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 presentation of a single individual in a variety of contexts (Quiroga 
et al., 2005). One neuron in the right anterior hippocampus 
responded to the actress Halle Berry, presented in a photograph, 
as a masked character (catwoman), as a drawing, or as the letter 
string “Halle Berry”. This level of response specifi city shows that the 
cells are not tuned to general visual features common to images of 
Halle Berry but to the concept of the specifi c actress. The striking 
degree of responsive specifi city of these units strongly suggests that 
they participate in the neural representation of specifi c individuals. 
However, these studies are still correlative in the sense that they 
allow us to watch neurons that fi re in a manner suggesting a role in 
encoding specifi c information, but they do not allow us to disrupt 
these neurons specifi cally to test this hypothesis.

Historically much of what we know about the functional parce-
ling of the brain has been obtained from lesion studies in experi-
mental animals and in patients with damage to specifi c brain regions 
(Squire, 2004). In learning and memory, studies of patient HM, 
who underwent a bilateral resection of the medial temporal lobe, 
have helped defi ne this area, and in particular the hippocampal 
formation, as critical in the formation of long-lasting  declarative 
memories. At a more molecular level both  pharmacological and 
genetic manipulations have been used to test ideas about the  cellular 
signaling mechanisms that underlie behavioral  plasticity. However, 
each of these approaches is limited in that they act as sledgehammers, 
altering every neuron in a given brain region, when the electrophysi-
ological studies suggest that it is really a very sparse group of neurons 
that is truly of interest in any given experimental context.

CIRCUITS AND REPRESENTATIONS
One approach to circuit analysis is to describe the precise pattern 
of wiring within specifi c processing units like the hippocampus or 
a cortical column. For example, in the hippocampus there is the 
classic tri-synaptic circuit where information from the entorhinal 

INTRODUCTION
How does the brain represent the surrounding world in discrete 
percepts? How does the pattern of retinal activity produced by 
 looking at the image of Halle Berry ultimately lead to the perception 
of the actress rather than a violin? How do the myriad  different 
associations with Halle Berry (actress, specifi c roles) or violin 
(inanimate object, music) form through learning and memory? 
These are basic questions at the heart of many areas of neuroscience. 
They have been approached by a variety of techniques that fall into 
two broad categories, watching brain activity and disrupting brain 
function. In this review we will discuss the development of genetic 
techniques that bridge the divide between these two approaches and 
allow the targeting of molecular changes specifi cally to anatomi-
cally dispersed neural representations that are activated by discrete 
environmental stimuli. These new tools allow the establishment of 
causal relationships between the activation of sparsely distributed 
neural ensembles and changes at the behavioral level.

The use of single unit recordings in awake behaving animals 
provides an exquisitely precise measure of the temporal activity of 
neurons. This has been used to extract information about how the 
brain encodes information by studying the correlation between neu-
ronal activity and the presentation of specifi c sensory stimuli. The 
best-studied example is probably in the primate visual system where 
a hierarchical pathway has been defi ned (Van Essen et al., 1992). 
Neurons in the primary visual cortex (V1) fi re in response to very 
general visual features such as orientation whereas following process-
ing through the ventral visual pathway, neurons in inferior temporal 
cortex respond to complex object features. This visual information is 
then relayed to the medial temporal lobes, which integrate multimo-
dal sensory information and play a  critical role in memory.

