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injury (SCI), while α
1
 receptor agonists appears less potent (Rossignol 

et al., 2001). By contrast, in the neonatal rat spinal cord, α
1
 receptor 

agonists induce motor activity and boost ongoing fi ctive locomotion 
while α

2
 and β receptor agonists solely slow down the chemically 

induced fi ctive locomotion (Sqalli-Houssaini and Cazalets, 2000)
Collectively, these studies underlie the important neuromodula-

tory role of the NAergic system in the physiology and pathophysiol-
ogy of the spinal motor neuronal networks. Paradoxically, few data 
are available regarding the modulation of intrinsic and synaptic prop-
erties sustaining the excitatory action of NA in motor networks.

Taking advantage of the knowledge accumulated on the organi-
zation of the lumbar motor network in the isolated spinal cord 
preparation of the newborn rat, our study provides the fi rst detailed 
analysis of the cellular basis of the NAergic modulation in lumbar 
motor network. Patch-clamp experiments were conducted to pre-
cisely analyze the role of the three main types of adrenoreceptors 
in the modulation of the membrane properties and synaptic inputs 
of lumbar motoneurons.

MATERIALS AND METHODS
 ETHICAL APPROVAL
Experiments were performed using 115 Wistar rats aged 1–5 days 
(mean 2.4 ± 0.1 days) bred in our laboratory. All experiments were 
carried out in accordance with the guidelines of the Institutional 
Animal Care and Use Committee of Bordeaux 2 University.

INTRODUCTION
In all vertebrates including humans, the descending noradrenergic 
(NAergic) pathways, originating from the pons, have been shown 
to initiate and facilitate the expression of spinal locomotor output 
(Jordan et al., 2008) and to modulate the segmental refl exes (Kitazawa 
et al., 1985; Jankowska et al., 1998). In the chronic spinal cat, the 
NAergic compounds were found to be the most effective pharmaco-
logical agents in initiating locomotion (Forssberg and Grillner, 1973; 
Kiehn et al., 1992; Chau et al., 1998a; Barbeau and Norman, 2003). 
Furthermore, the NAergic precursor l-DOPA has been shown to induce 
coordinated air stepping in intact or spinal rat pups (Van Hartesveldt 
et al., 1991). Evidence regarding the role of NAergic modulation in 
locomotor networks has also been provided in in vitro preparations 
(Merrywest et al., 2002; Rauscent et al., 2009). In the isolated spinal 
cord preparation from newborn rats, noradrenaline (NA) induces a 
slow non-locomotor rhythm but appears to be a potent modulator of 
the ongoing locomotor rhythm (Kiehn et al., 1999; Sqalli-Houssaini 
and Cazalets, 2000; Gordon and Whelan, 2006).

All NAergic receptors are G-protein coupled receptors that can 
be divided into three main classes: three α

1
-receptors (α

1A
, α

1B
, α

1C
), 

three α
2
-receptors (α

2A
, α

2B
, α

2C
) and three β-adrenoreceptors (β

1
, β

2
, 

β
3
) (Hein, 2006). Little information is available on the precise role 

of these receptors in the NAergic neuromodulation of spinal motor 
networks. In the spinal cat, activation of the α

2
 receptors by specifi c 

agonists strongly improves functional rehabilitation after spinal cord 
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 ISOLATED SPINAL CORD PREPARATION
The animals were chilled by hypothermia until refl exes were lost, 
then decapitated. A laminectomy was performed to remove the 
spinal cord. The spinal cord was cut at the thoracic level, placed 
in a recording chamber (approximate volume 5–6 ml) and super-
fused (2 ml min−1) with oxygenated (95% O

2
–5% CO

2
) physi-

ological saline containing (in mM): NaCl 130, KCl 3, CaCl
2
 2.5, 

MgSO
4
 1.3, NaH

2
PO

4
 0.58, NaHCO

3
 25, glucose 10 adjusted 

to pH 7.4 with HCl. All experiments were performed at room 
temperature (25°C).

 SPINAL CORD PARTITIONING
A Vaseline wall was built with a syringe at the junction between 
the lumbar 2 (L2) and L3 level so that the low lumbar spinal cord 
(L3, L4 and L5 segments) could be superfused separately from 
the thoracic 13 (T13)/L2 locomotor network. The water tightness 
of the wall was checked at the beginning and at the end of the 
experiment by fi lling the pool until a meniscus was created. If no 
changes in the saline level occurred after 5 min, the wall was taken 
to be watertight.

 EXTRACELLULAR RECORDINGS AND STIMULATIONS
The motor output was recorded in the differential mode from the 
ventral roots using extracellular stainless steel pin electrodes insu-
lated with Vaseline. Locomotor-like activity was induced by bath 
applying a mixture of serotonin (5-HT, 18–20 µM) and N-methyl 
dl-aspartate (NMA, 18–20 µM) on the T8-L2 segments.

 ELECTROPHYSIOLOGICAL METHODS
Blind whole-cell patch-clamp recordings from the L4-L5 motoneu-
rons were made using glass microelectrodes (15–20 MΩ) fi lled with 
a solution containing (in mM): K-gluconate 120, KCl 20, CaCl

2
 

0.1, MgCl
2
 0.1, EGTA 1, HEPES 10, GTP 0.1, cAMP 0.2, leupep-

tin 0.1, Na
2
-ATP 3, and D-mannitol 77, pH 7.3. A liquid junction 

potential of +15 mV was experimentally determined (Neher, 1992) 
and records were corrected for this potential. Motoneurons were 
identifi ed by antidromic action potentials in response to ventral 
root stimulation. Electrophysiological recordings were analyzed 
using the Axograph software program (Axograph Scientifi c, Sydney, 
Australia). To assess the motoneuron excitability, the average spike 
frequency was calculated by taking the mean interspike interval 
across a current step. To compute the mean synaptic drive, intracel-
lular recordings were divided into single locomotor cycles based on 
the extracellular recordings (see Fig. 1c in Bertrand and Cazalets, 
1999). Each isolated cycle was subsequently normalized (from 0 to 
100%) by resampling and the mean locomotor drive was calculated 
by averaging the data from at least 25 cycles.

Miniature excitatory postsynaptic currents (mEPSCs) were 
recorded using glass microelectrodes fi lled with a solution con-
taining (in mM): 150 CsCl, 1 EGTA, 10 HEPES, 0.1 CaCl

2
, 4.6 

MgCl
2
, 2 ATP, and 0.5 GTP. A liquid junction potential of +7 mV 

was measured in these experimental conditions (Neher, 1992) 
and post hoc corrections of the membrane potential values were 
performed in accordance. Due to the very small amplitude of the 
mEPSCs (around 6 pA, see Section “Results”), recordings were 
fi ltered at 300 Hz. Sequences of at least 5 min of synaptic activity 
were recorded at a holding potential of −75 mV. The traces obtained 

were analyzed with an algorithm developed in the software program 
Labview (National Instruments, Austin, TX, USA). The thresh-
old of mEPSCs was set by eye and varied depending on the RMS 
noise level of the recordings. Automatically screened mEPSCs were 
accepted or rejected based on visual inspection. Statistical analysis 
was performed using the Kolmogorov–Smirnov (KS) test for dis-
tribution differences. Signifi cant differences in the mean amplitude 
and frequency were tested using the Student’s paired t-test.

Series resistance (mean value: 28 ± 1 MΩ, n = 99 neurons) was 
monitored throughout the experiments and was not compensated. 
Data were discarded if series resistance varied more than ±20% of 
the initial value.

