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(revs. Chen and Hwang, 2008; Jentsch, 2008). Dysfunction of these 
proteins results in a various diseases. For instance, the most preva-
lent lethal genetic disease, cystic fi brosis (Kerem et al., 1989), arises 
from mutations in the specifi c regulator of Cl− permeability, cystic 
fi brosis transmembrane conductance regulator (CFTR) protein. 
This voltage-independent Cl− channel is found in the epithelial 
cells of many tissues (intestine, lung, reproductive tract, pan-
creatic ducts). Mutations in the gene encoding CFTR affect 1 in 
2000–2500 people (Ashcroft, 2000). Several other human diseases 
have been linked to dysfunction of Cl− channels or transporters: 
myotonia congenita (Koch et al., 1992), congenital chloride diar-
rhoea (Kere et al., 1999), inherited hypercalciuric nephrolithiasis 
(Lloyd et al., 1996), Bartter’s and Gitelman’s syndromes (Simon and 
Lifton, 1996), hyperekplexia/startle disease (Shiang et al., 1993) and 
 epilepsy (Macdonald et al., 2004; Lerche et al., 2005; Heron et al., 
2007; Dibbens et al., 2009).

Direct measurement of intracellular Cl− concentration ([Cl−]
i
) 

in neurons and in other cell types is a challenging task owing to 
two main diffi culties: (i) low transmembrane ratio for Cl−, approxi-
mately 10:1 (for Ca, for instance, 10000:1); and (ii) a small driving 
force for Cl−, as the Cl− reversal potential (E

Cl
) is usually close to the 

INTRODUCTION
Fluorescent indicators designed for quantitative monitoring of 
intracellular ions and analysis of the distribution of various proteins 
have brought about a revolution in obtaining important informa-
tion about the functioning, development and pathology of cells 
and cellular components of biological organisms.

In this review we will briefl y discuss the main approaches for 
monitoring chloride (Cl−), the most abundant physiological anion. 
Cl− is present in every cell of biological organisms and participates 
in a variety of important cellular processes, such as neurotrans-
mission, regulation of cell volume, pH and water–salt balance. 
The concentration of intracellular Cl− and its permeance is highly 
regulated by a variety of Cl−-selective channels and Cl−  transporters 
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resting potential of the cells. Consequently, sensitive probes with 
high dynamic range at physiological [Cl−]

i
 are necessary for reliable 

analysis of [Cl−]
i
 distribution and its functional variations.

For [Cl−]
i
 monitoring several methods have been proposed. The 

most used are Cl−-selective microelectrodes; chloride- sensitive fl u-
orescent dyes and genetically encoded chloride-sensitive probes. 
We will briefl y describe these approaches with the main focus on 
genetically encoded chloride-sensitive probes, which are the most 
promising tools for effective analysis of Cl− homeostasis in vari-
ous cell types.

Cl− SELECTIVE MICROELECTRODES
In the 1960s, 70s and 80s the use of ion-selective electrodes was the 
main available technique for intracellular Cl− detection. It allowed 
valuable information on Cl− distribution and dynamics in a number 
of cell types of biological organisms to be obtained. In very early 
studies, AgCl electrodes were used as tools for [Cl−]

i
 estimation 

(Mauro, 1954; Keynes, 1963; Strickholm and Wallin, 1965; Sato et al., 
1968). With an electrode consisting of a fi ne AgCl wire protruding 
from the end of a glass capillary, [Cl−]

i
 was measured in giant axons 

of squid (Mauro, 1954; Keynes, 1963) and crayfi sh (Strickholm and 
Wallin, 1965). However, later observations demonstrated that all 
microelectrodes that use AgCl as the sensitive element develop “the 
same type of error in the intracellular environment and thus all give 
erroneously high values of [Cl−]

i
 ” (Neild and Thomas, 1974).

The improved method was based on the use of siliconized boro-
silicate glass micropipettes, the tips of which were fi lled with liquid 
chloride ion exchanger. This technique was introduced by Walker 
(1971) and used with some modifi cations in a number of studies 
(Walker and Brown, 1970; Neild and Thomas, 1974; Ascher et al., 
1976; Vaughan-Jones, 1979). These electrodes (Figure 1A) had a 
small tip (1–2 µm) and gave complete responses to changes in Cl− 
within 1–2 min. Preparing these electrodes is a time-consuming 
procedure and penetration of cells without damage is diffi cult.

Despite these complications, Cl−-sensitive microelectrodes were 
successfully used to measure the intracellular Cl− activity in giant 
neurons of molluscs Aplysia (Brown et al., 1970; Ascher et al., 1976) 
and Helix aspersa (Neild and Thomas, 1974; Kennedy and Thomas, 
1995; Schwiening and Thomas, 1996), in frog heart cells (Ladle 
and Walker, 1975; Vaughan-Jones, 1979) and in other preparations 
(Walker and Brown, 1977; Thomas, 1978).

An intracellular Cl−-sensitive microelectrode records the algebraic 
sum of the membrane potential (E

m
) and a voltage proportional to 

changes in Cl− activity. It means that E
m

 must be separately deter-
mined using an independent electrode (Figure 1B). To diminish 
the damage from insertion of two microelectrodes into a single cell, 
double-barrelled pipettes were proposed (Aickin, 1981) and used 
for monitoring the intracellular Cl− activity in smooth muscle cells 
(Aickin and Brading, 1982; Davis et al., 2000), retinal pigment epithe-
lium (Bialek et al., 1995; La Cour et al., 1997) and in other cell types 
(Kitano et al., 1995; Debellis et al., 2001; Ianowski et al., 2002).

Early studies with Cl−-sensitive microelectrodes already demon-
strated that [Cl−]

i
 in cells differs substantially from a predicted passive 

distribution, suggesting that Cl− ions must be actively transported 
through cellular membranes. These observations were confi rmed by 
the more recent discovery of several mechanisms of transmembrane 
Cl− transport (rev. Russell, 2000; Lauf and Adragna, 2004).

