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(Oertel et al., 1984; Zhang et al., 1991; Bolam and Smith, 1992; 
Shink and Smith, 1995). Morphological studies have shown that 
both GABA

A
 and GABA

B
 receptors are expressed in the globus 

pallidus (Bowery et al., 1987; Wisden et al., 1992; Peng et al., 
2002). The inhibitory postsynaptic action of GABA is prima-
rily mediated through GABA

A
 receptors (Macdonald and Olsen, 

1994; Sieghart, 1995). A line of evidence indicated that there 
is a close relationship between GABA or GABA

A
 receptors and 

Parkinson’s disease. For example, the expression of GABA
A
/ben-

zodiazepine receptors in the rostral part of the globus pallidus 
signifi cantly decreased in unilateral or systemic MPTP-treated 
monkeys (Robertson et al., 1990; Calon et al., 1995). Similarly, 
the messenger RNA levels of GABA

A 
receptors decreased in the 

globus pallidus of 6-OHDA-lesioned rats and parkinsonian 
patients (Pan et al., 1985; Griffi ths et al., 1990; Chadha et al., 
2000). However, by using microdialysis, the release of GABA 
was observed to be increased in the globus pallidus of par-
kinsonian animals (Robertson et al., 1991; Ochi et al., 2000; 
Schroeder and Schneider, 2002). Consistently, an increase of 
GAD67 mRNA, the rate-limiting enzymes of GABA synthesis, 
has been reported in the globus pallidus of nigrostriatal lesioned 
rats (Kincaid et al., 1992; Soghomonian and Chesselet, 1992; 
Billings and Marshall, 2004) and MPTP-treated cats and pri-
mates (Soghomonian et al., 1994; Schroeder and Schneider, 2001; 
Soares et al., 2004). Thus, exploring the effects of endogenous 
GABA

A
 neurotransmission controlling the activity of pallidal 

neurons is important for understanding the functions of globus 
pallidus in normal and pathological conditions. In this study, we 
elucidated the electrophysiological effects of gabazine, a GABA

A
 

receptor antagonist, on the fi ring rate of globus pallidus  neurons 

INTRODUCTION
The globus pallidus in rodents, equivalent to the external globus 
pallidus in primates, is located in the central position of the basal gan-
glia circuit (Smith et al., 1998; Bolam et al., 2000). It mainly receives 
GABAergic inputs from the striatum and local axon collaterals, and 
glutamatergic afferents from the subthalamic nucleus (Kita and Kitai, 
1991; Kita, 1992; Parent and Hazrati, 1995; Kita et al., 1999). In turn, 
the globus pallidus sends its GABAergic output to all the basal ganglia 
nuclei including the subthalamic nucleus, the striatum, the entope-
duncular nucleus and the substantia nigra (Bolam et al., 2000; Parent 
et al., 2000; Kita and Kita, 2001). There is much evidence that the 
globus pallidus plays an important role in normal movement regula-
tion and in basal ganglia movement disorders, such as Parkinson’s 
disease (Mink, 1996; Bolam et al., 2000). For example, the fi ring rate 
of the globus pallidus neurons decreased in parkinsonian patients, 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model 
of Parkinson’s disease and 6-hydroxydopamine (6-OHDA) parkin-
sonian rats (El-Deredy et al., 2000; Heimer et al., 2002; Soares et al., 
2004; Starr et al., 2005; Breit et al., 2007). In addition to the changes 
in fi ring rate, the fi ring patterns of the globus pallidus were found 
to be more bursty (Filion and Tremblay, 1991; Ni et al., 2000) and 
displayed an increase in synchronous rhythmic activity (Bergman et 
al., 1998; Magnin et al., 2000; Raz et al., 2000; Wichmann and Soares, 
2006) under parkinsonian state.

Gamma-aminobutyric acid (GABA) is the major inhibitory 
neurotransmitter used in the globus pallidus and exerts its func-
tion through two receptor subtypes: GABA

A
 and GABA

B
  receptors 
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by  extracellular recordings. We also microinjected gabazine 
directly into the  globus pallidus of unilaterally 6-OHDA-lesioned 
rats and normal rats to observe the behavioral effects.