Single unit recording studies in the medial temporal lobe in 
humans have detected neurons with responses to highly defi ned 
categories. In the limit, units were found that responded to the 
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cortex enters through the dentate gyrus, is relayed to CA3  neurons 
via the mossy fi ber pathway and then to CA1 neurons via the 
Schaffer collateral pathway and fi nally back out to the entorhinal 
cortex (Squire, 2004). This connectivity diagram can be obtained 
to fi ner and fi ner levels of resolution and in principle an entire 
wiring diagram of a single brain at a single time point could be 
produced to the level of individual synaptic connections, similar 
to that obtained in C. elegans (White et al., 1986). However, even if 
this were precisely defi ned down to the level of single synapses it is 
not likely that the mechanisms that give rise to a neural representa-
tion or memory trace would become apparent. As the example of 
the Halle Berry neuron indicates, these representations are likely to 
be quite sparse and embedded within a matrix of apparently iden-
tical neurons. The particular response patterns of an individual 
neuron are likely determined by the strength of specifi c synaptic 
 connections that have been altered through experience. Moreover, 
even if one could explain how these specifi c fi ring patterns arise 
through circuit plasticity, it would be diffi cult to experimentally 
establish the contribution of a particular ensemble of neural activity 
to an actual representation of the environment.

An alternate view is that what defi nes a circuit is the environ-
mental contingencies that lead to its activation (Figure 1). In the 
mammalian brain this is generally referred to as an ensemble code 
or neural representation of the particular environmental stimulus. 
In the case of simple systems or refl ex pathways, the wiring diagram 
often predicts the location of the neural ensembles that encode 
specifi c environmental information. For example, in the Aplysia 
gill withdrawal refl ex a group of sensory neurons are activated 
by tactile stimulation and synapse directly onto motor neurons 

to control withdrawal behavior (Kandel, 2001). Here the primary 
sensory  neurons are defi ned by their enervation of the gill and 
their  activation by tactile stimulation of the gill. There is no further 
higher order processing prior to motor output. The behavioral 
plasticity of the withdrawal refl ex is controlled by synaptic plasticity 
within these sensory neurons. Because of the uniformity and ana-
tomical isolation of this group of cells, it has been possible to apply 
techniques for both watching and manipulating neurons within the 
context of a defi ned circuit (representation) in a behaving ani-
mal. The application of these convergent approaches has proven 
quite powerful in defi ning the cellular and molecular mechanisms 
that underlie behavioral plasticity in this system. The goal of this 
review is to discuss recent attempts to develop approaches that allow 
similar convergent molecular and physiological access to the more 
dispersed neural representations of the mammalian brain.

LINKING NEURAL ACTIVITY TO MOLECULAR CHANGE
One technique that has been used for many years to watch brain 
activity has taken advantage of a class of immediate early genes 
or IEGs that are expressed in response to high-level neural  fi ring 
(Sagar et al., 1988). The three most commonly used IEGs for this 
purpose are cfos, arc, and zif268. The expression of these genes 
is induced by action potential fi ring, and the ½-life of the gene 
products are relatively short. Thus the expression pattern of IEGs 
in brain  sections from an animal provides a record of the neural 
activity from several hours prior to sacrifi ce and has been used 
extensively to map brain activation from a wide variety of envi-
ronmental stimulation and in learning and memory relevant 
 paradigms (Guzowski et al., 2005).
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FIGURE 1 | Clustered and distributed neural ensembles. Two examples of 
neural circuits are shown. The top panel shows a simplifi ed version of the gill 
and siphon withdrawal circuit in Aplysia. The sensory neuron cell bodies are 
located adjacent to each other in a cluster and possess similar biochemistry 
and response properties. The bottom panel represents the hippocampal circuit 
of the mammalian brain. The green circles represent neurons that are 
activated by a specifi c pattern of sensory stimulation and that when activated 

