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clearly dependent on the FMR1 gene family across a wide range 
of species.

The Drosophila circadian clock circuitry is particularly well 
characterized (Helfrich-Forster, 2005; Chang, 2006; Nitabach and 
Taghert, 2008). Within this circuit, the small ventrolateral neurons 
(sLN

v
s) are a key subset of clock neurons that possess suffi cient 

circadian pacemaker capacity to modulate morning activity peaks 
in light:dark cycles and drive rhythmicity in constant darkness 
(Renn et al., 1999; Grima et al., 2004; Stoleru et al., 2004). These 
critical clock neurons express the neuropeptide pigment dispersing 
factor (PDF) (Helfrich-Forster, 1995, 2005), which has long been 
proposed to serve as the clock output mediating coordination of 
downstream neurons. Characterization of pdf-null animals reveals 
impaired light cycle entrainment with advanced evening activity 
peaks and disrupted anticipation, while free-running behavior in 
constant darkness shows progressive deterioration of rhythmic-
ity (Renn et al., 1999). Further, disrupted cycling of PDF within 
the terminal sLN

v
 projections induced by transgenically-mediated 

electrical hyperexcitability causes altered behavioral rhythms with 
multiple periods (Nitabach et al., 2006), and work using a mem-
brane-tethered toxin to infl uence neuronal ion channel properties 
revealed a 4-h phase advance in the PDF peak accumulation in the 
sLN

v
s, which coordinately shifts morning anticipatory  behavior 

INTRODUCTION
Fragile X Syndrome (FraX) is a common heritable neurological 
disease manifesting mental retardation, autism, attention defi cit 
disorder and disrupted activity patterns (Bassell and Warren, 2008; 
Gatto and Broadie, 2009; Hagerman et al., 2009). FraX patients 
display characteristic hyperactivity and disordered sleep associ-
ated with altered melatonin levels (Elia et al., 2000; Gould et al., 
2000; Miano et al., 2008). Similarly, FraX genetic disease mod-
els also show dramatically impaired circadian activity profi les. 
Drosophila mutants lacking their sole fragile X mental retarda-
tion 1 (FMR1) family member (dfmr1) display signifi cantly altered 
motor activity, disrupted sleep and striking circadian rhythm 
phenotypes, hallmarked by arrhythmicity and erratic locomo-
tion (Dockendorff et al., 2002; Inoue et al., 2002; Morales et al., 
2002; Bushey et al., 2009; Gatto and Broadie, 2009). In mammals, 
a tripartite gene family (FMR1, FXR1 and FXR2) encodes proteins 
with >60% amino acid identity and high functional domain con-
servation (Siomi et al., 1995; Zhang et al., 1995). Mice defi cient 
for either Fmr1 or Fxr2 alone maintain fairly normal rhythmicity, 
albeit with free-run periodicity shortening (Zhang et al., 2008). 
However, combinatorial Fmr1/Fxr2 double null animals are 
entirely arrhythmic and further lack basic entrainment capacity 
(Zhang et al., 2008). Thus, the circadian regulation of behavior is 
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(Wu et al., 2008). The PDF neuropeptide facilitates circadian 
 oscillations in individual neurons, while driving synchrony in 
neuronal subgroups (Sheeba et al., 2008; Yoshii et al., 2009).

Null dfmr1 sLN
v
s exhibit striking architectural defects, including 

overgrowth, overextension and mistargeting beyond the normal 
branching and defasiculation point in the protocerebrum, project-
ing a more expansive terminal synaptic arborization (Dockendorff 
et al., 2002; Morales et al., 2002; Reeve et al., 2005, 2008; Sekine 
et al., 2008; Gatto and Broadie, 2009). Conversely, targeted dfmr1 
overexpression in sLN

v
s results in a dramatic collapse of their dor-

sal synaptic arbor (Reeve et al., 2005), indicating that the levels of 
the dFMR1 product (dFMRP) protein alone can bidirectionally 
modulate synaptic complexity. Thus, dFMRP plays a critical role 
in controlling the synaptic connectivity within the clock circuit 
that drives circadian activity patterns.

A fundamental need is to determine the critical period(s) of 
FMRP function. Treatment design, implementation and effi cacy 
depend upon determining whether FraX is primarily a disease of 
development or maintained function. FMRP has been proposed 
to be required very early, during neurogenesis and pathfi nding, 
later during stages of synaptogenesis and neuronal circuitry refi ne-
ment (e.g. activity-dependent synaptic pruning), or at maturity for 
use-dependent circuit remodeling (Nimchinsky et al., 2001; Galvez 
and Greenough, 2005; Larson et al., 2005; Yun et al., 2006; Bureau 
et al., 2008; Gatto and Broadie, 2008; Tessier and Broadie, 2008). 
Clearly, these potential roles may not be mutually exclusive. To dis-
tinguish these possibilities, we have used the conditional, transgenic 
Gene-Switch (GS) method (Osterwalder et al., 2001; Roman et al., 
2001) to neuronally target wild-type dFMRP in null dfmr1 mutants 
(Gatto and Broadie, 2008). Conditional expression was driven dur-
ing windows throughout development and at maturity, followed 
by examination of the resultant sLN