MATERIALS AND METHODS
ANIMALS
Adult male Wistar rats, weighing 260–290 g, were used in this study. 
Animals were housed under a 12-h light/dark cycle with food and 
water available. The experiments were performed according to the 
University guidelines on animal ethics. All efforts were made to 
minimize the number of animals used and their suffering.

ESTABLISHMENT OF PARKINSON’S DISEASE MODEL WITH 6-OHDA 
LESIONING
Rats were anesthetized with chloral hydrate (400 mg/kg, i.p.) and 
placed in a stereotaxic frame (NarishigeSN-3, Tokyo, Japan). Then 
the scalp was shaved, swabbed with iodine and a central incision 
was made to expose the skull. A cranial burr hole (1 mm) was 
drilled into the skull over the injection site, and a microsyringe 
was lowered into the right medial forebrain bundle: 3.2 mm pos-
terior, 1.5 mm lateral to the bregma, and 8.7 mm ventral to the 
skull surface (Paxinos and Watson, 1986). A total dose of 14.5 µg 
6-OHDA hydrochloride (H4381; Sigma, St. Louis, MO, USA) in 4 
µl sterile saline containing 0.01% ascorbic acid was then injected 
into the right medial forebrain bundle at a rate of 1.0 µl/min. The 
microsyringe was allowed to rest for 10 min to prevent backfl ow 
of the toxin. Rats were pretreated 30 min before the 6-OHDA 
infusion with 25 mg/kg desipramine to protect noradrenergic pro-
jections. Two weeks after the 6-OHDA treatments, the rats were 
injected subcutaneously with 0.2 mg/kg apomorphine hydrochlo-
ride (A4393; Sigma) dissolved in 0.1% ascorbated saline solution. 
Animals accomplishing at least 210 net contralateral rotations in 
30 min were included in this study.

IN VIVO ELECTROPHYSIOLOGICAL RECORDINGS
Extracellular single unit recordings were performed in rats anes-
thetized with urethane (1 g/kg, i.p.; supplemented as needed) and 
positioned in the stereotaxic frame. Body temperature was main-
tained at 36–38°C by a heating pad. According to the stereotaxic 
atlas (Paxinos and Watson, 1986), an incision was made in the scalp, 
the skull exposed, and a burr hole drilled in the skull.

Three-barrel microelectrodes were fastened at each end 
with metal tubing and prepared using a Stoelting pipette puller 
(Stoelt-ing Co., Wood Dale, IL., USA). They were broken to a tip 
diameter of 3–10 µm under the microscope. The resistance of the 
microelectrodes ranged from 10 to 20 MΩ. The recording electrode 
was fi lled with 0.5 M sodium acetate containing 2% pontamine 
sky blue. The other two micro-pressure ejection barrels connected 
to 4-channel pressure ejector (PM2000B; Micro Data Instrument, 
South Plainfi eld, NJ, USA) respectively contained either gabazine 
or vehicle (normal saline). The electrode was then placed into 
the globus pallidus with coordinates of 0.8–1.3 mm posterior, 
2.5–3.5 mm lateral from the bregma, 5.5–7.2 mm vertical from 
the dura (Paxinos and Watson, 1986). Neurons were identifi ed as 
pallidal on the basis of their location and electrophysiological fea-
tures. Drugs were ejected onto the surface of fi ring neurons with 
short pulse gas pressure (1500 ms, 5.0–15.0 psi).

The recorded electrical signals were amplifi ed by a micro-
electrode amplifi er (MEZ-8201, Nihon Kohden, Tokyo, Japan) 
and displayed on a memory oscilloscope (VC-11, Nihon Kohden, 
Tokyo, Japan), while being fed to an audiomonitor. The amplifi ed 
electrical signals were passed through low and high pass fi lters into 
a bioelectricity signal analyzer and computer. Spike times were 
preprocessed online and further analyzed offl ine using the program 
of Histogram ver 1.00 (Shanghai Medical University, Shanghai, 
China) for spike data analysis. The fi ring rates were recorded in 1 s 
bins. Drug infusion was performed only once for each recording 
and a period of 30 min at least was allowed to pass before another 
recording in the same track.

At least 5 min stable basal fi ring was collected from each neu-
ron before drug ejection onto the globus pallidus. The frequency 
of basal fi ring was determined by the average frequency of 120 s 
baseline data before drug administration. The maximal change of 
frequency within 50 s following drug application was considered as 
drug effect. A change of at least 20% of basal fi ring rate during drug 
application was considered signifi cant (Querejeta et al., 2005).

