoreceptor 
potential, again partially blocked by 4-AP. A307-Gal4 expression 
of EKO strongly in the ventral and abdominal ganglion of the fl y 
resulted in adult fl ies with unexpanded wings and abnormally pig-

mented thorax. This developmental phenotype was suggested to 
be due to incomplete adult eclosion (insects divide their life into 
embryonic, larval, pupal and adult stages, completion of the later 
stage is called eclosion which involves wing expansion) requiring 
neuronal release of eclosion hormones (White et al., 2001a,b). Later 
studies have elegantly dissected the role of excitability in control of 
wing expansion by release of the hormone bursicon from CCAP 
neurons, three copies of EKO was found to be suffi cient to block 
release of bursicon (Luan et al., 2006).

A similar approach was then used to increase excitability by 
expression of an N-terminal GFP-tagged Shaker dominant nega-
tive (SDN) subunit truncated after the fi rst transmembrane 
domain (Mosca et al., 2005). As predicted SDN caused hyperex-
citability associated with reduced I

A
, enhanced synaptic transmis-

sion, enhanced synapse size and increased larval locomotion. In 
adults, hyperexcitable phenotypes included ether-induced shaking. 
Serendipitously the identical Shaker mutation was picked up in a 
forward genetic screen for fl ies with reduced sleep and called min-
isleep. This is a mutant that sleeps one-third as much as wild-type 
fl ies (Cirelli, et al., 2005). Electrical inactivation of MB neurons 
with EKO resulted in fl ies with a modest increase in sleep (Joiner 
et al., 2006).

Neuron specifi c expression of EKO can therefore be used to 
decrease intrinsic excitability, while expression of SDN can be 
used to increase excitability in neurons that endogenously express 
Shaker channels. Postembryonic expression of either transgene in 
motorneurons caused increased dendritic outgrowth (Duch et al., 
2008). This study also showed that SDN changed the fi ring patterns 
of a motorneuron upon current injection, while EKO decreased fi r-
ing but did not completely silence neurons. Interestingly, none of the 
transgenic manipulations effected RMP, input resistance or synaptic 
properties. Increases in fl ight behaviour were seen in the SDN fl ies 
and a decrease in fl ies expressing EKO in their motorneurons.

DROSOPHILA ORK (KCNK/TASK) CHANNELS
Drosophila open rectifi er K+ channels (DORK) exhibit no voltage or 
time dependence of opening, essentially forming K+ selective holes 
in the membranes of the cells they are expressed. A C-terminally 
GFP tagged DORK transgene (DORK) was expressed in fl ies using 
the GAL4/UAS system, and an additional mutant non- conducting 
version of the channel (DORK-NC) was also expressed as a control 
(Nitabach et al., 2002). Unlike non-conducting versions of lobster 
Shal (MacClean et al., 2003), no homeostatic changes were trig-
gered. However the trend of DORK-NC overexpression as the sole 
choice of wild-type control for over-expression of different trans-
genic channels should also be performed with caution, due to the 
increasing number of non-conducting functions of ion channels 
being discovered (Kaczmarek, 2006).

Not surprisingly, pan-neuronal expression of DORK like Kir2.1 
caused embryonic lethality. In order to determine the effect of 
 electrical inactivation on a well-defi ned behaviour: DORK or Kir2.1 
were expressed in a subset of clock neurons (∼20 neurons) called 
the lateral neurons ventral (LNv) using Pigment dispersing factor 
(pdf-Gal4) promoter (Nitabach et al., 2002). These form part of 
the ∼150 neurons that form the fl y clock. Circadian rhythms are 
generated by the molecular clock in each clock neuron which con-
sists of rhythmically expressed clock genes (i.e. timeless and period) 
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prominent amongst which is CaMKII which autophosphorylates 
at T287 during LTP and T306 during long term depression (LTD), 
both events are thought to be important for learning in a range 
of animals including fl ies (Marder and Prinz, 2002; Davis, 2006; 
Nelson and Turrigiano, 2008). Electrical inactivation of postsynap-
tic cells using DORK caused an increase in synaptic phosphoryla-
tion of T306 and concomitant reduction in T287, these changes 
were regulated by the PDZ-scaffolding molecule, CASK (Lu et al., 
2003; Hodge et al., 2006). Activated CaMKII is known to directly 
bind or modulate a number of K+ channels and glutamate receptors 
regulating neuronal excitability in a range of systems (Griffi th et al., 
1994; Park et al., 2001; Yao and Wu, 2001; Haghighi et al., 2003; Sun 
et al., 2004; Nelson et al., 2005; Gasque et al., 2006), while CASK 
also interacts and changes the activity of a number of synaptic ion 
channels and receptors (Hsueh, 2006).

