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Quantitative analysis of anatomical synaptic connectivity in microcircuits depends upon 
accurate three-dimensional (3D) reconstructions of synaptic ultrastructure using electron 
microscopy of serial ultrathin sections. Here we address two pitfalls in current methodology 
that lead to inaccurate reconstructions and compromise conclusions drawn from the data. 
The fi rst pitfall is inaccurate determination of ultrathin section thickness, which negatively 
affects the 3D shape of reconstructions and therefore impairs quantitative measurement of 
synaptic structures. Secondly, current methodology signifi cantly underestimates the number 
of synaptic junctions, with only two-thirds or less of genuine synaptic contacts being identifi ed 
in dendrites that radiate within the plane of section. Here we propose a new methodology 
utilizing precise optical measurements of section thickness and successive observations of 
synaptic elements across serial ultrathin sections that corrects for these limitations to allow 
accurate 3D reconstruction of synaptic ultrastructure. We use this methodology to reveal 
that parvalbumin-expressing cortical interneurons have a much higher synaptic density than 
previously shown. This result suggests that this technique will be useful for re-examining 
synaptic connectivity of other cell types.
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used to identify synapses include: (1) the existence of a parallel 
space about 20 nm wide between presynaptic and postsynaptic 
membranes, the so-called synaptic cleft, (2) the accumulation of 
small vesicles next to the presynaptic membrane in the presynap-
tic bouton, and (3) specialization of presynaptic and  postsynaptic 
membranes. The cleft can most easily be identifi ed when the section 
is cut perpendicular to the synaptic junction face, but its identifi ca-
tion becomes much more diffi cult when sections are cut parallel 
to it. Here we introduce a new methodology that overcomes these 
limitations allowing accurate morphological reconstruction of 
neuronal tissue and identifi cation of synaptic contacts occurring 
at all angles relative to the plane of section.

MATERIALS AND METHODS
ETHICS STATEMENT
All experiments were conducted in compliance with the guide-
lines for animal experimentation of the Okazaki National Research 
Institutes.

TISSUE PREPARATION
Three male Wistar rats (6 weeks of age, 140–160 g) were anes-
thetized with an overdose of Nembutal and perfused through the 
heart with 10 ml of a solution of 250 mM sucrose, 5 mM MgCl

2
 

in 0.02 M phosphate buffer (PB; pH 7.4), followed by 300 ml of 
4% paraformaldehyde containing 0.2% picric acid and 0.5% glu-
taraldehyde in 0.1 M PB. Brains were then removed and oblique 
horizontal sections (50 µm thick) of frontal cortex were cut on a 
vibrating microtome (Leica VT1200S, Nussloch, Germany) along 

INTRODUCTION
A deep understanding of cortical microcircuitry requires accurate 
quantitative measurements of morphological parameters. Such 
measurements are reliably made from three-dimensional (3D) 
reconstructions of tissue structure using electron-microscopic 
(EM) images of successive ultrathin sections (Fiala et al., 2002; 
Holtmaat et al., 2006; Karube et al., 2004; Kubota and Kawaguchi, 
2000; Kubota et al., 2007; White et al., 1994). Because the generation 
of reconstructions is laborious and time-consuming, more effi cient 
methods have recently been introduced that automate the recon-
struction process and facilitate structural measurements (Denk and 
Horstmann, 2004; Harris et al., 2006; Knott et al., 2008; Micheva 
and Smith, 2007). However, two pitfalls in current methodology 
hinder accurate reconstruction of tissue morphology. The fi rst is 
accurate determination of the thickness of ultrathin sections, any 
error in which will signifi cantly affect the shape of reconstructed 
structures and the quantitative measurements that result. The com-
monly used method to estimate section thickness is the minimal 
folds method (Small, 1968) which measures the width of ridges in 
the tissue formed when small folds of tissue adhere to themselves 
and protrude above the plane of the section. Section thickness 
is assumed to be one-half the width of the ridges. However, this 
method generates results that vary according to the condition of 
the resin, the type of tissue embedded, and the height of the fold. 
Therefore, the accuracy of these measurements is not always certain. 
Further uncertainty may result from distortion of ultra thin resin 
after folding. The second pitfall in serial reconstructions is accu-
rate identifi cation of synaptic contacts. The classic characteristics 
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the line of the rhinal fi ssure. Tissue sections were put in glass tubes 
containing 15% sucrose in 0.1 M PB for 1 h, and then in 25% 
sucrose and 10% glycerol in PB for 2 h, frozen in liquid nitrogen, 
and then thawed at room temperature. The sections were then 
incubated in 0.1 M PB containing 1% sodium borohydrate for 
30 min and in 0.05 M Tris-buffered saline (TBS) containing 1% 
H