contribute to a specifi c behavioral response. The hippocampal circuit, like 
many other circuits in the brain, responds to sensory stimulation with 
activation patterns that can not be predicted from their wiring diagram. Each of 
these neural ensembles involves a sparse subset of neurons that have an 
unpredictable spatial distribution. The Aplysia neurons are primary sensory 
neurons and their response properties can be predicted by their physical 
location in the ganglion.
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One of the limitations of this approach is that it provides only 
a single time point record of activity patterns, making it  diffi cult 
to determine how plasticity modulates activity or even how  stable 
this pattern of gene expression is in relation to an identical stimu-
lus. This problem was addressed using the  expression of the IEG 
arc (Guzowski et al., 1999). By using fl uorescent in situ hybridiza-
tion to examine expression of arc mRNA they were able to detect 
the pattern of arc expression at two separate time points in the 
same animal. They took advantage of the fact that they could 
detect the expression of the arc precursor RNA while it was still in 
the nucleus as well as the mature mRNA which was present in the 
cytoplasm and dendrites. The nuclear arc signal represented very 
recent and ongoing expression refl ecting neural activity several 
minutes prior to sacrifi ce of the animal, while the cytoplasmic 
signal refl ected activity that had occurred 30 min or more prior. 
They used this approach to examine the consistency of activa-
tion of the hippocampus when an animal was repeatedly exposed 
to the same environment. They found that when animals were 
allowed to explore the same environment, they re-expressed arc 
in many of the same neurons that had also expressed it on the 
fi rst exposure. This is a critical result in that it demonstrated for 
the fi rst time that IEG expression could be used to consistently 
refl ect patterns of activity associated with a discrete representation 
and provided results that were qualitatively and quantitatively 
similar to results obtained with electrophysiological recordings 
of the hippocampus.

The temporal information regarding neural activity that can 
be obtained using IEG expression is clearly limited relative to 
electrophysiological recordings. For example, while it is clear 
that high-level fi ring induces expression, it is not clear what the 
precise threshold is and how this might vary among different 
neuronal cell types. One advantage is that large brain regions can 
be surveyed and precise anatomical information can be obtained. 
A second advantage is that the promoter regulatory elements 
that confer neural activity dependence can, in theory, be used to 
drive expression of any linked heterologous transgene. This was 
fi rst demonstrated in transgenic mice by (Smeyne et al., 1992) 
using the cfos promoter to drive activity dependent expression 
of E. coli β-galactosidase. More recently, an axonally targeted 
β- galactosidase was expressed from the cfos promoter, providing 
the potential to trace the projections of specifi c active neuronal 
populations (Wilson et al., 2002). The use of these promoter ele-
ments is general and provides the potential to introduce func-
tional effector molecules directly into activated neural ensembles 
to allow their molecular manipulation.

The use of IEG promoters as tools for both watching and 
potentially manipulating functional neural circuits is limited 
in a number of ways. For example, the direct introduction of 
 toxins or other molecular regulators via the cfos promoter could 
be complicated by developmental effects of their expression. In 
 addition, it would be useful for many studies to allow the molecular 
change introduced into the activated neurons to be maintained 
for more prolonged periods than the short (minutes to hours) 
times afforded by the promoters themselves. We therefore set out 
in a recent study to develop a genetic system with the following 
features. (1) The expression of any transgene of interest should 
be linked to neural activity only during a specifi c experimenter 

controlled time window. (2) The transgene expressed in those 
active neurons should be maintained for a prolonged period, but 
no further labeling of active cells should occur following closure 
of the permissive time window.

We achieved activity dependent regulation of transgene 
 expression with these two features by combining elements of the 
tetracycline system for gene regulation with the cfos promoter as 
shown in Figure 2 (Reijmers et al., 2007). The approach uses two 
separate transgenes in the same animal. The fi rst uses the cfos pro-
moter to drive expression of the tetracycline transactivator (tTA or 
TET-off). In mice carrying only this transgene high-level neural 
activity will result in the induction tTA, which is a transcription 
factor that can be blocked by the antibiotic Doxycycline (Dox). 
In the absence of Dox tTA drives expression of genes linked to a 
tetO-promoter sequence. The second transgene incorporates both 
a tetO-linked reporter (in this case the somato-axonal marker 
taulacZ) as well as a transcriptional feedback loop to maintain 
tetO-linked gene expression indefi nitely once it is activated. 
The tTA (tTA*) in this construct was made Dox insensitive by 
 introduction of a point mutation in the Tet binding domain. In the 
presence of Dox the tetO-linked reporter is not activated even in 
those neurons in which the cfos-linked tTA is expressed. However, 
if Dox is withdrawn then both taulacZ and tTA* are expressed, 
but only in those neurons that were active to a high enough level 
to induce the cfos-linked tTA. Once activated, the tTA* sets up a 
transcriptional feedback loop that can be maintained even in the 
presence of added Dox. In this manner discrete time windows 
for genetic tagging of active neurons can be opened and closed 
through the use of Dox. In the absence of Dox, any neuron that 
has suffi cient induction of cfos-linked tTA to activate the feed-
back loop will persistently activate the taulacZ reporter, as well 
as any other tetO-linked transgene that is introduced into the 
mouse (Aiba and Nakao, 2007). This expression will be main-
tained even when the time window for sampling active neurons 
is closed by the readministration of Dox. In this way a persistent 
record of neurons that were active during the off-Dox period can 
be maintained. We called this the TetTag mouse, which stands for 
TETracycline transactivator controlled genetic TAGging of active 
neural circuits.