v
 synaptic architecture using a 

PDF-adapted modifi ed Sholl Analysis. Neither early developmental 
nor adult-onset dFMRP expression was suffi cient to prevent or 
reverse, respectively, the sLN

v
 synaptic defects. Surprisingly, inap-

propriate dFMRP expression during early pupal metamorphosis 
actually exacerbated dfmr1-null phenotypes. Successful and striking 
structural resolution of synaptic connectivity defects was obtained 
only via targeted reintroduction of dFMRP during late pupal 
brain development. These results reveal a highly specifi c, dFMRP-
dependent window of sLN

v
 clock neuron development during the 

late stages of synaptogenesis and/or synaptic refi nement.

MATERIALS AND METHODS
DROSOPHILA GENETICS
Drosophila stocks were maintained at 25°C on standard  cornmeal/
agar/molasses medium supplemented with yeast. The w1118 line 
served as the genetic background control for the null dfmr1 
allele (dfmr150M) (Zhang et al., 2001; Gatto and Broadie, 2008). 
Stocks carrying PDF-Gal4 and UAS-mCD8::GFP, both from the 
Drosophila Stock Center (Bloomington, IN, USA), as well as UAS-
 synaptotagmin-GFP (Zhang et al., 2002), were introduced into the 
dfmr1-null background using standard genetic techniques. As previ-
ously described (Gatto and Broadie, 2008), recombinant parental 
lines harboring the null dfmr1 allele (Zhang et al., 2001) and either 
a wild-type dfmr1 transgene under UAS control (UAS-9557-3) 
(Zhang et al., 2001) or the neuronal-specifi c driver elav-Gene-Switch 

 construct (GSG-301) (Osterwalder et al., 2001) were generated 
using standard genetic techniques. Accordingly, “eGS” as a genotype 
descriptor refers to the following: dfmr150M, elav-GSG-301/dfmr150M, 
UAS-9557-3. For RU486 (mifepristone; Sigma, St Louis, MO, USA) 
dosing (eGS + RU), the drug was dissolved at 10 mM in 80% ethanol 
(EtOH) and either mixed with food to the desired concentration 
for larval (0.5 µg/mL) or adult (30 µg/mL) feeding, or it was used 
directly for immersion treatment of both larvae and pupae as indi-
cated. For pupal day 1 (P1) induction, late-stage wandering third 
instar larvae were washed briefl y with EtOH, soaked in RU486 for 
2 min, and then transferred to fresh vials for puparium formation. 
Induction from P2–P4 required an anterior incision in the pupal 
case with a 30-gauge needle and subsequent submersion in RU486 
for 2 min. Pupae were then transferred to humid chambers to pre-
vent desiccation. For vehicle control, equivalent volumes of 80% 
EtOH were used to identically treat the eGS line (eGS + E).

WESTERN BLOT ANALYSES
The central nervous system, including the brain and the ventral 
nerve cord, was dissected free from staged and treated larvae in Ca2+-
free modifi ed standard saline, while the brain proper was dissected 
from both pupae and adults (Gatto and Broadie, 2008). Dissected 
samples were homogenized and boiled in 1X NuPage sample buffer 
(Invitrogen, Carlsbad, CA, USA) supplemented with 40 mM DTT. 
The total protein from four brains per sample was loaded onto 
4–12% Bis-Tris gels and electrophoresed in NuPage MES Buffer 
(Invitrogen) for 1 h at 200 V. Transfer to nitrocellulose was carried 
out for 1 h at 100 V in NuPage transfer buffer (Invitrogen) with 
10% MeOH. Processing was completed using the Odyssey near 
infrared fl uorescence detection system (Li-COR, Lincoln, NE) to 
enable quantitative Western blot analysis. Antibodies used included: 
anti-dFMRP (1:2000; 6A15 monoclonal, Sigma), anti-α-tubulin 
(1:200,000; B512 monoclonal, Sigma), and Alexa-goat-anti-mouse-
680 (1:10,000; Invitrogen-Molecular Probes). Raw integrated inten-
sities were calculated for the lower molecular weight band of the 
dFMRP doublet and for the α-tubulin band. The ratio of dFMRP:
α-tubulin normalized for loading and allowed comparison of eGS 
neuronally induced dFMRP relative to endogenous dFMRP in age 
matched wild-type (w1118) animals.