2
O

2
 for 30 min before incubation with primary antiserum against 

parvalbumin developed in mouse (1:4000, P-3171, Sigma-Aldrich, 
Saint Louis, MO, USA) diluted in TBS containing 10% normal goat 
serum and 2% bovine serum albumin overnight at 4°C. The sec-
tions were then incubated in biotin-conjugated secondary antise-
rum (1:200, BA-2000, Vector Laboratories, Burlingame, CA, USA) 
followed by avidin-biotin-peroxidase complex (VECTASTAIN 
Elite ABC Kit PK-6100, Vector Laboratories), and staining with 
diaminobenzidine (DAB) with nickel (0.02% DAB, 0.3% nickel 
in 0.05 M Tris–HCl buffer) as the chromogen for the peroxidase 
reaction (0.01%). The stained sections were post-fi xed for 40 min 
in 1.5% potassium ferrocyanide and 1% osmium tetroxide, fol-
lowed by 1 h in 1% osmium tetroxide alone and dehydrated in 
graded dilutions of ethanol with 1% uranyl acetate added at the 
70% ethanol dehydration state. Sections were fl at-embedded on 
silicon-coated glass slides in Epon. Following re-embedding of 
samples of tissue, they were serially re-sectioned at thickness set-
tings between 30 and 90 nm using an ultramicrotome (Reichert 
Ultracut S, Leica Microsystems, Wetzlar, Germany).

ESTIMATION OF SECTION THICKNESS
The 90 nm thick sections were mounted on a formvar-coated 
 single-slot copper grid. The minimal folds were photographed at 
×100,000 magnifi cation and the width of the folds were measured 
following calibration by a diffraction grating replica (# 607, Ted 
Pella Inc., Redding, CA, USA). Other 30, 70 and 90 nm thick sec-
tions were placed on a clean glass slide and the thickness estimated 
with a color 3D laser confocal microscope (VK-9750; Keyence, 
Osaka, Japan), which uses a laser (408 nm) to directly measure 
section thickness with an accuracy of 1 nm1.

RECONSTRUCTION OF RED BLOOD CELLS
Red blood cells often remain in blood vessels following perfusion-
fi xation. After light microscopic photography, the tissue containing 
red blood cells was re-sectioned at 90 nm perpendicularly to the 
original plane of section and cells were reconstructed from the 
serial ultrathin sections. The EM images of the red blood cells were 
captured using a CCD camera and three- dimensionally recon-
structed using the 3D reconstruction software Visilog (Noesis, 
France).

POSTEMBEDDING GABA STAINING AND RECONSTRUCTION OF 
PARVALBUMIN-POSITIVE DENDRITES
Serial sections cut at a setting of 90 nm thickness of  parvalbumin-
positive tissue were mounted on formvar-coated grids. To discrimi-
nate between inhibitory and excitatory presynaptic terminals, we 
applied postembedding GABA immunohistochemistry to the 
serial ultrathin sections. The ultrathin sections were washed with 