DRUGS
Fresh drug solutions of NA and of the NAergic agonists and antago-
nists were prepared daily and protected from light exposure. All 
other drugs were prepared at stock solutions, aliquoted and fro-
zen until use. 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) was 
diluted in DMSO with a fi nal concentration of less than 1‰.

 IMMUNOHISTOCHEMISTRY
Wistar rats (n = 2, postnatal day 5) were deeply anesthetized with 
sodium pentobarbital and perfused through the ascending aorta 
with freshly prepared fi xative containing 4% paraformaldehyde 
(PFA) in phosphate buffer (PB 0.1 M). Spinal cords were dissected 
out and postfi xed in the fi xative solution for approximately 4 h. 
They were thoroughly rinsed in 0.1 M PB and cryoprotected in 30% 
sucrose overnight. Spinal cords were sectioned to isolate lumbar 
segments (L3-L5) and coronal sections (25 µm thick) were cut on a 
freezing microtome (Leica SM2000R, Germany). Free-fl oating sec-
tions were processed for double immunofl uorescence using poly-
clonal rabbit antibodies against (1) the alpha 1a adrenergic receptor 
(1:200, Sigma, Canada), (2) the alpha 2a adrenergic receptor (1:200, 
Sigma, Canada) and (3) the beta 1 adrenergic receptor (1:250, Santa 
Cruz, CA, USA), and the goat anti-choline acetyltransferase (ChAT, 
1:200, Millipore, CA, USA). Sections were then put in goat anti-
rabbit IgGs conjugated to FITC (1:200) and donkey anti-goat IgGs 
conjugated to Texas red (1:200, Jackson Immunoresearch Inc.). 
To verify the specifi city of the antibodies, controls were done by 
omitting primary antibodies and, in each case, no visible stain-
ing was detected. The pre-absorption of NA antibodies with their 
immunizing peptide also showed their specifi city (Milner et al., 
1998; Fauser et al., 2004; Queiroz et al., 2008).

 STATISTICAL ANALYSIS
Statistical analyses were performed on raw data. For samples less 
than 10 neurons, statistical analyses were performed using non-par-
ametric tests. Wilcoxon matched pairs or Mann–Whitney tests were 
used to compare two series of data. Kruskal–Wallis or Friedman 
one-way analysis of variance (ANOVA) were carried out to test 
for signifi cant effects between the different drugs for unpaired or 
paired observations, respectively. Pairwise comparisons were per-
formed using Dunn’s post-tests. The level of signifi cance was set 
at p < 0.05. All data are expressed as mean ± standard error of the 
mean (SEM) in the text and fi gures. Asterisks in the fi gures indicate 
positive signifi cance levels and the numbers in histogram bars or in 
parenthesis refers to the number of neurons examined.
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RESULTS
 LUMBAR MOTONEURONS EXPRESS THE THREE MAIN CLASSES OF 
ADRENORECEPTORS AT BIRTH
Previous studies using radioligand binding have shown that the α1-
receptors are detectable in motoneurons as early as P1–P5 while 
the α2a receptors are transiently expressed in rat motoneurons at 
high level during the embryonic and early postnatal periods. In 
contrast, few data are available concerning the expression of the 
β receptors in motoneurons (for review see Rekling et al., 2000). 
Immunohistochemical labeling was then performed to determine 
whether the α

1a
, α

2a
 and β

1
 receptors are expressed in lumbar motone-

urons in early postnatal developmental stages. Immunolabeling 
of lumbar spinal cord sections revealed an α

1a
 (Figure 1A), α

2a
 

(Figure 1B) and β
1
 positive (Figure 1C, green immunofl uores-

cence) immunoreactivity in large body neurons within lamina IX 
(dashed line in Figure 1). To determine whether these labeled cells 
were motoneurons, we characterized the phenotype of the NAergic 
immunopositive neurons by immunohistochemical staining of ChAT 
(Figure 1, red immunofl uorescence). The merge panels in Figure 1 
show that the large cell bodies in lamina IX were double stained for 
NAergic receptor subtypes and ChAT, therefore indicating that lum-
bar motoneurons express the α

1a
, α

2a
 and β

1
 receptors at birth.

 NORADRENERGIC MODULATION OF THE MEMBRANE PROPERTIES OF 
THE L4-L5 LUMBAR MOTONEURONS
To precisely assess the action of NA, we used two different concen-
trations of NA (5 and 50 µM) since it was previously suggested in 
the neonatal rat spinal cord that NA mediated excitatory or inhibi-
tory effects on motor networks through the differential activation of 
α

1
 and α

2
 adrenoreceptors depending on its concentration (Sqalli-

Houssaini and Cazalets, 2000). Furthermore we investigated the 
role of the different adrenoreceptors in the NAergic neuromodula-
tion using specifi c agonists of the three classes of adrenoreceptors: 
methoxamine (α

1
), clonidine (α

2
) and isoproterenol (β).

First, we tested the effects of NA on motoneuronal excitability in 
the presence of blockers of fast inhibitory (strychnine and bicucul-
line (10% of experiments) or gabazine, 1 µM, Barriere et al., 2008) 
and excitatory (CNQX and AP5, 5 µM) synaptic transmission. In 
these conditions, NA induced a strong inward current in motoneu-
rons held at −75 mV associated with a signifi cant increase in the 
input membrane resistance computed from current–voltage curves, 
when bath-applied at both 5 µM (Figure 2A and Table 1) and 50 µM 
(Table 1). When switched to current clamp conditions, NA depolar-
ized all motoneurons tested (n = 16) beyond spike threshold at both 
low and high doses (data not shown). To determine whether NA 

α2a2a mergemergeChATChAT

β1 mergemergeChATChAT

B

C

α1a1a mergemergeChATChAT

A

FIGURE 1 | Expression of adrenoreceptor subtypes in cholinergic neurons 

in transverse sections of the lumbar spinal cord. Double labeling of large 
neuronal cell bodies in lamina IX (dashed lines) for alpha 1a (A); alpha 2a (B); 
beta 1 (C) noradrenergic receptors (green) and choline acetyltransferase (ChAT, 

red). The merge panels show that a high proportion of cholinergic neurons in 
lamina IX are immunopositive for the three different noradrenergic receptors. 
Scale bars 100 µm. The area boxed in the different panels is shown at higher 
magnifi cation in the insets (scale bar 30 µm).
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FIGURE 2 | Effects of noradrenaline (NA) on the membrane properties of 

the lumbar motoneurons. (A) Representative trace showing the NA-induced 
inward current in motoneurons held at −75 mV (Vh). (B) A representative cell 
recording showing that NA increases the excitability and the spike frequency 
(B1,B2) in response to depolarizing current pulses. (B3) Plot of the mean spike 
frequency as a function of the injected current from the cell shown in (B1,B2). 
(B4) The spike threshold computed as the percentage of the maximum injected 
current needed to evoke a spike during a series of depolarizing current steps in 

control conditions (Ctl), in the presence of NA and after a 30-min wash-out (Wh). 
(B5) Summary histograms of the slope of the frequency current (f–I) relationship 
in control conditions (Ctl), in the presence of NA and after a 30-min wash-out 
(Wh). (C) Representative traces of the spike AHP indicated by dashed lines in 
control (C1) and in the presence of NA (C2) at similar fi ring rates. Plot of 
normalized AHP amplitude as a function of the mean spiking frequency during a 
series of depolarizing steps in control conditions and in the presence of NA (C3). 
The dash lines in (B3,C3) correspond to the linear fi ts.