We used the TetTag mouse to examine the neural circuit that 
mediates fear memory (Reijmers et al., 2007). We asked whether 
neurons that are stimulated during learning in a Pavlovian fear-
conditioning paradigm were reactivated during retrieval of the 
memory as shown in Figure 2. We subjected TetTag mice to a learn-
ing trial consisting of paired presentations of a tone (CS) and a 
foot-shock (US). This results in a long-lasting fear memory for 
both the tone (cued conditioning) and the conditioning box in 
which the animals were shocked (context conditioning). The learn-
ing trials took place during a time window in which the animals 
were free from Dox, allowing activated neurons to be tagged with 
long-lasting expression of taulacZ. The animals were then returned 
to Dox to prevent further tagging of activate neurons, tested for 
retention of the memory in a retrieval trial, and sacrifi ced after 1 h 
for analysis using the endogenous IEG zif268 as a measure of recent 
neural activity. By comparing the expression of lacZ  (activity during 
learning) and zif268 (activity during memory retrieval) we could 
determine the degree of circuit reactivation. We found that the 
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number of reactivated neurons in the amygdala, a region critical 
in fear conditioning (LeDoux, 2007), correlated with the retrieval 
of the fear memory.

We hypothesized that these reactivated neurons represent a com-
ponent of the memory trace for conditioned fear. To test this idea 
we weakened the strength of the memory by extinction training; 
giving repeated CS presentations without the shock US. Animals 
were fi rst fear conditioned while free from Dox to tag the learning 
activated neurons. The extinction training then took place follow-
ing re-exposure to Dox (to prevent further labeling) and a memory 
retrieval trial was conducted 1 h prior to analysis. Extinction is 
never complete and varied signifi cantly from animal to animal. We 
found that there was a signifi cant correlation between the strength 
of the remaining fear response and the degree of circuit reactiva-
tion; animals with a high fear response during retrieval showed 
strong reactivation of the learning circuit while those with low 
fear responses showed a low degree of reactivation. In addition, 
we found some specifi city in the anatomy of the responses so that 
reactivation in the basal amygdala was correlated with context fear 
while reactivation in the lateral amygdala was associated with the 
strength of the cued (tone) fear memory. These results are con-
sistent with the known role of these subdivisions of the amygdala 
with the two different forms of fear memory (Quirk et al., 1995; 
Herry et al., 2008).

These results demonstrate that memory retrieval results in a 
reactivation of some of the same neurons that were active  during 
the initial learning. We suggested that neurons activated by the 
US (shock) but also receiving weak CS inputs were altered  during 

learning such that the CS alone could now activate them. In this 
way presentation of the CS alone after learning would recapitulate 
a  portion of the aversive US leading to downstream fear responses. 
This approach represents a somewhat elaborate way of simply 
watching neural activity and the results are still purely  correlative. 
However, by using a regulatable and binary genetic system, it should 
be relatively easy to introduce additional effector transgenes into 
the mice to control the activity or biochemistry of these neurons 
and directly test their role in memory. One recent study by Josselyn 
and coworkers has achieved this direct manipulation of neural 
 ensembles associated with a specifi c memory trace using a some-
what different approach.