TBS containing 0.1% triton-X (TX) and incubated with rabbit 
antiserum against GABA (1:5000; Sigma-Aldrich, A-2052) in 
TBS containing 0.1% TX overnight, then incubated with 15 nm-
 colloidal gold conjugated anti-rabbit IgG (1:100; BBInternational 
#GAR15, Cardiff, UK) overnight in TBS containing 0.1% TX, and 
stained with 1% aqueous uranyl acetate followed by lead citrate. 
Quantitatively synaptic boutons could be divided into two classes 
on the basis of gold particle densities (Figure 2A). Particle densi-
ties were greatly different in GABA-negative and GABA-positive 
terminals: 0.57 ± 1.66/µm2 (n = 35) and 43.9 ± 17.4/µm2 (n = 18), 
respectively. In serial ultrathin sections, given presynaptic GABA-
negative or GABA-positive boutons always showed similar colloi-
dal gold density in multiple sections. GABAergic terminals were 
defi ned as terminals with a gold-particle density above 26  particle/
µm2, while terminals with a gold particles lower than 10  particle/
µm2 were assumed to be glutamatergic. The labeled dendrites and 
associated structures were photographed and digitized from EM 
negatives using a scanner (GT-9800F, Epson, Suwa, Japan). The 
structures were reconstructed using the 3D reconstruction soft-
ware, Reconstruct2.

ELECTRON MICROSCOPIC TOMOGRAPHY
The synaptic structures on the parvalbumin-positive dendrite were 
analyzed by tomography. The EM images were taken at 10,000× by 
tilting the sections between −60° and +60° in 2-degree steps using 
Hitachi H 7650 electron microscope equipped with a 1 MB CCD 
camera (1024 × 1024 pixels). The synapse images were processed 
by the tomography software EMIP (Hitachi High-Technologies 
Corp., Tokyo, Japan). Z-slices (estimated thickness, 1.75 nm) were 
obtained from the 70 nm thick sections.

RESULTS
ESTIMATION OF THE THICKNESS OF ULTRA THIN SECTIONS
We fi rst estimated the thickness of the sections by the minimal folds 
method. The estimation of section thickness is half the width of 
minimal folds in the ultrathin section, which occur when a sec-
tion adheres to itself in a low ridge. The minimum folding can be 
confi rmed by the existence of a black line at the center of the ridge 
(Figure 1A). The estimated section thickness by the minimal folds 
method was 20.4 ± 1.0 nm (n = 6) for the section cut at 30 nm set 
by the microtome, 29.9 ± 1.2 nm (n = 5) at 40 nm, 26.9 ± 2.5 nm 
(n = 6) at 50 nm, 42.4 ± 1.7 nm (n = 3) at 60 nm, 40.7 ± 1.2 nm 
(n = 6) at 70 nm, 49.8 ± 1.7 nm (n = 3) at 90 nm, and 62.7 ± 2.9 nm 
(n = 4) at 95 nm (Figure 1B). The thickness obtained by the mini-
mal folds method linearly increased, but the slope was smaller than 
unity (Figure 1B).

On the other hand, optical measurements by the color laser 
3D profi le microscope reported the thickness to be 32.5 ± 2.1 nm 
(n = 2) at 30 nm, 71.0 ± 4.5 nm (n = 5) at 70 nm, and 89.0 ± 2 nm 
(n = 4) at 90 nm (Figures 1B–E). The section thickness measured 
by the optical method linearly increased, and the slope was close 
to unity.

To validate the reliability of the minimal folds method and opti-
cal laser measurements, we compared the measured diameter of red 

2http://www.synapses.bu.edu/tools/index.htm

1http://www.keyence.com/products/vision/microscope/vk9700/vk9700_features_
9.php

http://www.keyence.com/products/vision/microscope/vk9700/vk9700_features_9.php
http://www.synapses.bu.edu/tools/index.htm
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FIGURE 1 | Thickness estimation of ultrathin sections for 3D 

reconstruction. (A) Minimal folds of an ultrathin section cut by a microtome 
set to cut 95 nm sections. Width of the minimal folds, twice the section 
thickness, was 130 nm, much less than expected. Note the black vertical line at 
the center of the fold, which is the adhered, folded membrane perpendicular to 
the plane of a section. (B) Correlation between section thicknesses set by the 
microtome and those measured by a color laser 3D microscope or the minimal 
folds method. The thicknesses measured by the optical method were more 
similar to those set by the microtome than those measured by the minimal 
folds method, which were 50–80% of the set section thickness. (C, D) Three-
dimensional view of ultrathin section (90 nm thickness, pink) on glass slide 
(beige) obtained by the laser scanning microscope. The border of the section 
and slide surface is clearly identifi ed in larger magnifi cation (C). (E) The 