modifi es the instantaneous frequency–current (f–I)  relationships 
of motoneurons, we applied a series of depolarizing current steps 
before (Figure 2B1) and after (Figure 2B2) bath applying NA in 
cells held at their control resting membrane potential by inject-
ing hyperpolarizing bias current. As shown in Figure 2B3 com-
puted from the motoneuron presented in Figures 2B1,B2, NA 
increased the spike frequency and decreased the spike threshold 
of the motoneuron. To quantify the NA-induced changes in lumbar 
motoneuron excitability, the spike threshold was expressed as the 
percentage of the maximum injected current needed to trigger 
a spike during a series of depolarizing current steps in normal 
saline and in the presence of NA. Figure 2B4 shows that both 5 and 
50 µM NA signifi cantly and reversibly decreased spike threshold 
compared to control conditions. We then computed the slope of the 
f–I relationship for all motoneurons tested. The average f–I slope 
was signifi cantly and reversibly decreased in the presence of 5 µM 
NA (Figure 2B5, see also Figure 2B3) and tended to be reduced 
when 50 µM NA was added to the saline (Figure 2B5).

Spike afterhyperpolarization (AHP) plays a fundamental role 
in controlling the fi ring frequency and patterning of activity in 
motoneurons and is consequently targeted by almost all neuro-
modulatory systems (for examples see Bayliss et al., 1995; Chevallier 
et al., 2006; Han et al., 2007). For each motoneuron, the relationship 
between the AHP amplitude and the fi ring frequency was well fi tted 
using linear equation (mean r = 0.98 ± 0.01, n = 8) in control con-
ditions. We sought whether NA modifi es this relationship. As seen 
in the representative motoneuron recordings of Figures 2C1,C2, at 
similar fi ring rate values, the AHP amplitude was not modifi ed by 
the addition of NA (Figure 2C2) compared to control conditions 
(Figure 2C1). In the presence of NA, the relationship between the 
AHP amplitude and the fi ring rate was well fi tted by linear equation 
(mean r = 0.97 ± 0.01). The pooled data plot of Figure 2C3 shows 
the AHP amplitude, normalized in individual motoneuron tested 
by the maximum AHP amplitude computed in control conditions, 
and expressed as a function of the mean spike frequency measured 
during a series of depolarizing steps. The linear fi t equation was 
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modulation of K
IR

 by NA was also studied using voltage ramps 
from −55 to −135 mV (Figure 3B1). The control I–V relationship 
was subtracted from the NA I–V relationship to obtain the I–V 
relationship of the NA-suppressed current. Superfusion of NA 
(5 µM) inhibited an outward current at membrane potentials 
near rest that became inward around −110 mV (Figure 3B2). The 
mean reversal potential measured in 5 µM (E

rev
, −104.4 ± 1.4 mV, 

n = 10) or 50 µM (−97.6 ± 3.1 mV, n = 6) NA was close to the K+ 
equilibrium potential (−99 mV) calculated with the Nernst equa-
tion. The chord conductance (G) of the current (I) measured at 
−80 mV (V

m
) using the formula G = I/(V

m
 − E

rev
) as 3.5 ± 0.7 nS in 

5 µM NA (n = 10) and 2.3 ± 1 nS in 50 µM NA (n = 6).
As the voltage ramps protocol may activate both I

H
 and K

IR
 

currents, we tested the effects of NA in the presence of ZD7288 a 
blocker of I

H
 current. Since inwardly rectifying currents conduct 

more inward current (at membrane potentials hyperpolarized rela-
tive to the reversal potential, E

rev
) than outward current (at mem-

brane potentials depolarized relative to E
rev

), we examined the chord 
conductance of the suppressed currents. The chord conductances 
were obtained by subtracting the instantaneous I–V curves obtained 
in the presence of the different pharmacological compounds from 
the curves obtained in control, at membrane potentials equidistant 
from the reversal potential at V

m
 = E

rev
 − 25 (E

rev
 − 25; for inward 

current) versus V
m

 = E
rev

 + 25 (E
rev

 + 25; for outward current; see 
Figure 3D2) (Bertrand et al., 2003b).

In motoneurons in which I
H
 current was present in control con-

ditions during series of hyperpolarizing pulses (Figures 3C1,C2), 
20 µM ZD7288 abolished a slow inward rectifi cation (Figures 3C3,G) 
and unmasked a fast inward rectifi cation (Figures 3C3,C4). The 
application of NA in the presence of ZD7288 reduced the instanta-
neous current over the entire voltage range tested (Figures 3D1,D2). 
It is noticeable that as previously shown for serotonin (Kjaerulff and 
Kiehn, 2001) the reduction was stronger for the outward part of the 
current (Figures 3D2,G). K

IR
 channels present the  characteristic to 

−0.024x + 1 in control condition and −0.02x + 1 with 5 µM NA, 
n = 8 and −0.018x + 1 in control condition and −0.017x + 0.9, 
n = 5 with 50 µM NA in the bath (data not shown). The slopes 
and the intercepts of these linear fi ts were not signifi cantly dif-
ferent between control condition and in the presence of NA. To 
validate this method, we applied short depolarizing pulses (4 ms) 
to evoke a single spike followed by an AHP in the absence or pres-
ence of NA. The amplitude and the duration of the AHP were not 
signifi cantly changed after administration of NA (4.6 ± 0.9 mV and 
200 ± 20 ms, respectively, in control conditions and 4.8 ± 0.9 mV 
and 231 ± 22 ms in NA; n = 6). Altogether these results indicate 
that NA modifi ed the f–I relationship without affecting the AHP 
amplitude in the lumbar motoneurons of neonatal rats.

Lumbar motoneurons were previously shown to possess both 
the hyperpolarization-activated mixed-cation current I

H
 and the 

inwardly rectifying K+ current K
IR

 (Takahashi, 1990; Kjaerulff 
and Kiehn, 2001). Thus, we analyzed the effects of NA on I

H
 and 

K
IR

 currents.
.
 Membrane potential was stepped from a holding 

potential of −75 to −155 mV (10 steps, 8 mV increment, 500 ms 
step duration) before (Figure 3A1) and during application of NA 
(Figure 3A2). The instantaneous current was measured immedi-
ately after the capacitive transient (fi lled circle in Figures 3A1,A2) 
and the steady-state current at the end of the 500 ms hyperpolar-
izing pulse (open circle in Figures 3A1,A2). The difference (fi lled 
triangle in Figure 3A3) between the steady state current and the 
instantaneous current was defi ned as I

H
 on the basis of its volt-

age dependence (Bayliss et al., 1994; Kjaerulff and Kiehn, 2001). 
Lumbar motoneurons exhibited a small inward current activated 
by hyperpolarization in control conditions (Figure 3A1). Fifty 
micromolar NA did not alter the current–voltage (I–V) curve 
measured from series of hyperpolarizing pulses (Figures 3A2,A3). 
The amplitude of I

H
 measured at −150 mV (n = 13 motoneurons) 

was not signifi cantly different between control conditions and in 
5 or 50 µM NA (−34.4 ± 13 and −18.7 ± 24 pA, respectively). The 

Table 1 | Mean current induced by the bath-application of the different noradrenergic compounds recorded from motoneurones held at −75 mV and 

mean input resistance in control conditions and in the presence of the drugs.