FIGURE 1 | Cl−-sensitive microelectrodes and intracellular chloride 

concentration measurements. (A) Construction of recessed-tip 
Cl−-sensitive microelectrode. The complete electrode (top diagram) and 
enlarged view of the sensitive tip (bottom diagram) are shown. (From Neild 
and Thomas, 1973). (B) Diagram showing the basic experimental arrangement 
for chloride concentration measurements using microelectrodes. (Modifi ed 
from Thomas, 1977). (C) Example of simultaneous recording of membrane 
potential (Em) and [Cl−]i in smooth muscle cell of the guinea pig vas deferens 
using double-barrelled microelectrode. Cl−-free and normal solutions were 
applied. Note the very slow (min) recorded Cl− transients. (Modifi ed from 
Aickin and Brading, 1982).



Frontiers in Molecular Neuroscience www.frontiersin.org December 2009 | Volume 2 | Article 15 | 3

Bregestovski et al. Genetically encoded chloride sensors

Three main obstacles limited the spread of the Cl−-sensi-
tive microelectrode technique: (i) time-consuming procedure 
for microelectrode preparation; (ii) slow kinetics (Figure 1C); 
and (iii) the need to use relatively large cells for reliable record-
ing without cell damage. In addition, penetration of cells could 
change the native intracellular Cl− distribution. Methods based 
on imaging techniques are more promising as they provide an 
opportunity to monitor Cl− activity noninvasively and in popula-
tions of cells.

FLUORESCENT Cl− − SENSITIVE DYES
Because of the possibility of monitoring noninvasively the distribu-
tion and dynamics of ion concentration changes, fl uorescent Cl−-
sensitive dyes are the most popular approach for analysis of Cl− and 
Cl−-dependent physiological processes in different cells types.

The fl uorescence of many fl uorophores is decreased on 
 application of heavy-atom anions, such as bromine and iodine. 
Cl− ions are less effective in this respect and relatively few fl uor-
ophores are quenched by Cl− (Geddes et al., 2001). The back-
ground for Cl− monitoring was established by George Stokes, who 
described in 1852 the phenomenon of fl uorescence. In 1869 Stokes 
observed that the “fl uorescence of quinine in dilute sulfuric acid 
was reduced after the addition of hydrochloric acid, i.e., chloride 
ions” (Geddes et al., 2001). Perhaps the fact that quinine, which 
is sensitive to chloride, contains a quinoline ring has stimulated 
the production of many quinoline analogues in the search for 
effi cient Cl− probes.

Quinolinium Cl− indicators are based on the capability of halides 
to quench the fl uorescence of heterocyclic organic compounds with 
quaternary nitrogen (Chen et al., 1988; Verkman, 1990; Figure 2A). 

FIGURE 2 | Chemical structure and fl uorescent properties of widely 

used Cl−-sensitive dyes. (A) Chemical structure of quinolinium Cl−-sensitive 
dyes. Left: Common structure, R1 and R2, radicals. Middle and right: Structural 
formula for SPQ and MQAE dyes respectively. (B) Examples of continuous 
fl uorescence measurements of the MQAE-loaded cells. Note the rapid 
degradation in baseline fl uorescence value (top and bottom traces) and dramatic 

decrease in the fl uorescent response for the second transition from 105 to 0 mM 
of Cl− (top trace). (Modifi ed from Nakamura et al., 1997). (C) Two-photon imaging 
in MQAE-loaded cerebellar neurons. Changes in fl uorescence (top traces) and 
corresponding transmembrane currents (bottom traces) caused by 150-ms-long 
pressure applications of GABA. Note about 50-times slower fl uorescent 
transients in comparison with currents. (Modifi ed from Marandi et al., 2002).
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in liposomes (Verkman et al., 1989) to 30% per hour in brain slices 
(Marandi et al., 2002).

Quinolinium-based Cl− indicators have been used for meas-
urements of Cl− in a variety of preparations, including isolated 
growth cones (Fukura et al., 1996), neurons (Schwartz and Yu, 
1995; Inglefi eld and Schwartz-Bloom, 1997; Dallwig et al., 1999; 
Frech et al., 1999; Marandi et al., 2002), glia (Bevensee et al., 1997), 
different types of epithelial cells (Krapf et al., 1988b; Lau et al., 
1994), fi broblasts (Chao et al., 1989; Woll et al., 1996; Munkonge 
et al., 2004), human gastric cancer cells (Miyazaki et al., 2008) and 
pancreatic beta-cells (Eberhardson et al., 2000). In general, quino-
linium compounds have relatively good sensitivity and selectivity to 
Cl− and rapid responses to changes in Cl−. They are also insensitive 
to physiological changes in pH.

The major disadvantage of these probes comes from their 
 spectral properties, i.e. excitation at ultraviolet wavelengths. As a 
result, they are prone to strong bleaching (Inglefi eld and Schwartz-
Bloom, 1997; Nakamura et al., 1997, Figure 2B). This restricts the 
duration of the measurements and allows only a very low data 
acquisition rate (0.2–2 frames per minute) (Inglefi eld and Schwartz-
Bloom, 1997; Fukuda et al., 1998; Sah and Schwartz-Bloom, 1999). 
However, the use of these dyes in combination with two-photon 
microscopy strongly reduces bleaching and, consequently, photo-
chemical damage (Marandi et al., 2002; Funk et al., 2008).