DROSOPHILA SHAW (KCNC/Kv3) CHANNELS
Drosophila Shaw is a member of the Kv channel family and encodes 
a slowly activating and non-inactivating K+ current. Shaw is open at 
normal RMP and causes hyperpolarisation by K+ effl ux; the chan-
nel is widely expressed in the nervous system and helps regulate 
RMP in Drosophila central neurons (Salkoff et al., 1992; Tsunoda 
and Salkoff, 1995; Hodge et al., 2005; Parisky et al., 2008). Gal4 
over-expression of full-length Shaw was detected via a C-terminal 
FLAG tag on the transgenic channel. A Flag tagged dominant 
negative form of Shaw was also made (Hodge et al., 2005) with 
the analogous pore truncation as the heat shock Shaker domi-
nant negative transgene described previously (Gisselmann et al., 
1989). This subunit behaved in a dominant negative fashion caus-
ing ∼10mV depolarising shift in RMP and a doubling of spike 
frequency. This hyperexcitation did not lead to any homeostatic 
changes in the remaining K+ currents. Like EKO expression, wide-
spread neuronal expression of Shaw resulted in developmental 
lethality and wing expansion defi cits consistent with the transgene 
causing electrical inactivation of the neurons it is expressed in. 
This wing expansion phenotype was mapped to the 30–40 CCAP 
positive neurons. Widespread expression of dominant negative 
Shaw caused hyperexcitable phenotypes such as ether-induced 
shaking and wing expansion phenotype. Endogenous Shaw was 
expressed widely in the nervous system including CCAP neurons 
(Hodge et al., 2005).

Because RMP-hyperpolarising DORK over-expression in clock 
neurons caused behavioural arrhythmicity (Nitabach et al., 2002, 
2005), we wished to explore which channels might endogenously 
regulate clock neuron RMP. We started with Shaw as this channel 
is widely expressed in the Drosophila brain and regulates neuronal 
RMP (Hodge et al., 2005). Furthermore mammalian homologues 
of Shaw, Kv3, are widely expressed in SCN and the magnitude of 
their current varies between day and night and even in constant 
darkness. Blocking the currents prevented the daily rhythm in fi r-
ing of SCN neurons (Itri et al., 2005). Using a C-terminal antibody, 
Shaw was found widely expressed in the adult brain including a 
subset of clock neurons. In normal light conditions expression of 
membrane hyperpolarising Shaw in all clock neurons  (timeless-
Gal4) increased locomotor activity at night. Under constant condi-
tions, electrical inactivation of all clock neurons resulted in extreme 
arrhythmia as was also reported for  expression of Kir2.1 or DORK. 

that feedback and control their own expression with an ∼24hour 
period (Hall, 2005).

It was claimed that DORK or Kir2.1 expression electrically 
silenced the clock neurons. Chronic silencing of neurons with 
such channels can be associated with apoptosis (Nadeau et al., 
2000), however Pigment dispersing factor (PDF) staining of the 
‘silenced’ LNv was qualitatively shown not to grossly disrupt their 
viability or morphology. In constant darkness, ‘silencing’ the LNv 
resulted in a higher proportion of fl ies showing arrhythmic or 
weakly rhythmic behaviour with respect to wild-type controls. LNv 
expression of DORK-NC resulted in some arrhythmic behaviour 
but otherwise appeared normal. The rhythmic expression of clock 
proteins using semi-quantifi cation of antibody stain intensity on 
fi xed brains was dampened in neurons expressing DORK or Kir2.1. 
The interruption of these results was that electrical silencing of the 
LNv had stopped the free-running circadian clock. Less dramatic 
effects were reported for the effect of these transgenic manipula-
tions under normal lighting conditions (12 hours of light, 12 hours 
dark) (Nitabach et al., 2002). Expression throughout the clock cir-
cuit using  timeless-Gal4 resulted in adult arrhythmia in constant 
darkness and disrupted the molecular clock as judged by timeless 
staining of the larval LNv (Nitabach et al., 2005). Later studies 
showed that electrical inactivation of LNv clock neurons had similar 
circadian molecular and behavioural effects as pdf mutants and that 
the molecular clock oscillations in remaining clock neurons were 
not abolished (Wu et al., 2008).