 Drug-induced-current (pA) Input resistance (MΩ)

  Control Drug

 NA 5 µM −156 ± 27, n = 10 107.2 ± 12 154.6 ± 10*

 NA 50 µM −81 ± 22, n = 6 197.8 ± 33 243.3 ± 22.4*

α1 Methoxamine 80 µM −96.2 ± 22, n = 8 141.4 ± 33 178.2 ± 41*

 Prazosin 50 µM −4.3 ± 4, n = 6 161.6 ± 19 156.1 ± 26

 Prazosin + methoxamine 1.6 ± 6*, n = 6 156.1 ± 26 153 ± 20

α2 Clonidine 1 mM 12 ± 4, n = 7 114.5 ± 16 130.9 ± 18

 Yohimbine 50 µM −5.8 ± 5, n = 6 141.9 ± 23 156 ± 23

 Yohimbine + clonidine 7.2 ± 5, n = 6 156 ± 23 164 ± 22

β Isoproterenol 50 µM −18.8 ± 5, n = 8 187.9 ± 50 210.7 ± 60

 Propranolol 50 µM −6.6 ± 5, n = 7 120.1 ± 14 132.4 ± 25

 Propranolol + isoproterenol 2.6 ± 4*, n = 7 132.4 ± 25 152.1 ± 25

Negative current: inward current and positive current: outward current. Data ± SEM
*Signifi cantly different, n = number of neurons tested. No signifi cant differences were observed in the input membrane resistance values between the different 
motoneuronal pools in control conditions (Kruskal–Wallis test, p = 0.2).
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be blocked in a voltage-independent manner by external Ba2+ and 
in a voltage-dependent manner, with no effect on outward cur-
rent, by external Cs+ (Sodickson and Bean, 1996; Bertrand et al., 
2003a). To assess whether NA modulates such a K

IR
 current in lum-

bar motoneurons, the effects of NA were then investigated in the 

presence of ZD7288 in combination with Ba2+ or Cs+. Addition of 
Ba2+ (500 µM) during voltage steps series in the presence of ZD7288 
revealed a block of both outward and inward part of the instan-
taneous I–V curves (Figure 3E). The chord conductances of the 
Ba2+-sensitive current were characteristic of an inwardly rectifying 

FIGURE 3 | Effects of noradrenaline (NA) on I
H
 and K

IR
 currents. (A) Sample 

current traces obtained in response to a family of hyperpolarizing voltage 
steps, under control conditions (A1) and in the presence of NA (A2). The 
current–voltage (I–V) relationships for IH ( ) computed from the traces in 
(A1,A2) and obtained by subtracting the instantaneous current ( ) from the 
steady state ( ) current (A3). (B) I–V relationships during voltage ramps in 
control saline (black line) and in the presence of NA (grey trace) (B1). The NA-
suppressed current was isolated by subtracting currents of I–V relationships 
obtained in the presence of NA from that obtained in control conditions (B2). 
(C) Current responses evoked by a series of voltage steps (10 steps, −8 mV 
increment) from a holding potential of −75 mV (VH) in control conditions (C1) 
and in the presence of 20 µM ZD7288 (C3). In the corresponding I–V 
relationships (C2,C4), IH I–V relationships ( ) computed from the traces in C1 
and C3 results and obtained from subtracting the instantaneous current ( ) 

from the steady state ( ) current. (D). Instantaneous I–V curves derived from 
current responses generated by a series of voltage steps from −75 mV in the 
presence of 20 µM ZD7288 (ZD; ) and after application of 5 µM NA ( ) 
(D1). (D2) NA-suppressed current calculated by subtraction of instantaneous 
I–V curves in (D1). The reversal potential for this current is indicated (Erev). 
Note the pronounced reduction of the outward part of the current. 
(E) Instantaneous I–V relationships in the presence of 20 µM ZD7288 
(ZD, ), ZD7288 + 500 µM Ba2+ (ZD + Ba2+; ) and after application of 
5 µM NA (ZD + Ba2+ + NA; ). (F). Instantaneous I–V relationships in the 
presence of 20 µM ZD7288 (ZD, ), ZD7288 + 1 mM Cs+ (ZD + Cs+; ) 
and after application of 5 µM NA (ZD + Cs+ + NA; ). (G). Histograms of the 
mean chord conductance of the suppressed current isolated by subtracting 
currents of instantaneous I–V curves obtained in the presence of the different 
compounds from that obtained in control conditions.
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current with signifi cant different values measured at E
rev

 − 25 and 
E

rev
 + 25 (Figure 3G). When NA was added to the ZD72288 + Ba2+ 

containing saline, no further effects were observed on the instan-
taneous I–V curves (Figures 3E,G). As shown in Figures 3F,G, 
Cs+ strongly reduced the inward component of the endogenous 
current and elicited a smaller decrease on its outward portion. In 
contrast to the Ba2+ block that occluded the NA effects with no 
voltage dependency, NA still decreased the outward portion of the 
Cs+-insensitive current but failed to affect its inward component in 
the presence of Cs+ and ZD7288 (Figures 3F,G). In summary, this 
series of experiments indicate that K

IR
 current is under NAergic 

neuromodulatory control in lumbar motoneurons. All effects of 
NA were fully reversible after a wash-out period of at least 30 min 
(data not shown).

To assess the role of the three classes of adrenoreceptors in the 
modulation of the motoneuronal membrane properties, the same 
paradigms were performed in the presence of the three different 
agonists. Sqalli-Houssaini and Cazalets (2000) previously showed 
using extracellular recordings that 50 µM methoxamine, 100 µM 
isoproterenol and 100 µM clonidine slow down the locomotor 
rhythm. Based on these results, we determined the concentra-
tion of each agonist that consistently and reproducibly elicited 
changes in motoneuron membrane potential. We found that 80 µM 
methoxamine and 50 µM isoproterenol triggered an inward cur-
rent in motoneurons held at −75 mV (Figure 4A and Table 1). In 
two neurons (data not shown), we observed that 100 or 500 µM 
clonidine caused no detectable variations in the motoneuron 
membrane potential while 1 mM clonidine induced a consistent 
outward current (Figure 4A and Table 1). Despite the fact that their 
effects on the membrane potential of the motoneurons differ, the 
three agonists increased the membrane input resistance of lumbar 
motoneurons (Table 1). These changes in membrane input resist-
ance were signifi cantly different in the presence of methoxamine 
while they only showed a tendency to be increased in the presence of 
clonidine or isoproterenol (see Table 1). We then tested the changes 
induced by methoxamine (Figure 4B1), clonidine (Figure 4B2) 
and isoproterenol (Figure 4B3) on the motoneuron excitability. 
All three compounds reproduced the NA action, i.e., increased 
the fi ring frequency and decreased the spike threshold of lum-
bar motoneurons (Figures 4B1–B3). All three NAergic agonists 
increased the excitability of all motoneurons tested by signifi cantly 
reducing their spike threshold (Figure 4C1). The slope of the f–I 
relationship computed during a series of depolarizing steps was 
signifi cantly decreased in the presence of isoproterenol and also 
tended to decline in the presence of methoxamine and clonidine 
(Figure 4C2). In the presence of the different NAergic agonists, the 
correlation coeffi cient of the linear fi t of the relationship between 
the AHP amplitude and the fi ring rate in each neuron was not sig-
nifi cantly different compared to control conditions (r = 0.98 ± 0.1 
in control and 0.97 ± 0.1, n = 22 in the presence of the agonists). 
When the normalized AHP amplitude was expressed as a func-
tion of the mean frequency, the slope and the intercepts of the 
linear fi t of this relationship were not signifi cantly modifi ed in the 
presence of clonidine for the population of motoneurons tested 
(Figure 4C3; control −0.025x + 1; clonidine −0.025x + 1 n = 7), or 
of isoproterenol (data not shown, control −0.018x + 1; isoprotere
nol−0.022x + 1, n = 7) or of methoxamine (data not shown, con-

trol −0.03x + 1.2; methoxamine −0.033x + 1.2, n = 8). As  illustrated 
in the presence of isoproterenol (Figure 4D), none of the three 
adrenoreceptors agonists altered the I–V curve obtained from 
membrane voltage steps (10 steps, 8 mV increment). The amplitude 
of the I