IMMUNOHISTOCHEMISTRY
Immunohistochemistry was performed essentially as previously 
described (Gatto and Broadie, 2008). Brains from staged and treated 
animals (0–3 days old) were dissected in standard saline and then 
fi xed for 40 min with 4% paraformaldehyde/4% sucrose in phos-
phate buffered saline (PBS), pH 7.4. Preparations were rinsed with 
PBS, then blocked and permeablized with 0.2% triton X-100 in 
PBS (PBST) supplemented with 1% bovine serum albumin (BSA) 
and 0.5% normal goat serum (NGS) for 1 h at room tempera-
ture. Primary and secondary antibodies were diluted in PBST with 
0.2% BSA and 0.1% NGS and incubated overnight at 4°C and 2 h 
at room temperature, respectively. Antibodies employed include: 
anti-GFP (1:2000; ab290 polyclonal, Abcam Inc., Cambridge, MA), 
anti-PDF [1:5; C7 monoclonal, Developmental Studies Hybridoma 
Bank (DSHB), University of Iowa], anti-ELAV (1:100; 9F8A9 mon-
oclonal, DSHB), anti-dFMRP (1:500; 6A15, Sigma) and Alexa-Fluor 
secondaries (1:250; Invitrogen-Molecular Probes). All fl uorescent 
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images were collected using a ZEISS LSM 510 META laser scanning 
confocal microscope.

PDF-ADAPTED MODIFIED SHOLL ANALYSIS
A PDF-adapted version of the Modifi ed Sholl Analysis (Fernandez 
et al., 2008) was developed. A traditional Sholl array using a series of 
10 µm-spaced concentric rings was centered upon the dorsal horn 
bifurcation of the sLN

v
 terminal arbor and extended forward for 

100 µm with assays conducted at zeitgeber time 2–4, i.e. 2–4 h after 
lights on. To provide for compatibility with the GS system, this assay 
examined PDF reactive puncta (≥1 µm in diameter) within each 
10 µm concentric ring. Puncta were counted as a refl ective index 
of spatial synaptic arbor complexity. Values were determined for 
each concentric ring throughout the arbor in both left and right 
hemispheres and averaged for n = 1 for each individual animal.

STATISTICS
Statistical analyses were performed using GraphPad InStat 3 
(GraphPad Software, Inc., San Diego, CA, USA). Unpaired, 
nonparametric, two-tailed Mann–Whitney tests were used to 
compare means of control and dfmr1, as well as means of eGS 
treated with vehicle or RU486 in the PDF-adapted Modifi ed Sholl 
Analysis. While unpaired, parametric student’s t-tests could have 
been applied in certain instances, the cumulative consideration 
of data sets examining each concentric ring in a given treatment 
paradigm did vary with regard to normality. Thus, it was deemed 
more appropriate to globally apply the more conservative, nonpara-
metric measures. Signifi cance levels in fi gures are represented as 
p < 0.05 (*); p < 0.01 (**); p < 0.001 (***). All error bars represent 
standard error of the mean (SEM).

RESULTS
OVER-ELABORATION OF sLNV SYNAPTIC ARBORS IN 
dfmr1-null MUTANTS
In the Drosophila FraX model, dFMRP loss results in overgrowth of 
sLN

v
 synaptic arbors in the dorsal brain (Dockendorff et al., 2002; 

Morales et al., 2002; Reeve et al., 2005, 2008; Sekine et al., 2008; 
Gatto and Broadie, 2009). The increased architectural  complexity 
can be readily visualized with expression of the UAS-mCD8::GFP 
membrane marker transgene driven by the LN

v
-specifi c PDF-

GAL4, comparing control and dfmr1-null mutant (Figure 1A). 
Co-immunostaining for the LN

v
-specifi c neuropeptide PDF reveals 

a punctate pattern of varicosities distributed throughout the sLN
v
 

synaptic arbor interspersed along the axonal branches. Likewise, 
expression of the UAS-synaptotagmin-GFP transgene, an integral 
synaptic vesicle marker, specifi cally labels synaptic boutons within 
the sLN

v 
arbor revealing the same characteristic synaptic overgrowth 

in dfmr1-null mutants (Figure 1B). Double-labeling shows an array 
of synaptotagmin-GFP boutons within the synaptic arbor, overlap-
ping and co-localized with the anti-PDF array. These analyses show 
that PDF labeling serves as an excellent indicator of synaptic bou-
tons in both control and dfmr1 nulls (Figure 1B). Co-localization 
of PDF with synaptotagmin-GFP was seen in 77 ± 3% of puncta in 
control and 71 ± 2% in dfmr1 mutants (p = 0.13, n = 7 for both). 
PDF was independently present in 19 ± 3% of control puncta vs. 
23 ± 2% in dfmr1 (p = 0.21), and synaptotagmin-GFP was observed 
alone in 4 ± 1% of control and 6 ± 0.3% of dfmr1 puncta (p = 0.13). 

We conclude that examining the spatial distribution of PDF puncta 
serves as a refl ective index of both the axonal arbor morphological 
complexity and synaptic bouton distribution in the sLN

v
s.