pseudocolor image representing height of the ultrathin section (orange) and 
glass slide (blue). Note that the colors are uniformly distributed on the surface 
of the section and glass slide, indicating the surface fl atness. Thickness of the 
ultrathin section was estimated from the difference between average heights 
of the two areas. Rectangles (about 50 µm2), indicate areas used for evaluating 
the average height. (F) Light microscopic photograph of red blood cells. 
(G, H) The 3D images of the red blood cells reconstructed assuming 50 nm 
(G) and 90 nm (H) in section thickness. The view of the upper images is the 
same as in the light microscopic photograph in (F); the view of the lower 
images is “side-on”. The red blood cells reconstructed assuming a 90 nm 
section thickness were more similar in shape and size to those in the light 
microscopic photograph than were cells reconstructed assuming a 50 nm 
section thickness.
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blood cells in reconstructed ultrathin sections with  photographs 
of the same cells taken by light microscopy. Measurements from 
photographs (taken using a 100× oil-immersion objective lens, 
1.4 N.A.; Olympus, Tokyo, Japan) indicated the vertical and 
horizontal diameters of the red blood cell in the right side of 
Figure 1F were 6.15 and 5.73 µm, respectively (corresponding to 
yellow reconstructions shown in Figures 1G,H). The tissue was 
cut perpendicular to the plane of section for EM observation 
with the microtome thickness set to 90 nm. Assuming an actual 
90 nm thickness per section, the reconstructed diameters of the red 
blood cell were 6.20 µm (about 101% of LM image) and 5.73 µm 
(about 100% of LM image) in the vertical and horizontal direc-
tions, respectively (yellow red blood cell in Figure 1H). On the 
other hand, when using the 50 nm section thickness estimated 
by the minimal folds method, the vertical and horizontal diam-
eters were only 3.41 µm (about 55% of LM image) and 5.73 µm 
(about 100% of LM image), respectively (yellow red blood cell 
in Figure 1G). Further, the reconstructed morphology of the red 
blood cell was much less elliptical when using a 90 nm section 
thickness. Therefore, we conclude that the minimal folds methods 
underestimate the thickness of ultra thin sections, and therefore 
recommend that thickness measurements of sample sections be 
obtained by the optical method.

IDENTIFICATION OF SYNAPTIC CONTACTS
We used the nickel-DAB method for pre-embedding parvalbumin 
immunohistochemistry so as to clearly observe postsynaptic density 
(PSD) structure. Immuno-precipitation of nickel–DAB selectively 
stains intracellular structures such as microtubules and PSD, and 
the distribution of the precipitation under the EM is much sparser 
than when DAB-only methods are used. The resulting images allow 
clear identifi cation of PSD structures unobscured by dense staining 
of the cytoplasm (Figure 2).

It is relatively simple to identify synaptic contacts when the plane 
of the synaptic cleft is vertical or steeply angled to the plane of sec-
tion (Figures 2A–C). On the other hand, it is much more diffi cult 
to identify synaptic contacts when the cleft plane is parallel to, or 
at a low angle with respect to, the plane of section of the slice. Since 
the dendrites upon which synapses make contact often radiate in 
multiple planes, it is a frequent occurrence that some reconstructed 
dendrites extend parallel to the plane of section (Figures 2A–F). We 
have observed that cortical parvalbumin-positive dendrites receive 
many synapses on their dendritic shafts (unpublished observation), 
as has been observed in hippocampal parvalbumin-positive den-
drites (Gulyas et al., 1999). When these neurons are reconstructed 
and examined for synaptic contacts using traditional methodolo-
gies for identifying synaptic junctions, the dendritic surfaces par-
allel to the plane of section were found to have very few synaptic 
contacts compared to those dendritic surfaces at right angles to the 
plane of section, suggesting a failure to identify synaptic junctions 
occurring parallel to the plane of section (Figures 2G,J). In an 
attempt to better identify these synapses, we looked for progressive 
sequences of synaptic characteristics in serial 70 nm thick sections 
(Figures 2D–F). A better example of such a progressive sequence 
done with a tangential section of a parvalbumin-positive dendrite 
without GABA postembedding immunohistochemistry is shown 
in Figure 3. The electron dense nickel-DAB immuno precipitate 