DRIVING MEMORIES INTO SPECIFIC NEURAL ENSEMBLES
The use of neural activity to introduce genetic alterations into neu-
rons offers the possibility of obtaining direct molecular control over 
the neurons that participate in a specifi c neural representation or 
memory trace. An alternate approach that realized this goal took 
advantage of the fi nding that certain molecular manipulations could 
recruit neurons to participate in control of a specifi c memory. In 
one recent study, (Han et al., 2007), it was found that over expres-
sion of the transcription factor CREB in neurons resulted in their 
preferential recruitment into a fear memory trace. In this study, 
neurons in the amygdala were randomly infected with a viral vec-
tor that over expressed CREB and the animals were then trained in 
fear conditioning. They then performed a retrieval trial and exam-
ined the expression of the IEG arc in the amygdala. They found that 
the CREB over expressing neurons were more likely to be  activated 

TetTag mouse       remove dox       fear conditioning       add dox       retrieval       dissect brain 
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FIGURE 2 | The TetTag mouse. The fi gure summarizes an experiment from 
Reijmers et al. (2007). Mice carrying two transgenes were used. The fi rst 
transgene uses the cfos promoter to drive expression of the tetracycline 
transactivator (tTA). tTA activates the tetO promoter in the absence but not 
presence of doxycycline (Dox). The second transgene uses the tetO promoter to 
drive expression of a Dox insensitive tTA (tTA*), which, once expressed, sets up 
a positive feedback loop that continuously drives expression of a β-galactosidase 
reporter coupled to the tau protein (taulacZ). Neurons activated during fear 

conditioning (while off Dox) were tagged with long-lasting expression of taulacZ 
(LAC; red circle). Mice were put back on food with doxycycline and a retrieval 
test was done 3 days later, followed by analysis of the brains 1 h after retrieval 
for expression of lacZ and zif268. Neurons activated during learning expressed 
lacZ and those active during retrieval expressed zif268 (ZIF; green circle). The 
number of neurons in the amygdala that expressed both LAC and ZIF, indicating 
that they were activate during both learning and retrieval, was positively 
correlated with the strength of the fear memory that the animal displayed.
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 during the  memory retrieval. This result suggests that these CREB 
over  expressing neurons were predisposed to participate in the 
memory trace. The mechanism by which these neurons are prefer-
entially recruited is unclear but it does demonstrate that, at least in 
the amygdala, there is a good deal of fl exibility in which neurons can 
be used to encode a specifi c memory. The system is not hard wired 
at the level of individual neurons but there is a sort of competition, 
with CREB over expression favoring a neuron’s recruitment into 
the memory trace.

Josselyn and coworkers went on to take advantage of this CREB 
priming trick to directly manipulate a specifi c fear memory trace 
(Han et al., 2009). In this study the viral vector that delivered CREB to 
amygdala neurons also carried a gene that allowed for the expression 
of the diphtheria toxin receptor (DTR) (Figure 3). The CREB over 
expression recruited the neurons to the memory trace and expression 
of the DTR allowed for the selective ablation of these specifi c neurons 
with diphtheria toxin (DT). Ablation of the CREB over express-
ing neurons disrupted the fear memory while ablation of a similar 
number of random neurons in the amygdala did not. The memory 
effect was long lasting and specifi c (the same animals could learn a 
second fear association) demonstrating that this limited group of 
neurons played a critical role in the specifi c memory encoded during 
the CREB expression time window. This is the fi rst example of the 
disruption of a specifi c memory within a distributed network.