To quantify the synaptic defects in dfmr1 mutants, we employed a 
PDF-adapted modifi ed Sholl Analysis to record sLN

v
 synapse archi-

tecture (Figure 1C, inset) (Fernandez et al., 2008). The approach 
involves aligning a traditional Sholl array of 10 µm-spaced concen-
tric rings centered upon the dorsal horn bifurcation of the sLN

v
 

terminal arbor, extending the array for 100 µm, and reporting the 
number of PDF synaptic boutons within each ring. This method 
reliably characterizes the robust differential distribution of synap-
tic boutons in dfmr1 mutants compared to control (Figure 1C). 
These quantifi ed analyses reveal that dfmr1-null animals harbor 
increased numbers of synaptic boutons throughout the sLN

v
 ter-

minal (total puncta: 51 ± 4 control vs. 92 ± 5 dfmr1; n = 26 for 
both; p < 0.0001) projecting, at minimum, 20 µm further toward 
the midline (average maximal ring occupancy: 6 ± 0.2 control vs. 
8 ± 0.3 dfmr1; p < 0.0001) and with a greatly increased average 
number of boutons beyond 50 µm (3 ± 1 control vs. 16 ± 3 dfmr1; 
p < 0.0001). Moreover, the number of synaptic boutons in every 
concentric ring is signifi cantly elevated in dfmr1 nulls throughout 
the arbor (Figure 1C): 10 µm ring (11 ± 1 control, 14 ± 1 dfmr1; 
p = 0.039), 20 µm ring (15 ± 1 control, 19 ± 1 dfmr1; p = 0.004); 
30 µm ring (11 ± 1 control, 16 ± 1 dfmr1; p = 0.0001), 40 µm ring 
(8 ± 1 control, 15 ± 1 dfmr1; p < 0.0001), 50 µm ring (3 ± 0.5 con-
trol, 12 ± 1 dfmr1; p < 0.0001), 60 µm ring (2 ± 0.5 control, 7 ± 1 
dfmr1, p < 0.0001), 70 µm ring (1 ± 0.3 control, 4 ± 0.7 dfmr1; 
p < 0.0001), 80 µm ring (0.3 ± 0.1 control, 2 ± 0.5 dfmr1; p = 0.002), 
90 µm ring (0.04 ± 0.04 control, 2 ± 0.6 dfmr1; p = 0.023), and the 
most distal 100 µm ring (0 control, 1 ± 0.4 dfmr1). These results 
show that both the number and spatial distribution of boutons 
in the sLN

v
 synaptic arbor is altered in the absence of dFMRP, 

with more boutons occupying a larger territory beyond the normal 
extent of the sLN

v
 arborization.

GENE-SWITCH CONDITIONAL CONTROL OF dFMRP DURING 
DEVELOPMENT AND AT MATURITY
To examine the temporal requirement(s) of dFMRP in regulating 
synapse architecture and to determine whether dFMRP reintroduc-
tion could rescue synaptic defects, we exploited the transgenic condi-
tional GS system (Osterwalder et al., 2001; Roman et al., 2001). The 
GS method employs a hormone-responsive modifi ed UAS-GAL4 
system to drive inducible, targeted, tissue-specifi c transgene expres-
sion. We controlled a UAS-dfmr1 transgene with the pan-neuronal 
elav-GS GAL4 by treating with the activating progesterone analog, 
RU486 (mifepristone), in the dfmr1-null mutant background to 
examine the infl uence of dFMRP reintroduction on sLN

v
 mor-

phology and synaptic elaboration (Figure 1) (Gatto and Broadie, 
2008). In defi ning treatment paradigms, analyses were performed 
on wild-type control (w1118), dfmr1-null and dfmr1-null animals 
harboring both the elav-GS GAL4 driver and UAS-dfmr1 trans-
gene (eGS animals, henceforth) treated with RU486 (eGS + RU) or 
only ethanol vehicle (eGS + ET) as indicated (Figure 2A). We fi rst 
confi rmed that RU486 induced elav-GS GAL4 does drive dFMRP 
transgene expression pan-neuronally in the brain, albeit not uni-
formly (Figure 2A). Close examination likewise confi rmed elav 
expression in the sLN

v
s nuclei (Figure 2B), establishing that sLN

v
s 
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are elav-positive. These fi ndings indicate that the GS method allows 
control of dFMRP expression in neurons widely throughout the 
brain, including within the sLN

v
 neurons.

The expression of dFMRP is strongly modulated as a function of 
age both during development and adult aging, with peak expression 
at the late stages of brain maturation (Gatto and Broadie, 2008; Tessier 

and Broadie, 2008; Bushey et al., 2009). Therefore, RU486 treatment 
windows were assessed at all time points during development and 
at maturity for both endogenous and induced dFMRP expression 
levels (Figure 2C). Progressive interventions were performed to drive 
dFMRP transgene expression from the earliest stages of development, 
through intermediate and later stages,  culminating with adult-onset 

FIGURE 1 | sLN
v
 synaptic architecture defects in the absence of dFMRP. 