was found lightly on the intracellular structures in the cytoplasm 
of the parvalbumin positive dendrite, and it still prevented detailed 
observation of the ultra structure of synaptic contact. Therefore, 
we avoided using the stained portion of the dendrite. Instead, 
we followed the dendrite into the middle of the section to fi nd 
the positive dendrites lost the stain density for this analysis. We 
found the objects related to synapse formation in correct synaptic 
sequence in the serial 70 nm thick sections. In the fi rst and sec-
ond sections, there were many synaptic vesicles in the presynaptic 
bouton (Figures 3A,B). In the next section, we found many round-
shaped electron dense structures of ∼35 nm diameter (Figure 3C), 
but only few synaptic vesicles. These round-shaped electron dense 
structures likely to correspond to the “presynaptic grid” (Peters 
et al., 1991). In the fourth section, electron dense fl occulate material 
was seen, which probably indicates a PSD (Figure 3D). In the fi fth 
section, we observed a thin snippet of PSD within the cytoplasm of 
the postsynaptic dendrite (Figure 3E). Wider fi eld of this synaptic 
structure in serial sections were shown in Figures 3F–J to see the 
surround structure. The other synapse in the serial tangential sec-
tions also showed the similar progressive sequence (Figures 3K–O). 
We therefore believe the contact, identifi ed in these  progressive 
sequences of serial sections, is a synaptic contact.

To confi rm the presence of a synaptic contact, we applied 
tomographic analysis to observe structural changes occurring 
within individual 70 nm thick sections and detected gradual 
structural changes in the following order: (1) many synapse vesi-
cles (Figures 4 and 5); (2) presynaptic grids (Figure 5); (3) syn-
aptic cleft structures (Figures 5 and 6); (4) PSDs (Figures 5–7); 
and (5) cytoplasm of postsynaptic dendrite or spine (Figure 7). 
Structures following this sequence are indicative of a synaptic 
contact (Supplementary Material available online), regardless of 
the target structure (spine, dendrite, or soma). Tomography analy-
sis confi rmed that we can identify synapses even when synaptic 
membranes lie in the plane of the slice section or intersect at very 
oblique angles.

Overall, we found about one-third to one-half of synapses onto 
shafts were not identifi ed using traditional standards for synap-
tic contacts when the cleft plane is parallel to, or at a low angle 
with respect to, the plane of section of the slice. For instance, 
the parvalbumin-positive dendrite (7.6 µm in length) shown in 
Figures 2G–L had 17 synapses (5 GABA-positive and 12 GABA-
negative synapses) identifi ed using classic synaptic indicators, all 
of which were located on the surface perpendicular to the plane 
of sectioning (Figures 2G,J). On the other hand, 19 synapses (3 
GABA-positive and 16 GABA-negative synapses) were found on 
the upper and lower surfaces of the dendrite parallel to the plane 
of section using the progressive identifi cation of synaptic mark-
ers in serial sections proposed in this study (Figures 2H,I,K,L). 
With these added synapses, we reveal that the dendrite is densely 
covered by synaptic boutons on almost all surfaces (Figures 2I,L). 
Analysis of fi ve parvalbumin-positive dendrites including the 
dendrite in Figure 2 (mean length, 20.7 µm; total reconstruction 
length, 103.3 µm) revealed 285 synapses (243 GABA-negative, 
35 GABA-positive and 7 GABA/parvalbumin-positive synapses), 
of which 79 (28%; 75 GABA-negative, 4 GABA-positive, and no 
GABA/parvalbumin-positive synapses) was only identifi able using 
this new technique.
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FIGURE 2 | Synaptic contact identifi cation on parvalbumin-positive 