BEHAVIORAL TEST
Firstly, the normal rats were anesthetized with chloral hydrate 
(400 mg/kg, i.p.) and placed in a stereotaxic frame. A guide can-
nula constructed from stainless steel (o.d., 0.4 mm; i.d., 0.3 mm) 
was implanted into the globus pallidus on the right side (1.0 mm 
posterior, 3.0 mm lateral from the bregma, 6.9 mm ventral from 
the skull surface). The cannulae were fi xed to the skull with stain-
less steel screws and dental acrylic. Stainless steel stylets were used 
to keep the cannulae sealed. Following at least 3 days of recovery, 
the rats were tested for rotational behavior. The rats were placed in 
an observation cage to which they had already become habituated. 
Saline or 0.1 mM gabazine (0.5 µl) was microinjected into the glo-
bus pallidus in awake rats over a 2 min period. At the end of injec-
tion, the cannula was left in the globus pallidus for an additional 
1 min before removal and then replaced by a stylet. Rotational 
behavior was recorded by a digital camera.

Secondly, the successful parkinsonian rats were divided into two 
groups. Each group contained an equal representation of good 
rotators (>10 rotations/min) and moderate rotators (7–10 rota-
tions/min) in order to balance the groups based upon their average 
rate of rotation for the 30 min testing period. On the 15th days 
following 6-OHDA lesion, both groups were unilaterally implanted 
with stainless steel guide cannulae into the globus pallidus ipsilat-
eral to lesioned side at coordinates mentioned above. Three days 
after cannulae implantation, rats in both groups were intrapal-
lidally microinjected vehicle (0.5 µl normal saline) 10 min prior 
to apomorphine application (0.2 mg/kg, s.c.) as baseline scores. 
After the baseline scores were obtained, rats in control group were 
intrapallidally injected normal saline every 4th day (i.e., on the 
22nd and 26th days). While in gabazine group, rats were intrapal-
lidally injected gabazine (0.1 mM, 0.5 µl) on the 22nd days. On 
the 26th days, normal saline was microinjected into the globus 
pallidus again in this group. Ten minutes after each intrapallidal 
injection, apomorphine was administrated subcutaneously. The 
resulting contralateral rotations were counted every 10 min for 
60 min. The schematic diagram (Figure 1) depicts the schedules 
of experiments in the two groups of animals.
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HISTOLOGY AND IMMUNOHISTOCHEMISTRY
To identify the position of single unit recording, pontamine sky 
blue was ejected from the recording electrode tip by iontophore-
sis (10 µA, 20 min). All the rats used in electrophysiological and 
behavioral experiments were sacrifi ced and perfused with 4% para-
formaldehyde solution transcardially. Brains were frozen, sectioned 
at 50 µm and all the recording and microinjection sites were veri-
fi ed under light microscope. To confi rm the nigral dopaminergic 
degeneration, rats receiving 6-OHDA treatment were examined 
for immunohistochemical staining of tyrosine hydroxylase after 
electrophysiological and behavioral tests.

DRUGS AND STATISTICS
Gabazine, 6-OHDA hydrochloride, apomorphine hydrochloride 
and monoclonal anti-tyrosine hydroxylase antibody were obtained 
from Sigma.

The data are expressed as mean ± SEM. Data analysis was per-
formed using SPSS software. Paired t test was used to compare 
the difference of fi ring rate before and after treatment. Statistical 
comparisons between groups were determined with student’s t test. 
Bivariate analyses was used to analyse the correlation between the 
gabazine-induced excitation and basal fi ring rate of pallidal neurons. 
The numbers of rotations were analyzed by the  non-parametric 
one-way Kruskal-Wallis test followed by the Mann-Whitney test. 
The level of signifi cance was preset by using a P value of 0.05.