(A) Representative images of adult Drosophila brains isolated from animals 
expressing a UAS-mCD8::GFP (green) transgene under the control of the 
ventrolateral neuron (LNv) specifi c PDF-GAL4 driver in both genetic background 
control and homozygous dfmr150M null (dfmr1) mutants. Co-
immunohistochemistry was done for the LNv neuropeptide PDF (red). At left, low 
magnifi cation images show both the large LNv axonal projections with the 
established posterior optic tract connecting both hemispheres and the small LNv 
(sLNv) axonal tracts that defasiculate and arborize in the protocerebrum. At right, 

high magnifi cation views focus solely on the terminal sLNv synaptic arbors. 
(B) Images of sLNv synaptic arbors from animals expressing UAS-synaptotagmin-
GFP (syt-GFP, green) under the control of PDF-GAL4 in both control and dfmr1-
null backgrounds. Brains show co-immunohistochemistry for PDF (red). (C) Sholl 
Analysis quantifi cation of the spatial distribution of synaptic boutons throughout 
the sLNv arbor in both genetic background controls and dfmr1 nulls based on 
counting PDF-reactive (PDF+) puncta (inset; ≥1 µm in diameter, demarcated in 
red) starting from the point of dorsal horn bifurcation. Bars indicate mean ± SEM 
Signifi cance levels: p < 0.05 (*); p < 0.01 (**); p < 0.001 (***).
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expression. The earliest induction was to constitutively feed RU486 
throughout larval development (instars 1–3) and then remove ani-
mals from treatment. Controlled RU486 dosage was used to match 
endogenous dFMRP levels,  measured in  wandering third instar larvae 

at 94 ± 11% (n = 3) of the corresponding control levels (Figure 2C). 
Following removal of the drug, dFMRP level rapidly declined during 
pupal stages (P1–P4) and was almost entirely absent by eclosion into 
the adult allowing transient early dFMRP expression.

FIGURE 2 | Gene-Switch conditional induction of dFMRP expression during 

staged periods throughout development and at maturity. (A) The transgenic 
crossing and treatment scheme used to mediate temporal control of dFMRP 
expression in the dfmr150M-null background using the Gene-Switch (GS) system. 
Homozygous dfmr1-null animals harboring the neuron-specifi c elav-GS driver 
(GSG-301) and UAS-dfmr1 transgene responder (UAS-9557-3) (eGS) were 
treated with vehicle (EtOH) alone or RU486 to generate the two matched 
populations for comparisons. Whole brain imaging (inset, right) illustrates typical 
patterns of dFMRP immunostaining after adult-onset induction with RU486. 
(B) Representative images of adult Drosophila brains expressing a UAS-mCD8::GFP 

(green) transgene under the control of the PDF-GAL4 driver, co-immunostained 
for elav (red). Low magnifi cation image on the left; higher magnifi cation images on 
the right. Elav is expressed within the sLNv cell bodies (arrow, left), in a punctate 
pattern within the neuronal nuclei (right). (C) Representative Western blots 
illustrating the dFMRP induction achieved using stage-specifi c RU486 treatment 
paradigms, indicated to the left of each series, assessed at ∼24 h intervals from 
initiation. Genotypes as indicated: w1118 (control), homozygous dfmr150M null allele 
(dfmr1) and dfmr150M, elav-GSG-301/dfmr150M, UAS-9557-3 (eGS). Treatments as 
indicated: eGS with ethanol vehicle (eGS + ET) and RU486 (eGS + RU). Blots were 
probed for dFMRP, with α-tubulin employed as a loading control.
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Sequential RU486 treatments were used during each day of pupal 
metamorphosis to drive dFMRP expression starting at pupal day 1 
(P1), P2, P3 and P4 (Figure 2C). Induction at P1 was achieved by 
bath application of RU486 on the late wandering third instar larvae, 
just prior to puparium formation. This treatment drives dFMRP 
expression starting in P1 and extending into the early stages of 
pupal development (Figure 2C). We previously reported a quanti-
fi ed half-life of dFMRP driven by larval RU486 induction of ∼25 h 
(Gatto and Broadie, 2008). In the pupae, induced dFMRP persists 
longer, presumably owing to restrictions on drug clearance and 
metabolism in the pupae, so that pupal RU486 treatments result in 
broader windows of expression. In each of the later pupal interven-
tions, the pupal case cuticle was cut to introduce RU486 via brief 
(2 min) bath application for absorption (Figure 2C). Treatments 
were performed just prior to the onset of day P2, P3 and P4 to drive 
dFMRP expression, which was then monitored over subsequent 
24 h intervals progressing to adult eclosion.

The fi nal intervention was to drive dFMRP expression only at 
maturity in an otherwise dfmr1-null mutant condition. Larvae and 
pupae were reared until eclosion in the absence of RU486, and no 
dFMRP expression was detectable (Figure 2C). Following eclosion, 
adult animals were then fed RU486 to drive dFMRP levels match-
ing wild type after 24 h of treatment. Adult onset expression was 
maintained for an additional 72 h course to assess the consequences 
of continued adult dFMRP expression (Figure 2C).