ALTERING ACTIVATED NEURAL ENSEMBLES
While the ability of CREB over expression to recruit neurons to 
participate in a specifi c memory is interesting in its own right, it 
would be useful to have an approach to manipulate neurons that 

were naturally activated by any general environmental stimulus. 
This has recently been accomplished using a technique in which 
neurons expressing β-galactosidase can be specifi cally disrupted 
with a pharmacological agent (Koya et al., 2009). The study used 
rats that carry a cfos-promoter driven β-galactosidase to label acti-
vated neurons. To manipulate the neurons they use a drug that 
is inactive in the absence of β-galactosidase (daun02) but can be 
hydrolyzed to a compound that can reduce Ca2+ dependent action 
potentials (Santone et al., 1986). They examined context specifi c 
sensitization to cocaine, which is an associative paradigm where the 
response to a drug of abuse is potentiated when it is administered 
in the same environment in which it has been repeatedly taken. 
Animals were given repeated injections of cocaine over 1 week in 
context A to produce the context specifi c sensitization (measured as 
increased locomotor response to the drug). Following the training, 
a fi nal sensitization trial to induce β-galactosidase was given and 
90 min later daun02 was injected into the nucleus accumbens to 
disrupt the β-galactosidase expressing neurons. Previous studies 
had suggested that the nucleus accumbens was a critical site of plas-
ticity mediating this behavior (Mattson et al., 2008). The injected 
animals showed a reduction in the context specifi c component 
of the sensitization but retained normal responses to cocaine in a 
novel context B when tested several days later.

Like the results with the CREB over expression, this study sug-
gests that a specifi c associative representation (context A + cocaine) 
is being interfered with selectively. While the behavioral results 
in this study are intriguing and the linkage to cfos based expres-
sion provides a potentially general approach for manipulating 
discrete neural representations, there are a number of important 
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FIGURE 3 | Disrupting a specifi c memory in the mouse. The fi gure 
summarizes the experiments of Han et al. (2009). Transgenic mice were used that 
express an inducible diphtheria toxin receptor (iDTR). A viral vector expressing 
both CREB and CRE recombinase was injected into the amygdala of iDTR mice 
leading to the expression of both CRE and CREB in a random subset of neurons 
(circles with CREB/CRE). The CRE recombinase removed a transcriptional STOP 
sequence and allowed for expression of DTR in these CREB expressing neurons. 

The mice were then subjected to fear conditioning. An earlier study from the 
same authors (Han et al., 2007) demonstrated that the CREB expressing neurons 
participate in the storage of the fear memory (green circles symbolize neurons 
that participate in the storage of the memory). After fear conditioning, mice were 
injected with diphtheria toxin (DT), which killed the CREB expressing neurons 
which participated in the encoding of that memory (red circles). This caused a 
signifi cant reduction in the strength of the fear memory measured during retrieval.
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 questions that remain to be addressed with this technique. First, the 
 electrophysiological effect of the daun02 treatment was not exam-
ined directly in the neurons but inferred from studies in cell lines. 
Whether the effects are mediated by suppression Ca2+ dependent 
action potentials or some other effect of the treatment remains to 
be determined. The time course of any neural excitability or Ca2+ 
channel changes is also a critical parameter. The effect of the daun02 
treatment was examined 3 days after the initial injection of the 
compound and it is unclear whether the observed effect was due 
to ongoing suppression of activity or to a persistent effect manifest 
during the initial treatment. Nevertheless, it demonstrates the gen-
eral principles of this approach, which could be combined with the 
host of recently developed genetic regulators of neural activity.

SYNAPTIC TAGGING
While neural representations are encoded in the specifi c ensem-
ble of neurons that are activated in response to a stimulus, the 
plasticity that molds these patterns of activation is thought to 
occur at the synapse. It has been known for some time that long-
term memory lasting 24 h requires new gene expression initiated 
at the time of learning, while short-term memory lasting a few 
hours lacks this requirement (Davis and Squire, 1984). Since the 
short and long-term memories for the same event presumably 
involve the same pattern of synaptic changes, it raises the question 
of how the required gene products exert their effects selectively 
on the  appropriate synapses. A potential answer to this question 
was suggested by Frey and Morris in studies of long-term poten-
tiation (LTP), a form of synaptic plasticity thought by many to 

underlie memory (Frey and Morris, 1997, 1998). They found that 
 synaptic activity could produce a sort of molecular “tag” at a syn-
apse that would allow it to utilize newly expressed gene products 
to  maintain LTP for long periods. We recently used the cfos based 
genetic approach to demonstrate a similar mechanism in behav-
ioral learning and memory.