It is now thought that synchronisation of the rhythms between 
clock neurons and the circadian output from the clock that regu-
lates rhythmic behaviour are mediated by, both chemical (predomi-
nantly PDF) and electrical signals (Hall, 2005; Holmes et al., 2007). 
Earlier mammalian suprachiamatic nucleus (SCN) recordings 
(Kuhlman and McMahon, 2004) and fl y large (l)-LNv (Park and 
Griffi th, 2005; Cao and Nitabach, 2008; Sheeba et al., 2008a,b; Wu 
et al., 2008a) recordings revealed clock neurons display circadian 
changes in their electrical properties including a (∼10mV) depo-
larised shift in RMP during the day accompanied by an increase in 
frequency of spontaneous action potentials (Brown and Piggins, 
2007; Holmes et al., 2007).

In order to extend the DORK behavioural genetic studies, 
whole-cell recordings were performed on l-LNv neurons express-
ing DORK this caused a 10mV hyperpolarising shift in LNv RMP 
and reduced but did not silence evoked action potential fi ring (Park 
and Griffi th, 2005). The chromosomal location of a transgene can 
also effect expression and hence have functional effects, for instance 
the pdf-Gal4 expression of C1 insertion of DORK results in most 
fl ies being arrhythmic while the C2 insertion causes most fl ies to be 
weakly arrhythmic with Kir2.1 causing the greatest arrhythmicity 
(Nitabach et al., 2002). A later study confi rmed pdf-Gal4 expres-
sion of DORK-C2 caused a signifi cant hyperpolarisation of LNv 
RMP; that was greater for DORK-C1 and greatest for Kir2.1. This 
resulted in over 60% of fl ies expressing either Kir2.1 or DORK-C1 
 displaying arrhythmia in constant darkness while over- expression 
of the hyperpolarising DORK-C2 now gave the same level of 
arrhythmicity as control (∼20%; Wu et al., 2008a).

Lastly, DORK expression has been used to explore plasticity 
mechanisms at fl y synapses. It is widely thought that neurons can 
detect their level of activity via a range of calcium sensitive sensors 
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This had little effect on the molecular clock as measured by per-
luciferase oscillations in the dorsal clock neurons. The rhythmic 
accumulation of PDF in terminals of small LNv neurons was how-
ever disrupted by changing the level of Shaw throughout the clock. 
Hyperpolarising Shaw over-expression caused PDF accumulation 
in terminals while reduction in functional Shaw depleted the levels 
of the neuropeptide in terminals. Hyperexciting the clock by tim-
Gal4 expression of dominant negative Shaw also caused weaker 
rhythms (Hodge and Stanewsky, 2008).

As mentioned over-expression of GABA
A
 mediated inward Cl− 

currents would inactivate neurons with GABAergic input and has 
been shown to inhibit Drosophila olfactory associative learning 
(Liu et al., 2007). In order to determine the role of GABA mediated 
regulation of sleep, Shaw was expressed in GABAergic neurons 
using glutamic acid decarboxylase (GAD)-Gal4, in order to decrease 
GABA release. This resulted in a reduction in the initiation and 
maintenance of sleep (Agosto et al., 2008). Likewise reduction of 
expression of GABA

A
 receptors using RNAi in just the LNv neurons 

caused a similar reduction in sleep. Electrical inactivation of LNv 
using EKO also caused increased initiation and maintenance of 
sleep. In order to hyperactivate the LNvs in a physiologically rel-
evant manner, Shaw-RNAi or dominant negative Na+/K+-ATPase 
was over-expressed. Both gave an ∼10mV depolarised shift of RMP 
accompanied by increased fi ring of action potential, resulting in 
a reciprocal decreased initiation and maintenance of sleep. These 
results together suggest the LNvs are important for light-induced 
arousal (Parisky et al., 2008).

TARGETED REDUCTION IN DEPOLARISING CURRENTS IN ORDER TO 
INACTIVATE DROSOPHILA NEURONS
As Na+ and Ca2+ channels gene products are large and do not tetra-
merise to form a function channel, dominant negative strategies 
targeting these channels are therefore more problematic. RNAi 
expression has proved affective at reducing Drosophila TrpA1 
resulting in fl ies that do not show normal avoidance of elevated 
temperatures (Rosenweig et al., 2005). RNAi has also been used for 
targeted reduction of Cav2 currents, thereby decreasing evoked and 
spontaneous neuronal activity by a similar amount as hypomor-
phic cacophony mutants (Worrell and Levine, 2008). With genome-
wide collections of Gal4 driven RNAi lines now available (Dietzl 
et al., 2007), one can expect this approach to be used increasingly 
to target Drosophila ion channels in inactivate neurons. Another 
new technology tested using the Drosophila circadian system, is 
cell autonomous expression of membrane-tethered toxins. Pdf-
Gal4 expression of δ-ACTH-Hv1a inhibited the para Na

v
 channel 

inactivation and induced rhythmic action potential fi ring. This 
resulted in PDF accumulating in LNv terminals earlier and fl ies 
starting to become active earlier (anticipating) before lights on 
(Wu et al., 2008b).