EARLY DEVELOPMENTAL AND ADULT-ONSET dFMRP EXPRESSION 
DO NOT ALLEVIATE dfmr1-null DEFECTS
Using the conditional GS system, we systematically investigated when 
reintroduction of dFMRP could restore the gross sLN

v
 synaptic archi-

tecture defects of the dfmr1 null (Figure 1). We examined how each 
inductive paradigm might modulate synaptic structure, as quantifi ed 
with our modifi ed Sholl Analysis of synaptic bouton spatial distribu-
tion (Figure 1C). We fi rst examined animals in which normal dFMRP 
levels were driven throughout larval life, the period of neurogenesis 
and neural fate specifi cation. This developmentally early interven-
tion provided no detectable restorative effect on the organization of 
the sLN

v
s arborization or synaptic bouton disposition as compared 

to the eGS + ET animals, which phenocopy the dfmr1 null alone 
(Figure 3A). When dFMRP is introduced during larval stages only, 
the resultant adults display PDF puncta within the sLN

v
 arbors that 

remain unchanged with respect to total number (eGS + ET: 88 ± 6, 
n = 10 vs. eGS + RU: 85 ± 6, n = 10; p = 0.97) and spatial distribu-
tion throughout the Sholl array (Figure 3A, right). We conclude that 
providing dFMRP transiently during early stages of neural develop-
ment provides no benefi t for correcting the hallmark synaptic defects 
caused by the loss of dFMRP as assayed at maturity.

We next assayed whether adult-onset dFMRP induction could 
rescue synaptic defects in dfmr1-null animals (Figure 3B). This 
determination is particularly important for the design of FraX 
intervention strategies, as it addresses the question of whether the 
synaptic overgrowth characteristic of the disease is reversible at a 
state of maturity. eGS dfmr1-null animals were raised in the absence 
of RU486 induction preventing dFMRP expression during develop-
ment and then switched to an RU486-containing diet at eclosion. 
eGS animals with sustained induction for the following 3 days 
showed no detectable reversal of the overgrown sLN

v
  synaptic 

 terminal area, the over-elaborated synaptic branch  arborization, 
or the over-proliferation of synaptic boutons as compared to 
the eGS + ET animals, which phenocopy the dfmr1 null alone 
(Figure 3B). When reintroduced only in the adult, the aged adult 
animals expressing dFMRP display PDF synaptic puncta within the 
sLN

v
s arbors that remain unchanged with respect to total number 

(eGS + ET: 77 ± 4, n = 15 vs. eGS + RU: 73 ± 4, n = 15; p = 0.63) and 
spatial distribution throughout the Sholl array (Figure 3B, right). 
We conclude that providing dFMRP at maturity, following comple-
tion of neural development, provides no benefi t for correcting the 
hallmark synaptic defects caused by the loss of dFMRP.

Despite reintroduction of dFMRP throughout either the larval or 
adult phase, no palliative effect was observed in the dfmr1-null sLN

v
 

synaptic connections. Therefore, we next tested whether phenotypic 
reversal of these defects would be identifi able upon dFMRP eleva-
tion in these cells. We compared two conditions: (1) UAS-mCD8::
GFP alone, and (2) UAS-mCD8::GFP co-expressed with UAS-dfmr1, 
specifi cally driven in sLN

v
s (Figure 3C). dFMRP in the control is 

expressed at a uniform low level in neurons, including the sLN
v
 

clock neurons (Figure 3C, top row, red), whereas targeted dFMRP, 
exploiting the PDF-GAL4 driver, elevates expression only in these 
cells (Figure 3C, middle row, red, arrows). This targeted, constitu-
tive expression of dFMRP within the sLN

v
s results in collapse and 

retraction of the terminal synaptic arbor, evident in the reduction 
of synaptic area encompassed, loss of synaptic varicosities and com-
plete lack of outward projecting axonal branches (Figure 3C, green). 
Examination of the PDF distribution within these collapsed terminal 
arbors revealed that, although the gross anatomy of the synapse was 
radically altered, discrete PDF- positive synaptic puncta remained 
apparent (Figure 3C, bottom row, red). These results suggest that the 
presynaptic potential of the sLN

v
s remains intact. In contrast to the 

changes resulting from constitutive lateral neuron-specifi c dFMRP 
overexpression, timed pan-neuronal dFMRP introduction with the 
GS system, either early or late, causes no such change in the synaptic 
arborization of the dfmr1 null sLN

v
s, which remain over-extended 

and over-elaborated. Even over-expression of dFMRP in the adult 
(Figures 2A,C, after full 72 h RU486 treatment: 246 ± 14% control 
level, n = 4) failed to cause a reduction in the synaptic arbor of 
the null mutant, showing that the over-expression effect is likewise 
restricted to a specifi c developmental window. These results together 
strongly suggest that GS-induced dFMRP expression has not yet 
been provided at the appropriate stage.

A CRITICAL WINDOW OF dFMRP REQUIREMENT DURING 
LATE BRAIN DEVELOPMENT
The above results suggest that the requirement for dFMRP func-
tion in synaptic patterning likely occurs in the period of late brain 
development during pupal metamorphosis. This timing is con-
sistent with elevated endogenous dFMRP expression during the 
late pupal period, and the role of dFMRP during this period in 
 activity-dependent synaptic refi nement (Tessier and Broadie, 2008). 
As the pupal period lasts 4 days at 25°C (P1–P4), we subdivided 
this period by inducing dFMRP at the start of each consecutive day 
in turn in otherwise dfmr1-null mutant animals (Figure 2B). The 
consequences on sLN

v
 clock neuron synaptic arborizations were 

then evaluated in mature adults (d1–2) in each case. The results of 
these studies are shown in Figure 4.