RESULTS
EFFECTS OF GABAZINE ON SPONTANEOUS FIRING OF GLOBUS PALLIDUS 
IN NORMAL RATS
All the spikes recorded in the present study showed a bipha-
sic positive/negative waveform, which is characteristic of type 
II globus pallidus neurons (Kelland et al., 1995; Ruskin et al., 
1998). To clarify the effects of gabazine on globus pallidus neu-
rons of normal rats, we monitored the spontaneous activity of 38 
pallidal neurons sampled from 10 rats. The spontaneous firing 
rate of pallidal neurons was 15.9 ± 1.8 Hz in average. Micro-
pressure ejection of 0.1 mM gabazine increased the frequency of 
spontaneous firing to 19.4 ± 2.1 Hz (n = 38, P < 0.001, Figures 
2A,B). The average increase was 28.3 ± 3.3%, which was sig-
nificantly different (P < 0.001) from that of vehicle (normal 
saline) injection (basal: 13.5 ± 2.2 Hz; saline: 14.3 ± 2.3 Hz; 
increase: 6.2 ± 1.4%, n = 15, Figures 2A,B). More than 20% 
increase in firing rate was observed in 25 out of the 38 neu-
rons receiving gabazine administration (basal: 13.9 ± 2.2 Hz; 
gabazine: 18.3 ± 2.8 Hz; increase: 38.3 ± 3.5%, n = 25). As shown 
in Figure 2C, we further analyzed the correlation between 
gabazine-induced excitation with the basal firing rate in the 
25 neurons. Although modest, there was a negative correlation 
(r = −0.40, P < 0.05) between these two parameters, suggesting 
that the neurons with slower basal firing rate are more affected 
by gabazine in globus pallidus.

FIGURE 1 | A schematic diagram depicted the experimental design in the present study. Numerals with the downward arrows above the line represent the days 
experiments were conducted. The arrows on day 1 indicate 6-OHDA infusion. The upward arrows depict the days for behavioral testing, and the drugs used.
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46.0 ± 8.8%, which was signifi cantly different compared to vehi-
cle injection (basal: 10.7 ± 2.5 Hz; saline: 11.0 ± 3.0 Hz; increase: 
2.5 ± 2.6%, n = 14, P < 0.001, Figures 3A,B). More than 20% 
increase in fi ring rate was observed in 14 out of the 21 neurons 
receiving gabazine administration (basal: 8.0 ± 1.9 Hz; gabazine: 
11.6 ± 2.4 Hz; increase: 65.9 ± 9.3%, n = 14). Similarly, a nega-
tive correlation between gabazine-induced excitation and the 
basal fi ring rate was observed in these 14 neurons (r = −0.70, 
P < 0.01, Figure 3C).

On the unlesioned side, pallidal neurons discharged with a mean 
fi ring rate of 15.8 ± 2.4 Hz (n = 18), which was not different from 
that of normal rats (15.9 ± 1.8 Hz, n = 38, P > 0.05). Micro-pressure 

EFFECTS OF GABAZINE ON SPONTANEOUS FIRING OF GLOBUS PALLIDUS 
IN 6-OHDA-LESIONED RATS
To clarify the functions of GABA

A
 receptors on globus pallidus 

neurons of 6-OHDA-lesioned parkinsonian rats, we monitored 
the spontaneous activity of 39 pallidal neurons sampled from 
10 parkinsonian rats. On the lesioned side, pallidal neurons dis-
charged with a mean fi ring rate of 10.3 ± 2.5 Hz (n = 21), which 
tend to be lower than that of normal rats (15.9 ± 1.8 Hz, n = 38) 
although there was no signifi cant difference (P = 0.068). Local 
administration of 0.1 mM gabazine increased the spontaneous 
fi ring rate of pallidal neurons from 10.3 ± 2.5 Hz to 13.0 ± 2.6 Hz 
(n = 21, P < 0.001, Figures 3A,B). The average increase was 

FIGURE 2 | Effects of micro-pressure ejection of gabazine on the 

spontaneous fi ring of globus pallidus neurons in normal rats. (A) Typical 
frequency histograms showing that gabazine (0.1 mM) increased the fi ring rate 
of a globus pallidus neuron by 57.8%. (B) Pooled data summarizing the effects of 