A number of studies have implicated the regulated traffi cking of 
the glutamate receptor GluR1 to synapses as an important mecha-
nism in both LTP and fear learning (Kessels and Malinow, 2009). 
In addition to allowing the genetic tagging of activated neurons, 
the IEG promoters like cfos show a very rapid onset and offset of 
expression, making them useful for cellular traffi cking and turnover 
studies. We took advantage of this property to examine the traffi ck-
ing of GluR1 following learning in the fear-conditioning paradigm 
(Matsuo et al., 2008). Mice carrying both a cfos-tTA and tetO-
GFPGluR1 fusion transgene were used in this study (Figure 4). In 
the absence of Dox neural activity will induce a pulse of expression 
of the GFP tagged GluR1 and the distribution to synapses of this 
newly synthesized receptor can be followed histologically. Animals 
were fear conditioned in the absence of Dox to both induce a con-
textual fear memory and to induce synthesis of the GFP tagged 
receptor in activated neurons. The distribution of the receptor to 
dendritic spines (the site of most excitatory synapses) in the hip-
pocampus was examined 24 h after the conditioning. We found that 
the receptor was not evenly distributed but present in only about 
50% of spines, even in controls. In the fear conditioned animals we 
found a similar distribution except that there was an increase in traf-
fi cking to one morphological type of spine, the mushroom spines. 

GluR1-GFP mouse       remove dox       fear conditioning       add dox       wait 24 h      dissect brain

doxycycline

Fos-prom. tTA

GluR1-GFP

X
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GluR1-GFP

X
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FIGURE 4 | Learning regulated targeting of glutamate receptors. The 
fi gure summarizes an experiment from Matsuo et al. (2008). Mice carrying 
two transgenes were used. The fi rst transgene is identical to the one 
described in Figure 2 and uses the cfos promoter to drive expression of a 
tetracycline transactivator (tTA). The second transgene was a tetO-promoter 
GFP tagged glutamate receptor subunit (GluR1-GFP). Animals were fear 
conditioned in the absence of Dox to produce both a fear memory and a pulse 

of GFP-GluR1 expression in active neural ensembles in the hippocampus. 
The distribution of GFP-GluR1 in dendritic spines was analyzed 24 h following 
the conditioning using DiI to label all spines on a given neuron. Fear 
conditioning led to an increase in traffi cking of the receptor specifi cally to 
mushroom type spines. This experiment demonstrates how genetic tools 
can be used to image a specifi c molecular event selectively within an 
activated neural circuit.
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Protein synthesis and memory: a 
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Frey, U., and Morris, R. G. (1997). Synaptic 
tagging and long-term potentiation. 
Nature 385, 533–536.

Frey, U., and Morris, R. G. (1998). Synaptic 
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tenance of hippocampal long-term 
potentiation. Trends Neurosci. 21, 
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Guzowski, J. F., McNaughton, B. L., 
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Environment-specifi c expression of 
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Neurosci. 2, 1120–1124.

Guzowski, J. F., Timlin, J. A., Roysam, 
B., McNaughton, B. L., Worley, P. F., 

This preferential traffi cking only happened when the  conditioned 
stimulus (CS: novel box) and the unconditioned stimulus (US: 
foot shock) were paired, but not when CS or US were presented 
separately. The newly synthesized GluR1 requires 2 h to begin to 
reach the dendritic spines, yet is somehow preferentially recruited 
to a specialized class of spine based on the associative conditioning 
that occurred 2 h prior to its arrival. This is indicative of a synaptic 
tagging event acting in behavioral memory similar to that described 
for LTP (Frey and Morris, 1997).