Eag-DN, NARROW ABDOMEN, TRP-M, TRP-A AND NaChBac 
TRANSGENIC CHANNELS TO CHANGE DROSOPHILA NEURON ACTIVITY
An alternative Gal4 dominant negative K+ channel strategy used an 
eag transgene truncated before the fi rst transmembrane segment 
(eag-Dominant Negative). This was shown to increase excitability 
(Duch et al., 2008) and has been used to study courtship in fl ies 
(Broughton et al., 2004).

Another study exploring the relationship between the molecular 
clock and electrical activity used a range of mutations in Narrow 
Abdomen, a NALCN/ Na+ non-selective leak channel endogenously 
expressed in the clock. Mutants are expected to hyperpolarise clock 
neuron RMP and caused arrhythmia in constant darkness, how-
ever as for Shaw expression, this activity manipulation did not 
disrupt the molecular clock but did change output from the clock 
via elevated PDF levels in LNv terminals (Lear et al., 2005).

In order to achieve fi ner temporal control of electrical activity, 
the heat-sensitive Drosophila TrpA1 channel has been used acutely 
increase LNv activity with temperature shifts suffi cient to disrupt 
sleep (Parisky et al., 2008). Likewise, the cold and menthol sensitive 
rat TrpM8 channel has been expressed in CCAP neurons imposing 
a rapid cold-sensitive switch in network activity controlling wing 
expansion (Peabody et al., 2009).

Flies have also been made that express a voltage-gated bacterial 
Na+ channel (NaChBac). Expression in CCAP neurons resulted in 
the wing expansion phenotype (Luan et al., 2006). pdf-Gal4 expres-
sion of NaChBac was found to cause hyper-excitation of LNvs in 
terms of causing massive increases in action potential amplitude and 
duration. However at the same time NaChBac expression was found 
to cause strong hypoexcitation of LNvs with RMP going from a wild-
type value of −41.5 to −103mV with an accompanying drop in fi ring 
frequency. These changes in LNv excitability caused by NaChBac 
expression were not homeostatically compensated (Sheeba et al., 
2008a,b). In addition, NaChBac LNv terminal PDF levels remain 
high at night. This resulted in subsets of clock neurons becoming 
desynchronised causing the generation of complex behavioural 
rhythms (splitting) (Nitabach et al., 2006), similar effects were seen 
with hyperpolarising expression of Shaw in some clock neurons 
(Hodge and Stanewsky, 2008). Likewise, l-LNv NacBac expression 
caused the normal day-night shift in excitability to be reversed, so 
that the fl ies were more active at night (Sheeba et al., 2008b). A 
mosaic technique allowed single cell manipulation of electrical activ-
ity. It was found the more l-LNvs neurons expressing NaChBac the 
more nocturnal the fl y’s behaviour became (Shang et al., 2008).

FUTURE DIRECTIONS
A current technology set to revolutionise the study of neural activity 
in circuits is the use of light-activated channels. Expression of the 
microbial channelorhodopsin using Gal4 has been used to depo-
larise and activate Drosophila neurons upon blue light stimulation. 
Likewise UV-uncaging of ATP has been used to cell autonomously 
stimulate rat P

2
X

2
 receptors expressed in Drosophila neural cir-

cuits. Conversely light stimulation of inhibitory channels, such 
as the Natronomonas pharaonis (NpHR) halorhodopsin chloride 
pump with yellow light has also been demonstrated (Zhang et al., 
2007; Sjulson and Miesenböck, 2008). Generation of Gal4 induc-
ible NpHR fl ies holds great promise for acute electrical inactiva-
tion of neural circuits in fl ies, however as it is a pump, it might 
be expected to have slower kinetics and different traffi cking than 
ChR2. However, such Gal4 driven approaches would allow acute 
bi-directional changes in activation of Drosophila neurons that may 
bypass some of the confounding problems that can be caused by 
chronic channel activity mentioned earlier in this review.