GENETICALLY ENCODED Cl− INDICATORS
YFP AS A TOOL FOR INTRACELLULAR Cl– MONITORING
An alternative to exogenously added indicators is the use of an 
endogenously expressed chromophore such as green fl uorescent 
protein (GFP). Using appropriate targeting sequences, GFPs have 
been directed selectively to numerous intracellular sites. Various 
applications of GFP in physiological studies of living cells have 
been described (Tsien, 1998; Zaccolo and Pozzan, 2000; Bizzarri 
et al., 2009). GFP derivatives with different colors have been used 
in FRET models to monitor Ca2+ (Miyawaki et al., 1997, 1999), pH 
(Kneen et al., 1998; Llopis et al., 1998; Miesenbock et al., 1998) and 
protein–protein interactions (Heim, 1999).

During the last decade, a new method of noninvasive [Cl−]
i
 moni-

toring using genetically encoded optical probes has been developed. 
This approach is based on the halide-binding  properties of yellow 

A relation between the Cl− concentration and the fl uorescence 
intensity is described by the Stern–Volmer-equation:

F

F
K0 1= + −

SV Cl[ ]

where F
0
 is the fl uorescence in the absence of halide, F is the fl u-

orescence in the presence of halide and K
SV

 is the Stern-Volmer 
quenching constant (in M−1). From this equation the EC

50
, the con-

centration of Cl− causing a 50% decrease in fl uorescence, is 1/K
SV

.
Table 1 shows values of the Stern-Volmer constant and corre-

sponding EC
50

 values for some quinolinium indicators. The most-
used quinolinium indicators are 6-methoxy-N-(3-sulfopropyl) 
quinolinium (SPQ), 6-methoxy-N-ethylquinolium (MEQ) and 
N-(6-methoxyquinolyl)-acetoethyl ester (MQAE).

The fi rst designed quinolinium-based Cl− indicators was SPQ 
(Wolfbeis and Urbano, 1983; Illsley and Verkman, 1987; Figure 2A, 
Table 1). SPQ is excited at ultraviolet wavelengths with absorbance 
maxima at 318 nm and 350 nm. This fl uorescent dye has a single 
broad emission peak centred at 450 nm with a quantum yield of 0.69 
in the absence of halides. In aqueous buffers the Stern-Volmer con-
stant for quenching of SPQ by Cl− is 118 M−1, giving EC

50
 ∼ 8.5 mM. 

The fl uorescence of SPQ is not altered by cations, phosphate, nitrate 
or sulfate, but it is quenched weakly by other monovalent anions 
including citrate, acetate, gluconate and bicarbonate (Illsley and 
Verkman, 1987; Krapf et al., 1988b; Jayaraman et al., 1999).

MQAE, the other quinolinium-based dye, which has been used 
in a number of studies during recent years, has high Cl− sensitivity 
(Figure 2A, Table 1) and, unlike SPQ, easily permeates through the 
plasma membrane (Mansoura et al., 1999). As a result the time of 
incubation with this dye can be rather short. For instance, 10-min 
incubation of brain slices is suffi cient for bright staining of neurons 
(Marandi et al., 2002). However, this substance has to be used with 
prudence, as incubation of slices for 30–45 min caused a deteriora-
tion in the properties and even death of many neurons in neocortex 
and hippocampal slices (Holmgren, Zilberter, Mukhtarov, personal 
observations). For these reasons, results obtained after as long as 
1–2 h of treatment with MQAE (e.g. Servetnyk and Roomans, 2007) 
have to be interpreted with caution. The other disadvantages of this 
dye lie in the signifi cant leakage rate and bleaching. The leakage 
rate seems to be preparation-specifi c, ranging from 3% per hour 

Table 1 | Structures and chloride sensitivity of some quinoline-based Cl− fl uorescent indicators.

IUPAC name R
1
 R

2
 K

sv
 (M−1) EC

50
 (mM) References

6-Methoxy-N-ethylquinolinium (MEQ) OCH3 C2H5 145 7 Biwersi and Verkman, 1991

N-(Ethoxycarbonyl methyl)-6-methoxy  OCH3 CH2COOC2H5 200 5 Verkman et al., 1989

quinolinium (MQAE)   77* 13 Marandi et al., 2002

   24.7# 40 

6-methoxy-N-(-3-sulfopropyl)quinolinium (SPQ) OCH3 (CH2)3SO3
− 118 8.5 Krapf et al., 1988b

6-methyl-N-(-3-sulfopropyl)quinolinium CH3 (CH2)3SO3
− 83 12 Krapf et al., 1988b

6-methoxy-N-(-4-sulfobutyl)quinolinium OCH3 (CH2)4SO3
− 78 13 Krapf et al., 1988b

6-methoxy-N-(-8-octanoic acid) quinolinium Br− OCH3 (CH2)7COOH 52 19 Geddes et al., 1999

6-methoxy-N-(-11-undecanoic acid)quinolinium Br− OCH3 (CH2)10COOH 34 29 Geddes et al., 1999

6-methoxy-N-(-15-pentadecanoic acid)quinolinium Br− OCH3 (CH2)14COOH 34 29 Geddes et al., 1999

*Data from experiments in vitro. #Hippocampal pyramidal rat neurones P9. (Modifi ed from Geddes et al., 2001).
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fl uorescent protein (YFP) and it derivatives (Wachter and Remington, 
1999; Jayaraman et al., 2000). YFP is a derivative of GFP, which contains 
four point mutations (T203Y/S65G/V68L/S72A). It has improved 
brightness and red-shifted excitation/emission spectra compared with 
GFP (Ormo et al., 1996; Elsliger et al., 1999). The halide sensitivity 
of YFP was conferred on this protein using a rational mutagenesis 
strategy based upon crystallographic data (Wachter et al., 1998) and 
confi rmed experimentally (Wachter and Remington, 1999).