gabazine and normal saline on the fi ring rate of globus pallidus neurons in 
normal rats. ***P < 0.001. (C) Correlation between the increase of fi ring rate and 
the basal fi ring level in pallidal neurons with more than 20% increase in 
fi ring rate.
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ejection of 0.1 mM gabazine increased the frequency of spontane-
ous fi ring from 15.8 ± 2.4 Hz to 18.1 ± 2.6 Hz (n = 18, P < 0.001, 
Figures 4A,B). The average increase was 21.5 ± 5.8%, which 
was signifi cantly different from that of vehicle injection (basal: 
14.3 ± 2.8 Hz; saline: 15.0 ± 3.0 Hz; increase: 4.3 ± 3.9%, n = 14, 
Figures 4A,B). Nine of the eighteen neurons receiving gabazine 
administration displayed at least 20% increase in  fi ring rate (basal: 
13.0 ± 3.3 Hz; gabazine: 16.3 ± 3.9 Hz; increase: 37.3 ± 8.7%, n = 9). 
As shown in Figure 4C, gabazine induced a stronger excitation with 
slower basal fi ring rate on these nine pallidal neurons, although 
there was no signifi cance (r = −0.60, P = 0.08). Figure 5 summa-
rized the effects of gabazine on the fi ring rate of pallidal neurons 
between 6-OHDA-lesioned rats and normal rats. Gabazine-induced 
increase in fi ring rate on the lesioned side (46.0 ± 8.8%, n = 21) was 

stronger than that on  unlesioned side 21.5 ± 5.8%, n = 18, P < 0.05), 
as well as that in normal rats (28.3 ± 3.3%, n = 25, P < 0.05). There 
was no signifi cant difference between the unlesioned side of par-
kinsonian rats and normal rats (P > 0.05).

BEHAVIORAL EFFECTS OF INTRAPALLIDAL INJECTIONS OF GABAZINE 
ON NORMAL RATS
To elucidate the motor function of GABA

A
 receptors in globus pal-

lidus, we microinjected gabazine into the globus pallidus of awake 
rats unilaterally. In control group, normal saline injection caused 
a small net contralateral turning of 2.3 ± 0.8 turns/60 min (n = 6). 
In contrast, microinjection of gabazine (0.1 mM) into the globus 
pallidus produced robust contralateral rotations of the animals 
(27.0 ± 3.5 turns/60 min, n = 8, P < 0.001 compared with control). 

FIGURE 3 | Effects of gabazine on the spontaneous fi ring of pallidal 

neurons on lesioned side of 6-OHDA parkinsonian rats. (A) Typical frequency 
histogram showing that gabazine increased the fi ring rate of a pallidal neuron by 
84.0%. (B) Pooled data summarizing the effects of gabazine and normal saline 

on the fi ring rate of globus pallidus neurons on the lesioned side of 
6-OHDA-lesioned rats. ***P < 0.001. (C) Correlation between the increase of 
fi ring rate and the basal fi ring level in pallidal neurons with more than 20% 
increase in fi ring rate.
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FIGURE 4 | Effects of gabazine on the spontaneous fi ring of pallidal neurons 

on unlesioned side. (A) Frequency histogram illustrating that gabazine increased 
the fi ring rate of a pallidal neuron by 43.5%. (B) Pooled data summarizing the 

effects of gabazine and normal saline on the fi ring rate of globus pallidus neurons. 
***P < 0.001. (C) Correlation between the increase of fi ring rate and the basal 
fi ring level in pallidal neurons with more than 20% increase in fi ring rate.

The rotations appeared almost immediately and invariably within 
10 min after injection and typically peaked between 10–30 min. 
This turning behavior usually persisted for 1 h. These data are sum-
marized in Figure 6.

EFFECTS OF GABAZINE ON APOMORPHINE-INDUCED ROTATIONAL 
BEHAVIOR IN 6-OHDA-LESIONED RATS
Animals given unilateral 6-OHDA lesions were tested for rotational 
behavior induced by an injection of apomorphine (0.2 mg/kg, s.c.). 
In the control group, apomorphine-induced baseline rotation was 
458.5 ± 56.9 turns/60 min (n = 8). Intrapallidal microinjection of 

normal saline did not signifi cantly alter the rotation (463.9 ± 45.7 
turns/60 min, P > 0.05). While in another group (n = 6), intrapallidal 
microinjection of 0.1 mM gabazine produced a signifi cant increase in 
rotational scores compared to baseline (baseline: 494.8 ± 65.8 turns/
60 min, gabazine: 596.8 ± 51.7 turns/60 min, increase 25.5 ± 8.6%, 
P < 0.01). These data are summarized in Figure 7.