NEW DIRECTIONS AND NEW QUESTIONS
The ability to genetically manipulate activated neuronal ensembles 
or neurons participating in a sparsely encoded memory trace offers 
a number of advantages that are only beginning to be  realized. 
A parallel line of technological development has focused on gen-
erating genetic tools for manipulating neuronal activity. The light 
regulated channelrhodopsin ChR, developed by Deisseroth and 
colleagues (Zhang et al., 2006), allows for the very precise light 
regulated control of action potential fi ring in neurons expressing 
the channel. There is an expanding tool box of genetic effectors 
like ChR that are light or ligand controlled and can be used to 
either stimulate or suppress neural activity (Luo et al., 2008). In 
addition, there are a number of similar effectors that can be used 
to regulate second messenger signaling pathways when expressed in 
heterologous cells (Isiegas et al., 2008; Pei et al., 2008; Airan et al., 
2009; Alexander et al., 2009).

The combination of these new tools with activity based genetic 
delivery and multi time point brain activity mapping at cellular 
resolution will open up a variety of new questions to experimental 
analysis. To return to the initial discussion of neural representa-
tions, the fusion of these approaches should allow one to address 
the question of what neural fi ring patterns “mean” to the animal. To 
take the example of the Halle Berry neurons (actually the equivalent 
in genetically accessible animal models) one could ask what would 
be the consequences of silencing this specifi c group of neurons. 
Would the recognition of Halle Berry be inaccessible? What frac-
tion of neurons in the representation need to be silenced in order 
to impair recognition? How does the silencing of a specifi c group 
of neurons in one brain region affect the activation patterns in 
downstream areas?

An alternate approach is to ask whether a representation can 
be built by experimenter driven stimulation of the appropriate 
neurons. In one recent study, Svoboda and colleagues delivered the 
ChR2 molecule to random populations of neurons in the somato-
sensory cortex. They found that stimulating as few as 300 neurons 
could be detected by the animals and used to alter behavior in a 
conditioning task (Huber et al., 2008). However, the coordinated 
activation of those neurons presumably does not form any natural 
representation. Suppose that instead of a random group of neurons 
one could activate a subset of neurons that responded to a natural 
stimulus, say the tone CS in a fear-conditioning task. The artifi -
cial stimulation of those neurons paired with a foot shock would 
 presumably lead to a conditioned fear of the extrinsic stimulation 
CS. But the more interesting question now is would the animal also 
fear a tone? If so would all the features of this sensory representa-
tion be maintained, for example frequency selectivity? With what 
fi delity does artifi cial stimulation of the tone representation in one 
brain region recapitulate the brain activity patterns produced by the 
natural tone itself? This type of approach should now be achiev-
able and allow direct functional investigation of the structure of 
neural representations.

Finally, the ability to genetically alter activated neural ensembles 
provides an entre into a more specifi c biochemistry of the brain. 
In the GluR1 traffi cking studies discussed above, the GFP tagged 
receptor provides not only a signal to watch molecular movements, 
but also a tag for specifi c biochemical analysis. For example, one 
could ask how the synapses from activated neurons that received 
new receptor differ biochemically from those that did not by using 
the antibodies to the GFP tag to affi nity purify positive from neg-
ative material. A similar approach could be used to tag specifi c 
 cellular compartments or molecular complexes so that biochemi-
cal studies can be limited to just the activated neurons, sparsely 
embedded in a matrix of inactive neurons and glia.

It should also be possible to improve the specifi city of the genetic 
modifi cations using a variety of genetic tricks such that only neurons 
active in one brain region or active at time point 1 but not time 
point 2 would be tagged. The increased specifi city along with the 
new genetic tools and biochemical tagging should provide a new level 
of circuit analysis in the brain and break down the barrier between 
watching neural fi ring and manipulating neural function.
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