H
 current measured at −150 mV was −17 ± 4 pA in con-

trol, −21 ± 10 pA n = 7 with isoproterenol; −18.9 ± 13 in control, 
−10.2 ± 7 pA n = 8 with methoxamine and −26.3 ± 16 pA in control 
and −24.5 ± 5 pA n = 7 with clonidine. In contrast, voltage ramps 
revealed that methoxamine and clonidine suppressed a current with 
an I–V curve computed by the subtraction of I–V relationships 
obtained in control condition and in the presence of one of the 
agonist (Figure 4E, example for methoxamine). In the presence of 
methoxamine or clonidine, the mean E

rev
 of the suppressed current 

was −101 ± 2 and −94 ± 2 mV and the mean chord conductance 
measured at −80 mV was 2.7 ± 1 nS, n = 8 and 2.2 ± 0.5 nS, n = 7, 
respectively. Interestingly, we found that isoproterenol had a small 
inhibitory effect on the current expressed during voltage ramp 
in 50% of the motoneurons tested (E

rev
 = −96 ± 2 mV and chord 

conductance at −80 mV = 1.1 ± 0.4 nS, n = 4) and failed to affect 
it in the remaining 50% (n = 4; data not shown). This depressing 
effect of the different NAergic agonists on inward rectifying cur-
rents was still observed in the presence of the I

H
 blocker ZD7288 

(n = 2 with methoxamine, n = 2 with clonidine and n = 1 with 
isoproterenol; data not shown).

We then checked the specifi city of the NAergic agonists by using 
specifi c antagonists. In a fi rst step, we investigated whether pra-
zosin (α

1
 antagonist), yohimbine (α

2
 antagonist) and propranolol 

(β antagonist) induced changes in the membrane properties tar-
geted by the NAergic agonists in lumbar motoneurons. None of 
these antagonists, which were fi rst bath-applied alone to the in 
vitro spinal cord, triggered signifi cant inward or outward currents 
in motoneurons held at −75 mV (Figure 5A and Table 1) and 
caused no signifi cant changes in motoneuron input membrane 
resistance (Table 1). Motoneuron excitability as well as the slopes 
of the f–I relationship were also not altered by the antagonists 
(Figure 5B middle panels and 5C1-2). Prazosin (Figure 5D1) and 
yohimbine (data not shown) did not change the I–V relationships 
during voltage ramps from −55 to −135 mV. In the presence of 
prazosin or yohimbine (dashed bars in Figure 5D2), the mean 
chord conductance of the current, measured at −80 mV and com-
puted by the subtraction of I–V relationships obtained in normal 
saline and in the presence of each antagonist, was small or even 
non-existent. The chord conductance of the current modulated by 
prazosin or yohimbine was signifi cantly smaller than the methox-
amine or clonidine-suppressed current reported above (open bars 
in Figures 5D2 and 4E). In the presence of propranolol, a small 
inhibitory effect on the I–V relationship was observed during volt-
age ramps (data not shown; Figure 5D2).

In a second step, we tested whether the antagonists abolished 
the actions of their respective agonists. As shown in Figure 5A 
and in Table 1, methoxamine and isoproterenol, when added to 
a prazosin or propranolol-containing medium, respectively, failed 
to induce any detectable inward current and a signifi cant modifi ca-
tion of the membrane input resistance. In the presence of yohim-
bine, clonidine still induced an outward current in motoneurons 
(Figure 5A2) but with an intensity that was almost 50% less than in 
control condition (Table 1). This reduced outward current was not 
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associated with  signifi cant changes in the membrane input resistance 
(Table 1). When co-applied with their corresponding antagonists, 
methoxamine (Figure 5B1), clonidine (Figure 5B2) or isoproter-
enol (Figure 5B3) no longer caused an increase in motoneuron 
excitability. As evident in the summary plot in Figure 5C1, spike 
threshold was not signifi cantly altered by the different antagonist–

agonist combinations. The signifi cant change in the f–I relationship 
(Figure 4C2) was no longer observed when isoproterenol was bath-
applied with propranolol (Figure 5C2). A similar effect on the f–I 
relationship was observed when methoxamine or clonidine were 
superfused in the presence of prazosin and yohimbine, respectively 
(Figure 5C2). Finally, methoxamine bath-applied with prazosin 

FIGURE 4 | Effects of the adrenoreceptor agonists on the membrane 

properties of the lumbar motoneurons. (A) Representative traces of the 
effects of methoxamine, clonidine and isoproterenol on the membrane potential 
of motoneurons held at −75 mV (Vh). (B) Representative traces of both the spike 
frequency and the threshold for spike generation during depolarizing current 
pulses (current value between the traces) in the absence and presence of 
methoxamine (B1), clonidine (B2) and isoproterenol (B3). (C,C1) Summary 
histograms of the spike threshold computed as the percentage of the maximum 
injected current needed to evoke spiking in the presence of methoxamine 
(Meth), clonidine (Clo) and isoproterenol (Iso) compared to control condition 
(Ctl). (C2) Summary histograms of the slopes of the frequency current (f–I) 
relationship in the absence (fi lled bars) or presence of the noradrenergic 

agonists (grey bars). (C3) Plot of the normalized AHP amplitude as a function of 
mean spiking frequency during series of depolarizing steps in the absence or 
presence of clonidine. The dashed lines correspond to the linear fi ts (D). Sample 
current traces obtained in response to a family of hyperpolarizing voltage steps 
(fi rst step −155 mV, 8 mV increment) under control conditions and in the 
presence of isoproterenol (D1). The current–voltage (I–V) relationships ( ) 
computed from the traces in D1 results from subtracting the instantaneous ( ) 
from the steady state ( ) current (D2). (E) I–V relationships obtained during 
voltage ramps in control saline (black trace) and in the presence of methoxamine 
(grey trace) (E1). The methoxamine-suppressed current was isolated by 
subtracting currents of I–V relationship in the presence of the agonist from that 
in control condition (E2).
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FIGURE 5 | Effects of adrenoreceptor antagonists on adrenoreceptor 

agonist-induced changes in membrane properties. (A) Representative 
traces showing the effects of different noradrenergic antagonists (α1 prazosin; 
α2 yohimbine; β propranolol) alone or in combination with their corresponding 
agonist (α1 methoxamine; α2 clonidine; β isoproterenol) on the current 
recorded from motoneurons held at −75 mV (Vh). (B) Representative traces 
showing the spike frequency and the threshold for spike generation during 
depolarizing current pulses (current value between the traces) in the presence 
of the antagonists alone or the antagonist–agonist combinations (C). (C1) Plot 
of the spike threshold (computed as the percentage of the maximum injected 
current needed to evoke spiking) in the presence of the three different 
antagonists (hatched bars; prazosin: Praz, yohimbine: Yoh and propranolol: 
Prop) and in the presence of the antagonist–agonist combinations (grey bars; 
prazosin plus methoxamine: Praz + Meth, yohimbine plus clonidine: Yoh + Clo 
and propranolol plus isoproterenol: Prop + Iso) compared to control condition 