Therefore these channels have the promise to provide millisec-
ond control of membrane potential and neuronal spike  fi ring (with 
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activated TRP channels allowing longer stimulation; Pulver et al., 
2009) and allow robust remote control of different fl y behaviours. 
For instance, blue-light photoexcitation of ChR2 expressed in acj6 
(abnormal chemosensory jump 6 transcription factor) neurons was 
able to elicit the innate escape response of fl ies (Zimmermann et al., 
2009). Furthermore, light induced activation of ChR2 expressed in 
larval dopaminergic neurons when paired with a specifi c odour could 
induce aversive memory formation, while activation of octopaminer-
gic/tyraminergic neurons with another odour could induce positively 
reinforced memories (Schroll et al., 2006). Likewise, UV uncaging of 
ATP activated P

2
X

2
 receptors expressed in giant fi bre system elicited 

the predicted escape behaviours of jumping, wing beating and fl ight. 
While expression in dopamine neurons caused increased locomo-
tion (Lima and Miesenböck, 2005). Finally, photo- triggering P

2
X

2
 

expressed in fruitless neurons that form part of the neural circuit that 
helps generate the male courtship song, caused fl ies of either sex to 
perform the courtship song (Clyne and Miesenböck, 2008).

Generally it should be noted that many of the ion channel 
manipulations described in this review did not cause any obvious 
compensatory changes, suggesting that Drosophila neurons and cir-
cuits may contain fewer compensatory mechanisms than mamma-
lian ones. However in order to bypass any potential compensatory 
problems caused by chronic channel expression, pharmacologi-
cal modulation of ectopically expressed transgenic channel could 
be added, allowing further temporal control of electrical activity 
to the investigator (Wulff and Wisden, 2005; Wulff et al., 2007). 
Likewise synthetic photoisomerisable small molecules have now 
been used to specifi cally target and inactivate endogenous Shaker 
channels causing their inactivation and acute changes in neural 
activity in rodent and leech preparations (Fortin et al., 2008). In 
order to get round any unwanted potential leaky expression of 
UAS channel transgenes independent of Gal4, it maybe possible 
to use new tools (retrovirus insulators and phiC31 integration) to 
minimise positional effects of host chromatin and target integra-
tion of transgenes to defi ned sites known not to be leaky. These 
technologies should help standardise reverse genetics in Drosophila 
by improving  leakiness and allowing robust transgene expression 
at a defi ned level (Markstein et al., 2008).

So what else can we hope for in the future? Certainly, bi-directional 
translation of these new technologies between model  organisms and 

also into new organisms that offer unique  experimental features (Baker 
et al., 2001; Marder, 2002). Early examples of this trend include the 
fl y’s phototransduction pathway namely arrestin, rhodopsin G-pro-
tein coupled receptor (GPCR) and Gqα collectively termed chARGe 
being used to allow light triggered excitation of hippocampal neurons 
(Zemelman et al., 2002). Likewise, ectopic expression of the Drosophila 
allatostatin GPCR which couples to a G

i/o
 to open inwardly rectifying 

K+ channel (GIRK) can be used to cause a neuronal hyperpolari-
sation and resulting decrease in spiking on addition of allatostatin 
and has been used to investigate mouse spinal cord networks in vivo 
(Gosgnach et al., 2008; Zhang et al., 2008).

Also, as an increasing number of CNS disorders are found to 
involve abnormal neural activity of circuits (Saper et al., 2005; 
Ashcroft, 2006; Cannon, 2006; Beck and Yaari, 2008), modelling 
these diseases in a range of model organisms should in future eluci-
date the fundamental properties of these disorders at the molecular, 
electrophysiological and behavioural level (Mackay and Anholt, 
2006; Zhang et al., 2007; Morice et al., 2008; Song and Tanouye, 
2008). These model systems together have the potential to allow 
screening or validation of new candidate genes, drug targets, and 
therapies using small molecules, biologicals or even gene therapies 
using transgenic channels to repair or rescue functional output 
(Herlitze and Landmesser, 2007).

Researchers championing the different technologies described in 
this review can now think about reprogramming electrical activity in 
well-defi ned circuits and bring about predictable changes in behav-
iour. This approach can be used in a manner somewhat analogous 
to dynamic clamp (Prinz et al., 2004) except it is optically control-
led, allowing the researcher to add or remove different currents to 
a circuit, testing theoretical models or replaying different activity 
patterns to try and instruct different changes in behaviour.
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