Frontiers in Neural Circuits www.frontiersin.org August 2009 | Volume 3 | Article 8 | 7

Gatto and Broadie Synaptic structuring transiently requires FMRP

FIGURE 3 | dFMRP induction during early development and at maturity 

provides no rescue of dfmr1-null mutant sLN
v
 defects. (A) Comparison of 

the dfmr1-null eGS ethanol vehicle (eGS + ET) and RU486 (eGS + RU) treatment 
throughout larval development (instars L1–L3). At left, representative images 
shown of adult sLNv terminal arbors immunostained for PDF. At right, 
quantifi cation from the Sholl Analysis indicating no change with RU486 
induction. (B) Analyses of adult-onset dFMRP induction. At left, representative 
images shown from control and RU486-induced animals (treated d1–3) with 
sLNv synaptic arbors immunostained for PDF. At right, quantifi cation from the 
Sholl Analysis indicating no change with RU486 induction. (C) Representative 

images of ventrolateral clock neurons expressing either UAS-mCD8::GFP 
(green) alone under the control of PDF-GAL4 (control: PDF-GAL4/UAS-mCD8::
GFP) or in conjunction with, and thus overexpressing, UAS-dfmr1 (LNv dFMRP 
OE: PDF-GAL4/UAS-mCD8::GFP; UAS-9557-3, dfmr150M/+). Co-immunolabeling 
for dFMRP (red) illustrates endogenous (top row) and transgenic (middle row) 
levels in the brain, and specifi cally in the sLNv cell bodies (arrows). High 
magnifi cation views illustrate the sLNv synaptic arbor collapse caused by 
cell-autonomous over-expression of dFMRP. Examination of collapsed arbors via 
co-immunolabelling for PDF (red, bottom row) revealed the persistence of 
PDF-positive presynaptic boutons.
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FIGURE 4 | dFMRP induction only during late brain maturation restores 

normal sLN
v
 synaptic architecture. (A) Representative images of adult sLNv 

synaptic arbors immunostained for PDF after pupal day 1 (P1) inductive 
treatment with ethanol vehicle (eGS + ET) or RU486 (eGS + RU). At right, 
quantifi cation from the PDF-adapted modifi ed Sholl Analysis, indicating a 
moderately exacerbated mutant phenotype. Signifi cance levels: p < 0.05 (*). 
(B) Representative images of adult sLNv synapses immunostained for PDF 

after P2 inductive treatment with ethanol vehicle (eGS + ET) or RU486 
(eGS + RU). At right, quantifi cation showing no change with dFMRP induction. 
(C,D) Representative images are displayed of adult sLNv terminal synapses 
immunostained for PDF after P3 (C) or P4 (D) treatment with ethanol vehicle 
(eGS + ET) or RU486 (eGS + RU). Quantifi cations show signifi cant rescue of 
the synaptic defects. Signifi cance levels: p < 0.05 (*); p < 0.01 (**); 
p < 0.001 (***).
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We began with RU486 drug delivery to drive dFMRP  induction 
at the earliest stage of pupal development, with induction at pupal 
day 1 (P1; Figure 4A). This early phase dFMRP expression provided 
no correction of the dfmr1-null sLN

v
 synapses compared to the 

eGS + ET animals, which phenocopy the dfmr1 null alone. Indeed, 
this inappropriate early induction exacerbated the mutant phe-
notype, resulting in an elevated number of PDF synaptic boutons 
redistributed within 30% of the sLN

v
 axonal arbor based on the 

Sholl Analysis (Figure 4A, right). While the total number of bou-
tons was unchanged (p = 0.32; n = 11 eGS + ET, n = 14 eGS + RU), 
the spatial distribution of boutons was signifi cantly altered, with 
an increased number of boutons in the 40 µm concentric ring 
(eGS + ET: 14 ± 1 vs. eGS + RU: 18 ± 1; p = 0.025), 70 µm ring 
(eGS + ET: 3 ± 0.5 vs. eGS + RU: 7 ± 1; p = 0.037), and 80 µm ring 
(eGS + ET: 2 ± 0.6 vs. eGS + RU: 5 ± 1; p = 0.035). The overall fre-
quency of boutons in the more distal domains was shifted from 
82% to 93% at 70 µm and from 63% to 93% at 80 µm in eGS + ET 
compared to eGS + RU (Figure 4A, right). Similarly, induction at 
P2 provided no improvement of the dfmr1-null sLN

v
 architecture 

compared to the eGS + ET animals (Figure 4B). P2 induction 
of dFMRP provided no signifi cant infl uence upon the synaptic 
arborization, with no change in the total number of PDF boutons 
(eGS + ET: 81 ± 4, n = 15 vs. eGS + RU: 77 ± 7, n = 15; p = 0.27) 
or their spatial distribution (Figure 4B, right). We conclude that 
induction of dFMRP during the fi rst half of pupal development 
does not restore normal synaptic connectivity in the null mutant 
animals.