DISCUSSION
Previous studies have indicated that activation of GABA

A
 receptors 

inhibited the neuronal activity of globus pallidus in rodents and 
primates (Kita, 1992; Querejeta et al., 2001; Cobb and Abercrombie, 
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FIGURE 5 | Comparison of the increase in fi ring rate induced by intrapallidal 

microinjection of gabazine between 6-OHDA-lesioned rats and normal rats. 

*P < 0.05. Unlesioned refers to contralateral side in lesioned rats.

FIGURE 6 | Rotational behavior induced by intrapallidal microinjection of 

gabazine. (A) Unilateral microinjection of 0.1 mM gabazine into globus 
pallidus induced contralateral rotation in normal rats recorded in 60 min. 
(B) Time course of the contralateral rotation induced by intrapallidal 
microinjection of gabazine and saline. *** P < 0.001, ** P < 0.01, *P < 0.05 
compared to saline.

FIGURE 7 | Effects of intrapallidal microinjection of gabazine on 

apomorphine-induced rotation in 6-OHDA-lesioned rats. Gabazine 
signifi cantly enhanced apomorphine-induced contralateral rotation. 
**P < 0.01; ns: not signifi cant.

2003; Galvan et al., 2005). However, it is not clear whether endog-
enous GABA

A
 neurotransmission modulates the fi ring rate of 

pallidal neurons in rats. Our present results showed that microin-
jections of GABA

A
 receptor antagonist, gabazine, evoked an increase 

in the fi ring rate of pallidal neurons, suggesting the tonic activity 
of GABA

A
 receptors in globus pallidus. Consistently, previous elec-

trophysiological studies indicated that local application of GABA
A
 

receptor antagonist increased the fi ring rate of globus pallidus neu-
rons in awake monkeys (Matsumura et al., 1995; Kita et al., 2004). 
Additionally, the present electrophysiological studies revealed that 
gabazine exerted stronger excitatory effects in the globus pallidus of 
6-OHDA-lesioned side, which suggests a high level of GABAergic 
activity on globus pallidus of lesioned side. This phenomenon may 
be mediated mainly by two possible reasons: (1) the expression 
of postsynaptic GABA

A
 receptors is increased under parkinsonian 

state; (2) the release of GABA from striatopallidal and/or pal-
lidopallidal terminals is increased on the lesioned side. Considering 
the previous morphological reports that the expression of GABA

A
 

receptors or their subunits was decreased in the globus pallidus on 
the side ipsilateral to unilateral 6-OHDA-lesioned rats (Yu et al., 
2001; Nielsen and Soghomonian, 2004; Katz et al., 2005), it is sup-
posed that enhanced GABA release may be the major reason for the 
stronger gabazine-induced excitation on lesioned side. There exists 
abundant evidence supporting this hypothesis. For example, by 
using microdialysis, the release of GABA was consistently increased 
in the globus pallidus of parkinsonian animals (Robertson et al., 
1991). Consistently, an increase in GAD67 mRNA, the rate-limit-
ing enzymes of GABA synthesis, has been reported in the globus 
pallidus of nigrostriatal lesioned rats (Soghomonian and Chesselet, 
1992; Billings and Marshall, 2004) and MPTP-treated primates 
(Soares et al., 2004). Furthermore, gabazine-induced excitation 
on unlesioned side was similar to that in normal rats, which is in 
line with morphological study that no signifi cant change in GABA

A
 

receptor expression was observed in the brain of  contralateral sides 
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in 6-OHDA treated rats (Araki et al., 2002). In addition to above 
mentioned two reasons, some other possibilities should also be 
considered. For example, increased GABA activity could be caused 
by less effi cient GABA reuptake. Although there is no evidence that 
GABA

A
 receptors are altered in 6-OHDA parkinsonian model, inhi-

bition could be made more effective by changes in intraneuronal 
Cl− level. And of course, the lower frequency of ongoing fi ring in 
the 6-OHDA treated animals could refl ect reduced excitatory input 
or a change in some peptide action.