It was found that YFP fl uorescence is sensitive to various 
small anions with relative potencies F− > I− > NO

3
− > Cl− > Br− > 

formate− > acetate− (Jayaraman et al., 2000). YFP sensitivity to these 
small anions results from ground-state binding near the chromo-
phore (Jayaraman and Verkman, 2000), which apparently alters 
the chromophore ionization constant and hence the fl uorescence 
emission. As with other GFP derivatives, the fl uorescence of YFP 
is pH-dependent. The EC

50
 values for Cl− varied from 32.5 mM 

(pH = 6) to 777 mM (pH = 7.5) (Table 2).
This analysis demonstrates that at the physiological range of 

intracellular pH (7.2–7.4) the sensitivity of YFP to Cl− is low, which 
creates diffi culties and limitations in using “wild type” (WT) YFP 

as a Cl− indicator. Indeed, different methods of [Cl−]
i
 estimation 

in various cell types gives its range of variations from 3 to 60 mM 
(Table 3). Consequently, the resolution of the indicator with EC

50
 

more then 100 mM is low and it can lead to errors in noninvasive 
estimation of [Cl−]

i
.

To further improve spectral characteristics, YFP was subjected 
to additional mutagenesis and the most successful variants were 
selected. It has been demonstrated that at pH 7.5 the EC

50
 for Cl− of 

the mutant YFP H148Q is 154 mM (Table 2; Wachter et al., 2000), 
which is still high; however, it is closer to the physiological range 
of [Cl−]

i
 than WT YFP (777 mM).

To enhance sensitivity of YFP-H148Q to Cl−, libraries of mutants 
were generated in which pairs of residues in the vicinity of the halide 
binding site were randomly mutated (Galietta et al., 2001a). Analysis 
of over a thousand clones revealed improved anion sensitivity with 
EC

50
s down to 40 mM for Cl− (V163S), 10 mM for NO

3
− (I152L) 

and 2 mM for I− (I152L). To check physiological applicability, the 
I152L mutant, which exhibited the best I− and NO

3
− sensitivities, was 

expressed in Swiss 3T3 fi broblasts carrying CFTR. Transfected cells 
were brightly fl uorescent with a uniform cytoplasmic and nuclear 
staining pattern. Replacement of 20 mM Cl− with I− produced a 
fl uorescence decrease of 53 ± 2% with YFP-I152. It was much greater 
than that of <10% for the same experiment with YFP-H148Q, indi-
cating that this mutant is a good tool for monitoring I− and NO

3
−. 

The same results were obtained when the activity of CFTR was stud-
ied using a Cl−/NO

3
− exchange protocol (Galietta et al., 2001b).

Some other mutants of YFP also showed greatly improved Cl− 
sensitivities (Table 4), which stimulated further development of Cl− 
indicators. It provided the basis for using YFP mutants as genetically 
encoded Cl− sensors that can be targeted to specifi c organelles in 
living cells or expressed in specifi c cell types for monitoring [Cl−]

i
 

distribution, to study the functioning of Cl− channels and pumps.

Table 2 | Sensitivity of YFP and YFP-H148Q to chloride (Modifi ed from 

Wachter et al., 2000).

pH EC
50

 YFP (mM) EC
50

YFP-H148Q (mM)

6.0 32.5 22.1

6.5 82.1 34.0

7.0 245 66.2

7.5 777 154.4

8.0 2160 431

Table 3 | Intracellular chloride in different preparations registered by different methods.

Preparation Method [Cl−]
i
 (mM) References

Snail neurons Cl-sensitive microelectrodes 3–8 Neild and Thomas, 1974

Rabbit epithelial cells Cl-sensitive microelectrodes 16 Abdulnour-Nakhoul et al., 2002

Rat sympathetic neurons Cl-sensitive microelectrodes 30 Ballanyi and Grafe, 1985

Retina bipolar cells Perforated patch 21–25 Billups and Attwell, 2002

Hippocampal slices (P16-P20) Perforated patch 6–12 Khirug et al., 2008

Salamandra cones Perforated patch 20–50 Thoreson and Bryson, 2004

Spinal neurons Perforated patch 11–27 Rohrbough and Spitzer, 1996

Retina bipolar cells Perforated patch 8–23 Satoh et al., 2001

Retina amacrine and ganglion cells Perforated patch 14–29 Zhang et al., 2006

Hippocampal slices Cell attach 4–18 Tyzio et al., 2006

Hippocampal cultures MQAE 11–35 Hara et al., 1992, 1993

Epithelial cells SPQ 27 Krapf et al., 1988a

Renal cells MQAE and fl ow cytometry 43 Miyazaki et al., 2007

Cockroach salivary gland cells MQAE and two-photon fl uorescence lifetime imaging 42–80 Hille et al., 2009

Human neurophils Zimosan-conjugated Cl probe 73 Painter and Wang, 2006

Hippocampal slices Clomeleon 5–30 Berglund et al., 2008

Hippocampal culture Clomeleon 20–60 Kuner and Augustine, 2000

Retina bipolar cells Clomeleon 10–60 Duebel et al., 2006

Hippocampal neurons Cl-Sensor 11 Markova et al., 2008

CHO cells Cl-Sensor 23 Markova et al., 2008

Retina photoreceptor cells Cl-Sensor 30–50 Markova et al., 2008; Mukhtarov et al., 2008
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APPLICATION OF YFP IN HIGH-THROUGHPUT SCREENING
In a number of experimental models YFP derivatives have been used 
as suitable probes for high-throughput (HTP) screening. These 
allow the testing of tens of thousands of different compounds (Ma 
et al., 2002a,b). We present here several examples.