dendrites together with GABA post-embedding staining. (A) This dendrite 
(Den) is labeled with nickel-DAB precipitate for pre-embedding parvalbumin 
immunoreaction and colloidal gold for post-embedding GABA immunoreaction. 
A GABA-positive bouton makes a symmetrical synaptic contact (white arrow) 
and two GABA-negative boutons make asymmetrical contacts onto the 
parvalbumin-positive dendrite. The cleft plane of these synaptic contacts is 
vertically angled to the plane of section, so the cleft is clearly observed. (B) 
GABA-negative synaptic contact with the cleft, cut diagonally on the 
parvalbumin positive dendrite (Den). The cleft is not clearly observed. (C) The 
section was tilted about 30° in order to see the cleft clearly (arrow). (D–F) A 
GABA-negative bouton makes synaptic contact with the cleft occurring at a 
steep angle to the plane of section, identifi ed in the successive serial sections. 
In the fi rst section, a presynaptic bouton with many synaptic vesicles (D, 
asterisk) is found next to a parvalbumin positive dendrite (Den). The next section 
contains a few vesicles and a small number of electron dense objects, most 
likely indicative of a PSD (E, arrow). The third section shows the PSD spreading 

into a nearby area (F, arrow). Colloidal gold particles are often observed on and/
or near PSD, because PSD is located in a parvalbumin-positive dendrite that 
contains GABA. Scale bar in (D) for (B–F). (G–L) The 3D reconstructed 
parvalbumin-positive dendrite (yellow) with GABA-positive synaptic boutons 
(red), GABA negative synaptic boutons (blue), and a GABA- and parvalbumin-
positive bouton (pink). (G) Plot of the synaptic terminals with clearly visible 
synaptic clefts. Using this defi nition of synapses about half of the dendritic 
surface was not covered with any synaptic contacts. Arrow, a synaptic bouton 
corresponding to the synapse shown in (B) and (C). (H) Plot of the same 
dendrite including the synaptic junctions identifi ed by the criteria proposed in the 
present study. The upper surface of the dendrite also has many the synaptic 
junctions. Black arrows, synaptic boutons corresponding to the GABA-negative 
synapses and white arrow corresponding to the GABA-positive synapse in (A). 
(I) Reconstruction of the presynaptic boutons for the synaptic junctions in (H). 
The entire surface area was covered with the synaptic boutons. (J–L) Left hand 
side views of the parvalbumin positive dendrite shown in (G–I). Arrow in (L), 
synaptic bouton corresponding to the synapse in (D–F).
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FIGURE 3 | Serial ultrathin sections containing synapses with cleft plane cut 

in parallel or obliquely. (A–E) A synaptic contact with a cleft plane cut in parallel 
to the section plane is identifi ed in the successive serial sections. In the fi rst and 
second sections, many synaptic vesicles are found in the presynaptic bouton (A, 

B, asterisk). The next section contains only a few vesicles and many round-
shaped electron dense spots of about 35 nm diameter (C, asterisk), that are likely 
to correspond to the pre-synaptic grid. The fourth section contains electron dense 
objects indicative of a PSD (D, black arrow). In the fi fth section, we observe a 
small part of the electron dense objects and the cytoplasm of the postsynaptic 
dendrite (E, black arrow). Scale bar in (A) is for (A–E). Wider fi eld of this synaptic 
structure in serial sections were shown in (F–J) to see the surround structure. 