(Ctl, black bars). (C2) Summary histograms of the slopes of the frequency 
current (f–I) relationship in control (fi lled bars), in the presence of the 
antagonists (hatched bars) and during co-applications of the antagonist and 
agonist (grey bars) (D). I–V relationships obtained during voltage ramps in 
control conditions (black line), in the presence of prazosin (dashed line) and in 
the presence of both prazosin and methoxamine (grey line) (D1). The current 
modulated by the noradrenergic antagonists was isolated by subtracting the 
current seen in the I–V relationship in the presence of the antagonist from that 
in control condition. Similarly, the current modulated by the antagonist–agonist 
combinations was isolated by subtracting the current of the I–V relationship in 
the presence of both antagonist and agonist from that in the presence of the 
antagonist alone. (D2) Summary histograms of the chord conductance of the 
current extracted from voltage ramps in the presence of the agonist alone 
(open bars), the antagonist alone (hatched bars), and in the presence of both 
antagonist and agonist (grey bars).
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(Figure 5D1) or clonidine with yohimbine (data not shown) did 
not alter the current expressed during voltage ramp (Figure 5D2). 
The chord conductance of the current computed by subtraction of 
voltage ramps in the presence of the antagonist alone (hatched bars 
in Figure 5D2) and in the presence of both the antagonist and the 
agonist (grey bars in Figure 5D2) was signifi cantly smaller than the 
one computed in the presence of methoxamine or clonidine alone 
(open bars in Figure 5D2). The chord conductance of the current 
observed during the co-application of isoproterenol and propranolol 
was further reduced, but not signifi cantly, compared to the current 
suppression caused by isoproterenol alone (Figure 5D2).

Altogether these data suggest that (1) the membrane potential 
of the motoneurons could be differentially modulated depending 
on the type of adrenoreceptors activated (2) the NAergic system 
increased the excitability of the lumbar motoneurons partly via the 
inhibition a K

IR
-like current and (3) the three different agonists, 

methoxamine, clonidine and isoproterenol, specifi cally activate α
1
-, 

α
2
- and β-receptors, respectively, in lumbar motoneurons.
All the effects of the adrenoreceptor agonists described herein were 

not reversible after a 30-min period of wash-out with normal saline. 
When it was possible to obtain it, a partial wash was however observed 
when the wash-out period was extended to 1 h (data not shown).

 NORADRENERGIC MODULATION OF THE SYNAPTIC INPUTS RECEIVED 
BY THE LUMBAR MOTONEURONS
In the isolated spinal cord preparation of the newborn rat, the T13-
L2 network sends a biphasic monosynaptic drive to the lumbar 
motoneurons consisting of alternating excitatory (glutamatergic) 
and inhibitory (glycinergic) synaptic inputs (Cazalets, 2000). Using 
the partitioned spinal cord preparation, experiments were con-
ducted to analyze whether the NAergic system could modulate 
the synaptic inputs conveyed by the T13-L2 network to the L3-
L5 motoneurons. A Vaseline wall was then built at the L2 level to 
specifi cally activate the T13-L2 network independently from the 
caudal motoneurons. Fictive locomotion was induced by bath-
applying a mixture of NMA/5HT on the thoracic and upper lum-
bar segments and recorded extracellularly from the L2 ventral 
root and intracellularly from lumbar motoneurons (Figure 6A). 
Strychnine (1 µM) was added to the L3-L5 compartment to isolate 
the glutamatergic synaptic drive (Figure 6A1). In control condi-
tions, the glutamatergic synaptic drive consists of small rhythmic 
depolarizations that could be in phase or out of phase with the 
extracellular ventral root recordings as an extensor and a fl exor 
center are present in T13-L2 segments (Cazalets et al., 1995; Butt 
et al., 2002; Dougherty and Kiehn, 2009) (Figure 6B1 see also 

FIGURE 6 | Effects of NA on the glutamatergic synaptic drive. 

(A) Schema of the experimental procedure. Vaseline wall (grey bar) was built 
at the L2 level. NMA/5HT was bath applied to the rostral compartment 
whereas strychnine alone (A1) or in combination with noradrenaline (NA) 
(A2,A3) was superfused onto the caudal compartment. (B) Representative 
traces recorded from a left L5 motoneuron (lL5) that was rhythmically 
depolarized out of phase with the lL2 ventral root activity (B1). In the 

presence of NA, the motoneuron was strongly depolarized and spiking 
activity was superposed on the depolarizing phases (B2). The injection of 
hyperpolarizing bias current (B3) revealed a strong amplifi cation of the 
synaptic drive received by the motoneuron in the presence of NA. (B4) Mean 
synaptic drive computed from the traces in (B1,B3). Summary plots of the 
mean synaptic drive amplitude (C) and of the rhythm period (D) in the 
presence or absence of NA.
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Figures 7B1,C1,D1). The addition of NA (5 µM) to the L3-L5 
compartment induced a strong depolarization of the recorded 
cells that reached the spike threshold generation in the major-
ity of the cells tested (seven of nine neurons; mean membrane 
potential −73.5 ± 1 mV in control and −58.2 ± 2 mV in the pres-
ence of NA, n = 9). The spiking activity could be restricted to 
the depolarizing phase of the locomotor drive as illustrated in 
Figure 6B2 (four neurons of seven) or sustained (three neurons of 

seven; data not shown). To analyze the variation of the excitatory 
synaptic drive induced by NA, hyperpolarizing bias currents were 
injected into the cells to return to their control membrane potential 
value (Figure 6B3). Figure 6B4 shows a representative trace of 
the mean synaptic drive (see Section “Materials and Methods”) 
computed in control condition and in the presence of NA. NA 
strongly and reversibly enhanced the amplitude of the synaptic 
drive conveyed by the T13-L2 locomotor network to the caudal 

FIGURE 7 | Effects of the NAergic agonists on the glutamatergic synaptic 

drive. (A) Schema of the experimental procedure. NMA/5HT was added to the 
saline superfused on the rostral compartment to elicit fi ctive locomotion 
recorded extracellularly from the L2 ventral roots. Strychnine was bath applied 
alone or in combination with one of the agonist on the caudal compartment of 
the spinal cord and motoneurons were recorded in the left part of the cord. 
Representative motoneurons recorded from the right or left L5 segment (rL5 or 
lL5) in control condition (B1,C1,D1) and in the presence of methoxamine (B2), 

isoproterenol (C2) or clonidine (D2). Hyperpolarizing (B3,C3) or depolarizing (D3) 
bias current (value in parenthesis) was injected into neurons to returned to their 
control membrane potential in the presence of the different noradrenergic 
agonists. The dash lines in (B2,C2,D2) correspond to the control membrane 
potential value of the neurons before the agonist application. Summary plot of 
the mean membrane potential (E), the mean synaptic drive amplitude (F) and 
the rhythm period (G) in the presence of methoxamine (black bars), 
isoproterenol (grey bars) and clonidine (white bars).
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lumbar motoneurons (Figure 6C). This enhancing action is not 
associated with any change in the period of the fi ctive locomotor 
rhythm (Figure 6D). When the NA concentration was raised to 
50 µM on the caudal lumbar segments, the motoneuronal mem-
brane potential was very diffi cult to stabilize and to maintain at 
control value. Therefore accurate measurement of the synaptic 
drive could not be performed (data not shown).