YFP-H148Q was transfected in Fisher rat thyroid cells (FRT) and 
in Swiss 3T3 fi broblasts for quantitative HTP screening of potential 
modulators of CFTR halide permeances (Galietta et al., 2001b). 
In these assays small increases in CFTR activity by the agonists 
forskolin and genistein were detected. Because YFP fl uorescence 
is sensitive to H+ a simultaneous monitoring of pH by specifi c 
pH-probe, BCECF, was also conducted (Galietta et al., 2001b). 
Using HTP screening on cells expressing the YFP-H148Q mutant, 
new classes of CFTR modulators were identifi ed: inhibitors (Ma 
et al., 2002a), activators (Galietta et al., 2001c; Ma et al., 2002b; 
Muanprasat et al., 2004, 2007), potentiators (Yang et al., 2003) and 
correctors (Pedemonte et al., 2005a,b) of wild-type CFTR, as well as 
of ΔF508-CFTR, the major CFTR mutation causing cystic fi brosis 
(see rev. Verkman and Galietta, 2009).

To screen potential activators of CFTR-mediated Cl− fl ux, a YFP 
mutant with higher halide sensitivity (YFP-H148Q/I152L) has been 
co-expressed with defective ΔF508-CFTR in FRT epithelial cells 
(Yang et al., 2003; Xu et al., 2008). It has been shown that natural 
cumarine compounds rescue defective ΔF508-CFTR chloride chan-
nel gating (Xu et al., 2008).

A mutant with enhanced sensitivity to halides (YFP-V163S) has 
been used in M1 cortical collecting-duct cells to monitor changes 
in Cl− mediated by CFTR or by stimulation with cAMP- and Ca2+-
increasing agonists (Adam et al., 2005).

Important observations have been obtained with YFP-H148Q/
I152L, which shows a 30-fold selectivity to I− over Cl−. It was proved 
to be a sensitive biosensor of Na+/I− symporter-mediated I− uptake 
in thyroid cells and nonthyroidal cells following gene transfer 
(Rhoden et al., 2007, 2008). As defective iodide transport occurs 
in several inherited and acquired thyroid disorders, using this YFP 
mutant for detection of I− represents a useful tool for studying 
the pathophysiology and pharmacology of this Na+/I− symporter 
(Rhoden et al., 2007).

YFP derivatives were also used for testing ligands of glycine 
receptors (GlyRs) and ionotropic GABA receptors. Using HEK 
293 cells expressing YFP-I152L or YFP-V163S mutants with these 
Cl−-selective receptor-operated channels has established the opti-
mal conditions for pharmacological screening of Cl− (Kruger et al., 

2005) and detection of functional and non-functional mutations 
in the GlyRs (Gilbert et al., 2009).

These observations have demonstrated advantages of using 
genetically encoded YFP derivatives in HTP in comparison with 
other techniques.

ADVANTAGES AND DISADVANTAGES OF GENETICALLY 
ENCODED Cl− INDICATORS
Of the many advantages of YFP-based Cl− indicators in compari-
son with fl uorescent dyes, we will mention only the four most 
important.

First, the peak of absorbance is at a wavelength of more then 
480 nm, i.e., in contrast to quinolinium-based halide indicators, 
YFP can be excited in the visible range, permitting more stable 
 fl uorescence signal and less cell damage. Consequently, it allows long-
lasting Cl− monitoring with repetitive stable responses and bright 
fl uorescence signals using conventional imaging equipment.

Second, genetically encoded probes can be targeted to specifi c cell 
types by cell-specifi c promoter, or to defi ned cellular compartments 
by fusion to short sequence tags or to specifi c proteins. This would 
allow Cl− monitoring in specifi c cell types or cellular compartments. 
For instance, transgenic mice expressing enhanced YFP (EYFP) under 
control of the Kv3.1 K+ channel promoter (pKv3.1) have been gener-
ated (Metzger et al., 2002), making possible neuron-specifi c expres-
sion of EYFP in the hippocamus, thalamus and granule cell layer of 
cerebellum. This model has been used for analysis of glutamate-
induced changes in intracellular Cl− and pH (Metzger et al., 2002; 
Slemmer et al., 2004). The thy1 promoter has been successfully used 
to drive specifi c neuronal expression of Clomeleon in the hippocam-
pus and in neocortical areas as well as in the dentate gyrus, cerebellar 
mossy fi bers and piriform cortex (Berglund et al., 2008).

Third, the intracellular concentration of the YFP-based Cl− indi-
cators is only a few micromolar, which is several orders of magni-
tude less than the [Cl−]

i
. This avoids buffering effects, which are a 

substantial problem in, for instance, fl uorescence measurements of 
intracellular Ca2+ at using conventional fl uorescent dyes.

Finally, the molecular weight of the YFP-based Cl− indicators is 
about 27 kDa, which prevents diffusion of the indicator from cells. 
In cells that are imaged without simultaneous electrophysiological 
recordings, indicator levels remains constant over hours.

YFP-based sensors also have several disadvantages. One of them 
is pH sensitivity (Table 2). Changes in intracellular pH or in specifi c 
compartments can lead to errors in observations and interpretation 
of results. To overcome this problem, in some cases independent 
monitoring of pH is necessary.

YFP-based Cl− sensors have rather low kinetics of Cl−  association/
dissociation. The double mutant YFP-H148Q/V163S, which exhib-
its relatively high Cl− sensitivity (EC

50
 = 39 mM), has an association 

time constant τ = 1900 ms (Galietta et al., 2001a), which would 
cause limitations in the time resolution when using this mutant 
for analysis of rapid Cl− dynamics. The other double mutant, 
YFP-H148Q/I152L, has much faster association/dissociation 
 kinetics (association time constant τ = 52 ms; Galietta et al., 2001a); 
however, its sensitivity to Cl− is relatively low (EC

50
 = 85 mM). Thus, 

the YFP-based probes can be used to reliably detect changes in Cl− 
concentrations with time course resolution in the range of hun-
dreds of milliseconds or even seconds.

Table 4 | Sensitivity of YFP mutants to chloride at pH 7.5.