White arrow in (I, J), a synaptic contact identifi able by classic methodology. The 
other synapse in the serial tangential sections also showed the similar 
progressive sequence (K–O). (K) A large number of synaptic vesicles in 
presynaptic boutons (asterisk). (L) PSD traces at edges of the boutons with small 
vesicles (asterisk). The presynaptic boutons display some round-shaped electron 
dense substances (presynaptic grid-like objects). (M) Electron dense fl occulate 
substance (black arrows, postsynaptic densities) in the postsynaptic spine (upper) 
and dendrite (lower). White arrow, a classically defi ned synapse contact. (N) 
Traces of the electron dense PSD in the cytoplasm of the postsynaptic spine 
(upper black arrow) and dendrite (lower black arrow). (O) Postsynaptic spine and 
dendrite without any synaptic objects. Scale bar in (F) is for (F–O).
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FIGURE 4 | The serial z-slice sections obtained by the tomography 

analysis showing the synaptic terminals shown in Figure 3K. 

We picked up 16 z-slice sections (A–R) of good quality from the middle of the 

z-slice sequence. The estimated thickness of the z-slice section is 1.75 nm. 
Some of the small vesicles (∼35 nm) emerged and disappeared within this 
series.

FIGURE 5 | The serial z-slice sections obtained by the tomography analysis 

showing the synaptic boutons shown in Figure 3L. We picked up 16 z-slice 
sections (A–R) of good quality from the middle of the z-slice sequence. The 
estimated thickness of the z-slice section is 1.75 nm. Some of the small vesicles 
(∼35 nm) emerge and disappear within the series, and presynaptic grids are seen. 

Traces of the PSD gradually emerge at the edge of the presynaptic boutons [for 
example; arrows in images (I and O)]. Intermediately electron dense fl occulate 
substance [for example; asterisks in image (O)] emerges continuously from the 
location where most synaptic boutons were found in the previous z-slices. This 
intermediately dense fl occulate probably corresponds to the synaptic cleft.
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FIGURE 6 | The serial z-slice sections obtained by the tomography analysis 

showing the postsynaptic dendrite and spine in Figure 3M. We picked up 16 
z-slice sections (A–R) of good quality from the middle of the z-slice sequence. The 
estimated thickness of the z-slice section is 1.75 nm. The Intermediately electron 
dense fl occulate substance presumably synaptic cleft structure [for example; 

asterisks in image (C)] emerges continuously from the location where most 
synaptic boutons were found in the previous ultrathin section. Highly electron 
dense fl occulate substance [for example; arrows in (C, I, O)], PSD, emerged at the 
edge of the intermediate one [arrows in (C)]. It gradually took over the domain of 
the intermediate electron dense fl occulate substance (A–R).

FIGURE 7 | The serial z-slice sections obtained by the tomography analysis 

showing the postsynaptic dendrite and spine in Figure 3N. We picked up 16 
z-slice sections (A–R) of good quality from the middle of the z-slice sequence. 

The estimated thickness of the z-slice section is 1.75 nm. Traces of the electron 
dense PSD [for example; arrow in images (C, I)] were in the cytoplasm of the 
postsynaptic spine.
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DISCUSSION
We propose two new methodologies that improve the accuracy of 
3D reconstruction of neuronal ultrastructure and facilitate accurate 
synapse identifi cation. We use these methodologies to reveal that 
parvalbumin-positive cortical interneurons have a much higher 
synaptic density than previously appreciated from data using classic 
methodologies for synaptic identifi cation.

Accurate measurement of section thickness is a critical fi rst 
step for precise 3D reconstruction of synaptic structures. Our data 
indicate that the most frequently used method for measuring sec-
tion thickness, the small fold method, produces signifi cant errors 
that impair subsequent reconstruction of synaptic structures. An 
alternative method measures section thickness using optical inter-
ferometers (Nomarski) (De Groot, 1988). However, this technique 
has not been widely used because of the complexity of the instru-
ment and its diffi culty of use and because it may depends upon the 
user’s subjective visual impression. A third way to estimate section 
thickness is the cylindrical diameter method, which depends on the 
measured width of elongated mitochondria found parallel to the 
plane of section (Fiala and Harris, 2001). Based on the number of 
sections containing longitudinally located mitochondria and the 
width of the mitochondria, one can estimate the thickness of the 
sections, assuming the cross section of the mitochondria are round. 
However, mitochondria may not be truly cylindrical and/or the 
upper and bottom end sections may contain the mitochondria only 
in part of its thickness, and therefore this method may not provide 
an accurate estimation of thickness (Knott et al., 2008).