Using the same protocol, we subsequently examined the effects 
of the three adrenoreceptor agonists on the excitatory synaptic 
drive received by the lumbar motoneurons (Figure 7A). In these 
experimental conditions, methoxamine bath-applied on the L3-L5 
segments induced a signifi cant depolarization of the motoneurons 
(Figure 7E) that reached the threshold for spike generation (com-
pare Figures 7B1,B2). When motoneurons were held at their con-
trol membrane potential by injecting hyperpolarizing bias current 
(Figure 7B3), we observed a strong potentiation of the locomotor 
synaptic drive in the presence of the α

1
 agonist (Figures 7B3,F). 

When added to the L3-L5 compartment, the β agonist, iso-
proterenol signifi cantly depolarized the lumbar motoneurons 
(Figures 7C1,C2,E) and slightly but signifi cantly enhanced the 
synaptic inputs received by the motoneurons during fi ctive locomo-
tion (Figure 7C3). In contrast, clonidine elicited an hyperpolariza-
tion of the motoneurons (Figures 7D1,D2,E). When depolarizing 
bias current was injected into the cells to return to their control 
membrane potential value (Figure 7D3), no signifi cant change of 
the synaptic drive was observed (Figure 7F). The modifi cations 
of the synaptic drive amplitude did not rely on an effect on the 
T13-L2 locomotor network as the period of the rhythm was not 
modifi ed by the bath-application of the adrenoreceptor agonists 
on the caudal lumbar segments (Figure 7G).

PRESYNAPTIC CONTROL OF THE GLUTAMATERGIC TRANSMISSION
To determine whether the NAergic modulation of the excitatory 
synaptic drive described herein could partly rely on presynap-
tic mechanisms, we conducted mEPSCs recordings experiments 
from motoneurons. For this purpose, the motoneurons were 
synaptically isolated with tetrodotoxin (TTX; 0.5 µM) and the 
inhibitory synaptic inputs were blocked by adding 1 µM strych-
nine (glycinergic antagonist) and 1 µM gabazine (GABAergic 
antagonist) to the saline. mEPSCs were blocked by the NMDA 
and AMPA receptors antagonists AP5 and CNQX (5 µM, n = 3 
data not shown) suggesting that they were due to the release 
of glutamate and the activation of ionotropic glutamate recep-
tors. The control mean mEPSC amplitude was 6.3 ± 0.3 pA 
(n = 26 motoneurons). As shown in the representative traces in 
Figure 8A1, 5 µM NA decreased mEPSC frequency and shifted the 
distribution of inter-event interval to the right (p < 0.05, KS test; 
Figure 7A2). Figure 8A3 shows that for each individual neuron 
(n = 5), NA signifi cantly decreased the mean mEPSC frequency. 
The mean mEPSC frequency was reduced from 5.3 ± 1 Hz in con-
trol condition to 3.6 ± 1 Hz in the presence of NA. The pooled 
data also showed that the mean mEPSC amplitude was signifi -
cantly altered (Figure 8E). The same inhibitory effect on both 
mEPSC frequency and amplitude was observed using 50 µM NA. 
The mean mEPSC frequency and amplitude were respectively 
7.2 ± 2 Hz and 6.4 ± 0.5 pA in normal saline and 5 ± 1.4 Hz and 
5.6 ± 0.9 pA (n = 3, data not shown) in the presence of 50 µM 

NA. Next, we analyzed the effects of the three NAergic agonists 
on mEPSCs. We observed that clonidine and isoproterenol mim-
icked the inhibitory action of NA when superfused on the spinal 
cord. The bath-application of clonidine (Figure 8B1) or isoprot-
erenol (Figure 8C1) decreased the mEPSC occurrence and signifi -
cantly shifted the distribution of inter-event interval to the right 
(Figures 8B2,C2). The mean mEPSC frequency was signifi cantly 
decreased from 6.1 ± 1 Hz in normal saline to 3.9 ± 1 Hz (n = 5) in 
the presence of clonidine and from 7.2 ± 2 to 5.3 ± 1 Hz (n = 5) in 
the presence of isoproterenol. We observed a signifi cant decrease 
of the mEPSC amplitude with isoproterenol and a substantial but 
not signifi cant reduction in the presence of clonidine (Figure 8E). 
In contrast, methoxamine elicited an increase in the frequency 
of mEPSCs (Figure 8D1) and signifi cantly shifted the distribu-
tion of inter-event interval to the left (Figure 8D2). The mean 
mEPSC frequency was signifi cantly increased from 4 ± 0.7 Hz 
in control conditions to 5.2 ± 0.5 Hz (n = 5) in the presence of 
methoxamine (Figure 8D3) while the mean mEPSC amplitude 
was not signifi cantly reduced (Figure 8E).

DISCUSSION
The present work provides the fi rst detailed analysis of the spinal 
cellular targets of the NAergic pathways in the lumbar motor spinal 
cord and reveals a very complex neuromodulatory system.

 MODULATION OF INTRINSIC PROPERTIES
Voltage clamp recordings from neurons with extended dendritic 
tree, as motoneurons, should be interpreted with caution. In this 
study, we compare control conditions to different pharmacologi-
cal conditions. Although we undoubtedly did not clamp the whole 
dendritic tree of the motoneurons, we reported a strong inhibitory 
effect on the K

IR
 current by the NAergic agents during voltage ramps 

or pulses. The quantifi cation of this effect is certainly reduced 
due to sub-optimal voltage clamp conditions, but its occurrence 
remains. Although the NAergic agents differentially modulate the 
membrane potential of the motoneurons, they all increased their 
excitability and input membrane resistance and reduced a K

IR
-

like conductance. These results are in agreement with previous 
studies showing that membrane depolarization associated with an 
input resistance increase underlie the NAergic-induced increase 
in hypoglossal and cervical motoneuron excitability (Kitazawa 
et al., 1985; Bayliss et al., 1997). Lumbar motoneurons, however, 
exhibit a specifi c NAergic neuromodulatory profi le since AHP 
and I

H
 current are not targeted by the NAergic system in these 

neurons. This contrasts with data obtained from hypoglossal 
motoneurons in which NA reduces the AHP amplitude (Parkis 
et al., 1995) and clonidine inhibits the I

H
 current (Parkis and 

Berger, 1997). These differences between hypoglossal and lumbar 
locomotor motoneurons could result from distinct NAergic recep-
tor sub-type expression and/or intracellular coupling (Rekling 
et al., 2000). The K

IR
 channels contribute to the resting mem-

brane potential and neuronal excitability and for these reasons, 
they constitute the main targets of numerous G-protein coupled 
receptors (see for examples Bertrand et al., 2003a,b; Derjean et al., 
2003; Chevallier et al., 2008). In the neonatal rat spinal cord, it 
has been shown that serotonin as NA increases the motoneuron 
excitability partly via the inhibition of K

IR
-like current (Kjaerulff 
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and Kiehn, 2001). A question now arises over how NA changes the 
slope of the f–I relationship without affecting the AHP amplitude. 
NA was reported to increase the excitability of spinal lumbar 
neurons by hyperpolarizing the spike threshold probably via a 
facilitation of the activation of Na+ channels (Fedirchuk and Dai, 
2004). Serotonin has been shown to facilitate an L-type calcium 
current in lumbar motoneurons (Li et al., 2007). The modulation 
of such calcium channels by NA could maybe also account for the 
changes observed in the f–I relationships slope.