Mutant EC
50

 (mM)

H148Q 106a–197

H148Q/I152L 85a–88

H148Q/V150A/I152L 61

H148Q/V163S 39a–62

H148Q/V163L 77

H148Q/V163T/F165Y 55

H148Q/V150S/V163T 92

aPurifi ed protein. EC50 was measured in bacterial lysate with YFP-H148Q containing 
additional single or double mutations. (Modifi ed from Galietta et al., 2001a).
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A signifi cant limitation in the use of Cl− indicators was a lack 
of a Cl−-dependent change in spectral shape, which precludes 
ratiometric measurements. For quinolinium-based Cl−-sensitive 
dyes, synthesis of a series of dual-wavelength fl uorescent indi-
cators has been achieved using conjugation of Cl−-sensitive and 
Cl−-insensitive dye molecules with different spacers (Jayaraman 
et al., 1999). Only one “chimera” (MQa4AQ) was cell-permeating 
and it turned out to be four times less Cl−-sensitive than MQAE. 
YFP-derivatives also do not have a clear isosbestic point in spectral 
shape at  different Cl− concentrations. This precludes ratiometric 
measurements and, consequently, gives rise to limitations in the 
estimation of [Cl−]

i
 values.

The important development of genetically encoded Cl− probes 
was achieved by Kuner and Augustine (2000), who constructed a 
ratiometric YFP-based Cl− indicator, termed Clomeleon.

RATIOMETRIC MONITORING OF Cl− USING GENETICALLY 
ENCODED PROBES
Clomeleon
Clomeleon consists of two fl uorescent proteins, Cyan Fluorescence 
Protein (CFP) and a variant of YFP, Topaz Fluorescence Protein 
(TFP, GFP/S65G/S72A/K79R/T203Y/H231L), connected with a 
polypeptide linker of 24 aminoacids (Figures 3A,B).

The work of this probe is based on the phenomenon of 
Fluorescence Resonance Energy Transfer (FRET) between two 
 fl uorescent proteins (see Box 1). Binding of a Cl anion to TFP 
reduces its emission, leading to a decrease in FRET effi ciency. This 
process can be visualized as a reduction in the ratio of fl uorescence 
emission between the TFP acceptor and CFP donor  fl uorophores. 

Analysis of emission spectra of this construct revealed that the 
intensity of fl uorescence depends on Cl− concentration. Moreover, 
presence of the isosbestic point in normalized spectra (Figure 3C) 
allows the use of this indicator as a ratiometric probe for  estimation 
of Cl− concentration (Figure 3D) The construct was named 
Clomeleon as an allusion to the FRET-based genetically encoded 
Ca2+ indicator, Cameleon (Miyawaki et al., 1997).

Unlike organic probes, Clomeleon possesses several valuable 
features: excitation at visible wavelengths, good signal-to-noise 
ratio, safer loading procedures for cells, absence of leakage from 
cells and the possibility of targeting the probe to different cell types 
using specifi c promoters. Moreover, the construct exhibits high 
fl uorescence stability: absence of Clomeleon bleaching during 2 h 
of recording has been reported (Pond et al., 2006). Proteolitical 
stability of Clomeleon in transgenic mice has been observed  during 
9 months. It is also a low toxicity probe, which did not cause any 
behavioural aberration in Clomeleon-expressing mice in the course 
of 2 years (Berglund et al., 2006).

The main advantage of Clomeleon is the possibility of perform-
ing ratiometric measurements of [Cl−]

i
. The ratiometric  capabilities 

of Clomeleon allow optical measurements that are minimally infl u-
enced by the thickness of the specimen, intensity of the excitation 
light and concentration of the indicator. This, in turn, makes it 
possible to accurately determine Cl− values even in cells with com-
plicated geometry, such as neurons.

Clomeleon has been used for measurements of [Cl−]
i
 in cul-

tured hippocampal neurons (Kuner and Augustine, 2000), in 
plant cells (Lorenzen et al., 2004) and in cells of retina and brain 
slices (Duebel et al., 2006; Pond et al., 2006). The widest fi eld 

FIGURE 3 | Structure and fl uorescence properties of Clomeleon. 

(A) Scheme of Clomeleon construct and (B) schematic reconstruction of 
Clomeleon structure. The fl uorescent domains, CFP (cyan) and Topaz (yellow) 
were set in parallel orientation as N- and C-terminal ends of either domain 
were on the same site. The distance between CFP and Topaz chromophores 
was calculated to be 3.3 nm. (From Kuner and Augustine, 2000 (top) and 

Jose et al., 2007 (bottom). (C) Emission spectra of Clomeleon in the 
presence of different Cl− concentrations. In all cases, the recombinant 
protein was excited at 434 nm and the emission spectra were normalized 
to their peaks at 527 nm. (D) The relationship between fl uorescence 
emission ratio (527 nm/485 nm) and Cl− concentrations. (Data from Kuner 
and Augustine, 2000).
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of application for genetically encoded probes comes from the 
possibility of targeting them to specifi c cell types using unique 
promoters, or to cellular compartments and membrane domains 
by fusion to respective tags or to proteins with known location. 
Several transgenic mouse lines have been created by insertion of 
Clomeleon, under control of the thy1 promoter, into their genome 
(Berglund et al., 2008). Details and functional implications of 
these models are described in recent papers (Duebel et al., 2006; 
Berglund et al., 2008).

Potential limitations of this probe are that it, as other YFP-based 
Cl− indicators, is sensitive to pH and that the time course of reac-
tion to Cl− is relatively slow. The other potential problem is that the 
fl uorophores, CFP and TFP, may bleach at different rates, which 
would distort the calibration of the indicator signal.

The important disadvantage of Clomeleon is that at physiologi-
cal pH it has a rather low sensitivity to Cl−. The EC

50
 of Clomeleon 

is more than 160 mM (Kuner and Augustine, 2000; Figure 3D, 
Table 5) which is far from physiological [Cl−]

i
 (3–60 mM). For 

this reason, the development of ratiometric probes with high sen-
sitivity to Cl− is required.