Our data indicate the color 3D laser confocal microscope pro-
vides a more robust measure of section thickness than any of these 
other classic methodologies. It also has the advantage of providing 
a surface image of any object with 1 nm resolution in height and 
width measurement. Here we demonstrate that it can be used for 
accurate measurement of ultra thin sections of resin embedded 
tissue. Our present results also indicate that ultrathin sections with 
the desired thickness can easily be made from the ultramicrotome 
with a high degree of certainty.

There are other aspects that might limit accurate 3D recon-
struction of synaptic structures, such as distortion of shape during 
ultrathin sectioning or damage of ultrathin sections under electron 
beam. However, we found that reconstructed red blood cells were 
quite similar in shape and size, indicating that careful process-
ing of tissue can limit damage to the tissue and preserve accurate 
reconstructions. One must also consider tissue shrinkage during 
fi xation and embedding. Our previous measurements indicated 
that, after fi xation, dehydration, and embedding in Epon, the tissue 
shrank to 90% of original size (Karube et al., 2004). Shrinkage was 
not corrected for in the present analysis.

Underestimating the number of synapses onto dendritic shafts 
radiating parallel to the plane of section is signifi cant problem for 
quantitative stereology. Our experience processing serial sections 
for 3D reconstruction analysis suggests this underestimation is 25% 
or more. In a previous study, we tested whether all axonal boutons 
identifi ed at with light microscopy are associated with synaptic 
junctions (Karube et al., 2004). Consecutive investigation of light 
microscopically identifi ed boutons (59 boutons) of two FS cells 
with EM found that 46 boutons (78%) showed clear synaptic junc-

tions, with another 12 boutons (20%) having synaptic vesicles but 
no identifi able junction, and one bouton (2%) contained only a 
mitochondrion (Figure 1F in Karube et al., 2004). It is likely that the 
missing synaptic junctions for those boutons with synaptic vesicles 
were lying in the plane of section. We also found similar ambiguity 
when identifying synapses onto spine heads. About 75% of cortical 
spines (94 out of 125) contacted by symmetrical synapses from 
axon terminals of nonpyramidal cells were found to also receive 
an asymmetrical synapse (Figure 4 in our previous paper, Kubota 
et al., 2007). The remaining 25% of GABA-receptive spine heads 
did not have any additional asymmetrical synaptic contact. Since we 
now know that all synapses on neuronal surface are not identifi ed 
when using only the classical synapse indicators, it is possible that 
additional asymmetrical contacts onto these 25% of spines were 
obscured based on their orientation within the plane of section of 
the ultrathin slice.

The present study clearly demonstrates that progressive 
sequences of synaptic characteristics in serial ultrathin sections 
can identify synaptic contacts even when they occur parallel to 
the plane of section. We confi rmed this using EM tomography by 
observing the structural changes occurring within individual 70 nm 
thick sections. We can now postulate that synaptic junctions can 
be identifi ed by the progressive sequence of synaptic indicators, as 
well as by classical methodologies. This may improve the quality 
and quantity of morphological data because tomography analy-
sis is time consuming and the technology required is not widely 
distributed.

Together, our data demonstrate that more accurate meas-
urement of section thickness (using a laser measurements or a 
well- calibrated microtome) and careful identifi cation of synap-
tic contacts occurring tangential to the plane of section, generate 
more accurate reconstructions and therefore more robust data with 
which to understand synaptic connectivity in neuronal circuits.
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SUPPLEMENTARY MATERIAL
Supplementary Video, Animation fi le demonstrating the change in 
synaptic structure over the course of successive z-slices obtained from 
the tomography of four successive 70 nm thick sections. The appear-
ance order of synapse-related structures corresponds well to that of 
synapses observed perpendicularly and identifi ed using classic meth-
odology. The above materials can be found online at http://www.
frontiersin.org/neuralcircuits/paper/10.3389/neuro.04/004.2009.
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