 SPECIFICITY OF THE NAergic AGONISTS
As previously mentioned, we investigated the threshold dose at 
which the agonist elicited signifi cant changes in the motoneuron 
membrane potential. Using this criterion, some NAergic agonists 
were used at relatively high concentrations. We show, however, 
that the specifi c antagonists of NAergic receptors inhibit most of 
the effects of the NAergic agonists on the motoneuron membrane 
properties. This suggests that despite the high concentrations used, 
methoxamine, clonidine and isoproterenol specifi cally activate α

1
, 

FIGURE 8 | Effects of noradrenaline and its agonists on mEPSCs. (A) Examples 
of mEPSCs recorded under control condition at −75 mV and in the presence of 
5 µM NA (A1). Cumulative distributions of intervals between mEPSCs (A2) for the 
motoneuron in (A1). Line plots illustrating the actions of NA on the frequency of 

mEPSCs in each neuron of the sample (A3). (B,C,D) As for (A) but in the presence 
of clonidine (B), isoproterenol (C) and methoxamine (D). (E) Summary histogram 
of the mean amplitude of the mEPSCs in control conditions (black bars) and in the 
presence of the various NAergic agents (grey bars).
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α
2
 and β receptors respectively. The need to use high clonidine 

concentration in newborn animals (see also Selvaratnam et al., 
1998) maybe linked to the weak expression of the α

2
 receptors at 

this developmental stages and to the properties of the α
2
 receptor 

sub-types in motoneurons at birth.

 MODULATION OF SYNAPTIC TRANSMISSION
The increase in the motor synaptic drive we reported herein could 
originate from a direct action on the motoneurons and/or a modu-
lation of the glutamatergic transmission at the presynaptic level 
and/or on the rhythm-generating L3-L6 network of premotor 
interneurons (Kiehn, 2006). To discriminate among these various 
levels, we have used the partitioned spinal cord preparation and 
mEPSC recordings.

As previously mentioned, NA induces a slow non-locomotor 
rhythm and slows down the NMA-induced rhythm in the neo-
natal rat spinal cord preparation. In the neonatal rat spinal cord 
preparation, NA at the concentrations used in the present study, 
induces a slow non-locomotor rhythm and slows down the NMA- 
or NMA/5HT-induced fi ctive locomotion (Kiehn et al., 1999; 
Sqalli-Houssaini and Cazalets, 2000). If we hypothesize that NA 
acts on the rhythm generating interneurons located in the L3-L6 
segments, modifi cations of the locomotor period and/or locomo-
tor pattern should have been observed in the intracellular and/or 
extracellular recordings. Such effects were no observed in this study. 
It has been also shown that the α

1
 agonist methoxamine speeds up 

the fi ctive locomotor rhythm without modifying the motor burst 
amplitude. On the contrary, the α

2
 and β agonist receptors slow 

down the motor rhythm while simultaneously increasing the motor 
burst amplitude in the case of isoproterenol (Sqalli-Houssaini and 
Cazalets, 2000). If the potentiation of the T13-L2 synaptic drive 
solely relies on an activation of the L3-L6 CPG interneurons, we 
should have observed opposite effects on the locomotor period 
and on the synaptic drive amplitude during the superfusion of 
the α

1
 agonist versus the α

2
 and β agonists. In the present study 

however, we observed that both methoxamine and isoproterenol 
increased the T13-L2 synaptic drive while clonidine failed to affect 
it. No effects were also reported on the locomotor period with any 
of the agonists. Although, these results suggest that the NAergic 
compounds directly control the T13-L2 descending glutamater-
gic inputs, the partial contribution of the L3-L6 interneurons to 
the increase of the T13-L2 synaptic drive could not, however, be 
completely excluded.

All NAergic agents except methoxamine decrease both the 
mEPSCs frequency and amplitude. In contrast, all NAergic com-
pounds tested, except clonidine, enhance the excitatory synaptic 
drive arising from the T13-L2 network in L3-L5 motoneurons 
isolated with Vaseline wall. mEPSCs result from the glutamate 
release of all active synapses converging onto motoneurons. 
Using the partitioned spinal cord, we isolate the T13-L2 network 
synaptic drive from the other glutamatergic synapses impinging 
onto the motoneurons. Altogether our results then suggest that 
the glutamatergic inputs of the motoneurons, but certainly not 
all, are presynaptically inhibited via the activation of α

2
 and β 

adrenoreceptors and potentiated via the activation of α
1
 adreno-

receptors, while the T13-L2 glutamatergic transmission is presyn-
aptically enhanced by the activation of α

1
adrenoreceptors. As the 

T13-L2 segments are considered as the main rhythmogenic area 
of the lumbar cord (Cazalets, 2000), these results suggest that this 
locomotor-related excitatory synaptic drive could be specifi cally 
selected and favored by the NAergic pathways. These data further 
extend our knowledge on the modulation of the T13-L2 synaptic 
drive that was shown to be inhibited by the activation of presyn-
aptic GABA

B
 receptors and pre-and postsynaptic GABA

A
 receptors 

(Bertrand and Cazalets, 1999).

 PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL RELEVANCE
Numerous studies have emphasized the role of the NAergic 
system in motor rhythms and segmental refl ex modulations in 
animal models and humans (as for examples: Kitazawa et al., 
1985; Chau et al., 1998a; Jankowska et al., 1998; Kiehn et al., 
1999; Remy-Neris et al., 1999; Sqalli-Houssaini and Cazalets, 
2000; Fischer et al., 2001; Barbeau and Norman, 2003; Gabbay 
and Lev-Tov, 2004; Machacek and Hochman, 2006; Barriere 
et al., 2008). Our data shed light on the complexity of the cel-
lular bases of the NAergic modulation in the motor spinal net-
works. We have previously shown that NA controls the activity 
dependant plasticity expressed at sensorimotor synapses via the 
activation of GABAergic interneurons (Barriere et al., 2008). 
We demonstrated in the present study that depending on the 
adrenoreceptor expression and localization, the NAergic system 
could differentially and specifi cally modulate at both pre- and 
postsynaptic level the synaptic inputs and intrinsic properties 
of lumbar motoneurons.

After SCI, the excitatory supraspinal pathways controlling the 
spinal motor networks are damaged or lost. Functional rehabili-
tation strategies after SCI attempt, using various methods, to 
stimulate the sublesioned spinal cord. In spinal cats, α

2
agonists 

are very effi cient agents at initiating locomotion (Chau et al., 
1998b). In rodents models in contrast, α

2
 agonists appeared less 

potent than α
1
 agonists in inducing locomotor activity (Sqalli-

Houssaini and Cazalets, 2000; Lapointe et al., 2008). In the 
present work, we provide part of the cellular bases accounting 
for the different potencies of clonidine and methoxamine in 
stimulating spinal motor networks in rat. We indeed showed 
that clonidine while it increases the motoneuron excitability 
globally inhibits the glutamatergic transmission received by the 
motoneurons in contrast to methoxamine that boosts it. It will 
be therefore very interesting to compare the cellular basis of 
the NAergic neuromodulation in intact and sublesioned lumbar 
motor networks and to assess the effect of methoxamine in spinal 
rodent models.
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