Cl-Sensor
Recently a new genetically encoded indicator, termed Cl-Sensor, 
has been proposed (Markova et al., 2008; Figure 4A). Analysis 
of the spectral properties of this construct during simultaneous 
monitoring of fl uorescence signals and whole-cell recordings with 
different Cl− concentrations in the pipette solution revealed two 
important features.

First, the normalized excitation spectra obtained at different [Cl−]
i
 

have a common point near 465 nm (Figure 4B), meaning that Cl-
Sensor allows ratiometric monitoring using the fl uorescence excita-
tion ratio. This feature allows recordings using conventional setups 
with devices for a rapid change of excitation wavelength.

Second, due to triple YFP mutation (YFP-H148Q/I152L/V163S) 
this construct exhibits a relatively high sensitivity to Cl− with an esti-
mated EC

50
 of about 30 mM (28 ± 5 mM). With about 5-fold higher 

sensitivity than Clomeleon, this indicator has a good dynamic range 
at physiological intracellular concentrations (Figure 4C), providing 
a good basis for reliable monitoring of [Cl−]

i
 in different cell types.

Cl-Sensor demonstrates the same advantageous features as 
Clomeleon, i.e. excitation at visible wavelengths, good signal-to-noise 
ratio, safer loading procedures, absence of leakage from cells and abil-
ity to be targeted to different cell types using specifi c promoters.

Similarly to other fl uorescent proteins from the GFP family, Cl-
Sensor exhibits a relatively high pH sensitivity with pKa ranging 
from 7.1 to 8.0 pH units at different Cl− concentrations.

One widespread problem with GFPs is their low transfection 
effi ciency in neurons. To overcome this diffi culty, Cl-Sensor was 
subcloned at two different vectors driven by mutated CMV and 
ubiquitine promoter. These plasmids carrying Cl-Sensor reveal 
higher transfection effi ciency and brightness of probe in the CHO 
cell line, retinal cells and spinal or hippocampal neurons (Waseem 
et al., paper in preparation).

The Cl-Sensor was used for noninvasive estimation of [Cl−]
i
 in 

CHO cells, hippocampal neurons and photoreceptor cells from 
 retinal slices (Table 3; Markova et al., 2008; Mukhtarov et al., 

Phenomenon of fl uorescence resonance energy transfer (FRET) repre-
sents interaction between two fl uorophores, when excitation energy 
from a donor (D) molecule is directly transferred to a molecule of 
acceptor (A).

Four main conditions have to be fulfi lled for this phenomenon 
development:

 (i) overlapping of emission spectrum of donor and excitation 
spectrum of acceptor;

 (ii) small distance between molecules (less then 10 nm);
 (iii) good orientation the dipole moments of donor emission and 

acceptor absorption;
 (iv) high quantum yield of fl uorophores.

The FRET effi ciency (E) is dependent on the inverse sixth power 
of the distance between fl uorophores (r):

E = 1/[1 + (r/R0)
6]

where R0 is the distance at which the energy transfer effi ciency 
is 50%.

This makes FRET technique a sensitive tool for analysis of  protein–
protein interaction and changes in intermolecular distances.

For more details see: Tsien et al., 1993; Pollok and Heim, 1999; 
Jares-Erijman and Jovin, 2003; Sekar and Periasamy, 2003; Wallrabe 
and Periasamy, 2005.

BOX 1 | FRET.

Table 5 | Halide sensitivity and ionic selectivity of Clomeleon (Modifi ed 

from Kuner and Augustine, 2000).

Halide EC
50

 (mM) Hill coeffi cient

F− 5.9 ± 2.4 1.25 ± 0.09

I− 46 ± 14 0.90 ± 0.07

Br− 111 ± 21 0.82 ± 0.09

Cl− 167 ± 13 0.87 ± 0.07
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2008). For Cl-Sensor gene delivery to retinal cells an in vivo 
 electroporation technique was used (Matsuda and Cepko, 2004; 
Mukhtarov et al., 2008). The effi ciency of electroporation into 
the developing postnatal retina (at P0) was high, and trans-
gene expression persisted for more then 1 month (Mukhtarov 
et al., 2008), indicating that in vivo electroporation of Cl-Sensor 
cDNA is a  powerful tool for monitoring [Cl−]

i
 under different 

 experimental conditions and through age-dependent changes in 
Cl− in neurons.

BioSensor-GlyR – tool for monitoring Cl−-selective 
channel activation
Investigation of brain functioning requires methods allowing 
dynamic analysis of network activity combined with determina-
tion of single-cell properties. This strategy has been developed for 
monitoring calcium transients using rapid two-photon micros-
copy (Cossart et al., 2005). Chemically engineered proteins that are 
directly sensitive to light are also powerful optical methods of pro-
tein function control for modulation of signalling circuits inside cells 
and in cell circuits (Gorostiza and Isacoff, 2008). However, analysis 
of networks formed by neuronal circuits for specifi c synapses (gluta-
matergic, GABAergic or glycinergic) is hampered by lack of adequate 
techniques. This problem could be solved by genetic incorporation 
of molecules capable of changing their fl uorescence on activation 
of specifi c synapses. The best candidates for these molecules would 
be fl uorescently modifi ed postsynaptic receptor-operated channels. 
Genetic incorporation of a molecular domain which could change 
fl uorescence upon channel activation would provide the possibility 
of noninvasive monitoring of ion channel activity. Development of 
these molecules is a highly challenging task.