In addition to GABA
A
 receptors, morphological studies also 

revealed the expression of GABA
B
 receptors in the globus pallidus 

(Bowery et al., 1987). The enhancement of GABA release may 
modulate the activity of globus pallidus by activating GABA

B
 

receptors. However, our previous electrophysiological studies 
indicated that blockade of GABA

B
 receptors only induced a very 

weak increase in the spontaneous fi ring of pallidal neurons (Chen 
et al., 2008). The possible reason is that activation of GABA

B
 

receptors may exert two opposite effects on pallidal neurons. 
On one hand, activation of presynaptic GABA

B
 receptors would 

excite pallidal neurons by reducing the release of GABA. On the 
other hand, activation of GABA

B
 receptors would inhibit pallidal 

neurons by both presynaptic inhibition of glutamate release and 
postsynaptic hyperpolarization. Therefore, GABA

B
 receptors only 

induced weaker tonic activity on the spontaneous fi ring of globus 
pallidus neurons. Another possible explanation is that GABA

B
 

receptors in globus pallidus are abundantly expressed early post-
natally and decline to lower levels as the brain matures (Turgeon 
and Albin, 1994).

The present results also showed that gabazine-induced excita-
tion was dependent on the basal activity of pallidal neurons in both 
normal and parkinsonian rats. Similarly, it was reported recently 
that the bicuculline-induced excitation was related to basal dis-
charge rate in substantia nigra reticulata neurons. The neurons with 
slower basal fi ring rate were more affected by bicuculline (Windels 
and Kiyatkin, 2006). It was known that pallidal neurons display a 
tonic, high-frequency discharge that is interrupted by pauses (Filion 
and Tremblay, 1991; Magill et al., 2001). These pauses or reduc-
tions in the activity of pallidal neurons are likely to be evoked by a 
 striatal or perhaps intrapallidal GABAergic inputs (Kita and Kitai, 
1991; Cooper and Stanford, 2000; Chan et al., 2005). Therefore, 
we hypothesize that the pallidal neurons with slow-fi ring may 
receive more GABAergic inputs, while the fast-fi ring cells receive 
less GABAergic afferents. That is probably one of the reasons for 

the negative correlation between gabazine-induced excitation and 
basal fi ring rate in globus pallidus neurons. In addition, the fi ring 
rate of pallidal neurons also depends on the excitatory input mainly 
originating from subthalamic nucleus.

The globus pallidus in rats is believed to be the equivalent 
of the external pallidum, a component of the indirect pathway, 
in higher mammals. Rotational behavior employed in the past 
suggested that unilateral increase in the activity of globus pal-
lidus neurons would result in contralateral turning, presumably 
due to an increased motor output from the ipsilateral motor 
cortex. For example, unilateral activation of the globus pallidus 
by picrotoxin produced contralateral rotational behavior in rats 
(Herrera-Marschitz and Ungerstedt, 1987), while inhibition of the 
neurons leads to ipsilateral turning (Aiko et al., 1988; Sañudo-
Peña and Walker, 1998; Chen and Yung, 2003; Chen et al., 2004). 
Thus, the present fi nding that gabazine-induced contralateral 
turning in normal rats was caused via an excitation of pallidal 
neurons. Furthermore, the present behavioral studies demon-
strated that intrapallidal microinjection of gabazine potentiated 
apomorphine-induced contralateral rotation in unilaterally 
6-OHDA-lesioned rats. This contralateral response is attributed 
to the stimulation of supersensitive D1-receptor and D2-receptor 
activation, especially in the lesioned hemisphere (Betarbet et al., 
2002; Schober, 2004). This model would predict an augmentation 
of apomorphine-induced rotational behavior following reduc-
tion of the ipsilateral striatopallidal pathway, as was observed 
in this study. Similarly, by using a different animal model, early 
study revealed that microinjection of GABA

A
 receptor antagonist, 

bicuculline, into the globus pallidus had marked antiparkinsonian 
effects (Maneuf et al., 1994).

In summary, the present study indicated that gabazine increased 
the spontaneous fi ring rate of globus pallidus neurons and poten-
tiated apomorphine-induced contralateral rotation in 6-OHDA-
lesioned rats. Therefore, blockade of GABA

A
 receptors in globus 

pallidus could counteract the excessive striatopallidal activity under 
parkinsonian state and represent a potential avenue for future phar-
macotherapeutic development in Parkinson’s disease.
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