One of the approaches uses the voltage-clamp fl uorometry (VCF) 
technique, based on covalently attaching a small environmentally 
sensitive sulfhydryl-labeled fl uorophore to a cysteine introduced 
into a domain of interest on the protein. This approach has been 
successfully used to analyze the conformational rearrangements 
underlying gating of voltage-gated potassium channels (Mannuzzu 
et al., 1996) and ligand-gated glycine receptor (GlyR) channels 
(Pless and Lynch, 2008, 2009).

The other way consists of inserting a genetically encoded fl uores-
cent sensor in the protein’s sequence without changing its functional 
properties. Recently, a new genetic probe, termed BioSensor-GlyR, 
has been developed (Mukhtarov et al., 2008). This construct is a 
Cl−-selective GlyR channel with Cl-Sensor incorporated into the 
long cytoplasmic domain (Figure 5A).

The functioning of this modifi ed GlyR is not perturbed by the 
inserted Cl-Sensor. This fact was proved in whole-cell recordings of 
cells expressing BioSensor-GlyR, where rapid application of glycine 
elicited ionic currents with kinetics similar to those of wild-type 
GlyR (Figure 5B). The main functional properties of BioSensor-
GlyR, i.e. kinetics, agonist sensitivity and Cl− selectivity, are also 
similar to those of the wild-type GlyR.

Application of glycine to cells expressing BioSensor-GlyR 
induced changes in fl uorescence (Figure 5C). The amplitude and 
direction of fl uorescence signals correlated with the amplitude and 
direction of glycine-induced currents (Figure 5D), demonstrating 
that BioSensor-GlyR is a good probe for spectroscopic monitoring 
of GlyR activation in live cells. The sensitivity of BioSensor-GlyR 
was high enough to resolve changes in [Cl−]

i
 induced by  activation 

of postsynaptic receptors in glycinergic synapses. The decay  kinetics 
of fl uorescence responses were slow compared with those of ionic 
currents. This might be partially due to the kinetics of Cl− bind-
ing by YFP. However, this may also refl ect slow intracellular Cl− 
transients, as monitoring with MQAE, the rapid quinolinium 
 indicator, showed a similarly slow rise and decay of Cl−- dependent 
 fl uorescence in cerebellar neurons (see Figure 2C).

In spite of these limitations, BioSensor-GlyR is a promising 
tool for spectroscopic monitoring of [Cl−]

i
 changes in the local 

surroundings of glycine receptor ion channels. Development of 

FIGURE 4 | Design and fl uorescence properties of Cl-Sensor. 

(A) Schematic representation of Cl-Sensor construct; *** indicates three 
mutations: YFP-H148Q, -I152L and -V163S in the YFP sequence. (B) Normalized 
spectra of Cl-Sensor. Whole-cell recordings from CHO cells with pipettes 
containing different Cl− concentrations (shown in the graph). Note that spectra 
have a common point at 465 nm. (C) Comparison of Cl−-sensitivities of 
Cl-Sensor and Clomeleon. Cl-Sensor (black squares and line): the relationship 
between fl uorescence excitation ratio (F480/F440) and [Cl−]i obtained from 
whole-cell recordings with pipettes containing solutions with different Cl− 
concentrations (from 0 to 150 mM) (from Markova et al., 2008). Clomeleon (blue 
circles and line): the relationship between fl uorescence emission ratio (F527/F485) 
and [Cl−]i plotted from Kuner and Augustine, 2000 (see Figure 4D). Note that 
main part of calibration curve for Clomeleon is out of physiological range of [Cl−]i.
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transgenic animals expressing Cl-Sensor and BioSensor-GlyR 
will be particularly useful for studies of inhibitory neuronal net-
works in brain slice preparations using two-photon microscopy. 
For the Biosensor-GlyR it might, however,  be a diffi cult task 
as expression of the GlyR, containing an additional CFP-YFP 
module in the long cytoplasmic loop, may modify the function 
of glycinergic synapses.

CONCLUSIONS
The development of imaging techniques and specifi c genetically 
encoded chloride-sensitive probes has opened new avenues for non-
invasive monitoring of this ion in different cell types and cellular 
 compartments in normal and pathological conditions. The main 
steps stimulating the development of these probes were as follows. 
First, the discovery of the halide sensitivity of YFP. Second, the pro-
duction of YFP mutants exhibiting usefully high sensitivity to Cl− 

at concentrations close to the physiological range of [Cl−]
i
. Third, 

the construction of molecules (Clomeleon and Cl-Sensor) consist-
ing of two fl uorescent proteins, allowing ratiometric noninvasive 
estimation of [Cl−]

i
. Finally, the incorporation of Cl-Sensor into the 

sequence of the Cl−-selective glycine receptor channel (BioSensor-
GlyR), which opens up the ability to monitor synaptic activation of 
these proteins using imaging techniques. This provides an intrigu-
ing background for the development of biosensors which make it 
possible to monitor the activity of ionotropic GABA receptors and 
other Cl−- selective channels.
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FIGURE 5 | Structure and fl uorescence properties of BioSensor-GlyR.

(A) Scheme of BioSensor-GlyR construct. Two subunits are shown. (B) Whole-
cell currents induced by rapid application of glycine (30 or 300 µM) and dose-
response curves obtained from CHO cells transfected with either wild-type 
human GlyR (blue) or BioSensor-GlyR (green). Note similar kinetics and agonist 
sensitivity for wild-type GlyR and BioSensor-GlyR. (C) Examples of simultaneous 

whole-cell and fl uorescence recordings from BioSensor-GlyR transfected BHK 
cells with pipette containing either nominally 0 (left traces) or 150 mM (right 
traces) Cl−. Glycine (1 mM) was pressure applied for 10 ms duration. 
(D) Relationship between the amplitude of glycine-induced currents and 
changes in fl uorescence of BioSensor-GlyR at 480 nm. The amplitude of currents 
was regulated by the changing of Vh. (Modifi ed from Mukhtarov et al., 2008).
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