In contrast to all of the preceding interventions, reintroduction 
of dFMRP specifi cally within the latter half of pupal development 
provided the key to structural reparation of the dfmr1-null sLN

v
 

synaptic defects. At P3, dFMRP induction resulted in partial rescue 
of the synaptic arbor, including the number of synaptic boutons 
and the extent of spatial overgrowth (Figure 4C, left). Based on 
the Sholl Analysis, there was a highly signifi cant reduction in the 
total number of PDF boutons present in the synaptic terminal 
arbor (p = 0.009; n = 12 eGS + ET, n = 10 eGS + RU), with the 
restoration effect most pronounced in the region immediately 
adjacent to the dorsal horn bifurcation (Figure 4C, right). PDF-
reactive boutons were reduced in both the 20 µm concentric ring 
(eGS + ET: 25 ± 2, vs. eGS + RU: 16 ± 2; p = 0.013) and the 30 µm 
domain (eGS + ET: 20 ± 1 vs. eGS + RU: 15 ± 2; p = 0.007). The 
most dramatic rescue was effected upon dFMRP induction at the 
very end of development, during pupal day 4 (P4; Figure 4D). 
Throughout the sLN

v
 synaptic arbors the total number of PDF bou-

tons was very  signifi cantly reduced (p < 0.0001; n = 12 eGS + ET, 
n = 15 eGS + RU), with spatially specifi c resolution achieved over 
more than 80% of the arbor area (Figure 4D, right). The distal 
concentric rings from 30 to 100 µm displayed the following dec-
rements in PDF boutons: 30 µm (eGS + ET: 23 ± 2 vs. eGS + RU: 
17 ± 1, p = 0.003), 40 µm (eGS + ET: 19 ± 1 vs. eGS + RU: 15 ± 1, 
p = 0.026), 50 µm (eGS + ET: 16 ± 2 vs. eGS + RU: 11 ± 1, p = 0.004), 
60 µm (eGS + ET: 12 ± 1 vs. eGS + RU: 6 ± 1, p = 0.0006), 70 µm 
(eGS + ET: 6 ± 1 vs. eGS + RU: 2 ± 1, p = 0.005), 80 µm (eGS + ET: 
4 ± 1 vs. eGS + RU: 0.4 ± 0.2, p = 0.0004), 90 µm (eGS + ET: 4 ± 1 vs. 
eGS + RU: 0.2 ± 0.2, p = 0.001) and 100 µm (eGS + ET: 3 ± 1 vs. 
eGS + RU: 0.2 ± 0.2, p = 0.011). We conclude that dFMRP plays a 
highly specifi c role in the very latest stages of synaptic development 

and refi nement that is required to properly restrict the number 
and specifi city of synaptic connections, and that dFMRP is capable 
of operating in this mechanism only during this strictly defi ned 
developmental window of opportunity.

DISCUSSION
Loss of FMRP compromises the synaptic connectivity of the circa-
dian clock circuit and impairs the behavioral output of rhythmic 
circadian activity patterns, making this system ideal for investi-
gating the temporal requirements for FMRP function (Elia et al., 
2000; Gould et al., 2000; Dockendorff et al., 2002; Inoue et al., 
2002; Morales et al., 2002; Reeve et al., 2005, 2008; Miano et al., 
2008; Sekine et al., 2008; Zhang et al., 2008; Bushey et al., 2009). 
Using our well-established Drosophila FraX model (Zhang et al., 
2001; Bolduc et al., 2008; Gatto and Broadie, 2008; Pan et al., 2008; 
Tessier and Broadie, 2008; Repicky and Broadie, 2009) and the well-
characterized Drosophila clock circuitry (Helfrich-Forster, 2005; 
Chang, 2006; Nitabach and Taghert, 2008), this study was aimed at 
identifying the critical period(s) of dFMRP function in the synaptic 
organization of clock neurons. The GS method provides tight tem-
poral control of transgene expression specifi cally within neurons 
(Osterwalder et al., 2001; Roman et al., 2001), allowing us to dissect 
the exact timing of the dFMRP requirement. We have identifi ed 
a single responsive time window, pupal days 3–4, during which 
reintroduction of dFMRP provides rescue of the arbor overgrowth 
and excessive synapse establishment characterizing the dfmr1-null 
mutant. Introduction of dFMRP either before or after this period 
provides no benefi t. We conclude, therefore, that dFMRP func-
tion in sculpting synaptic connections is locked into this transient 
developmental time window. As these studies were conducted with 
pan-neuronal expression, we cannot yet distinguish between a cell 
autonomous function of dFMRP in sLN

v 
clock neurons compared 

to potential roles of dFMRP in neighboring neurons.
We have previously investigated the temporal requirements of 

dFMRP at the peripheral glutamatergic neuromuscular junction 
(NMJ) (Gatto and Broadie, 2008). In dfmr1-null mutants, this 
synaptic arbor is over-elaborated with expanded synaptic area, 
excess synaptic branching and supernumerary synaptic boutons 
(Zhang et al., 2001), thus closely resembling the phenotype in the 
central brain clock neurons shown here. Employing GS inductive 
paradigms to drive dFMRP in the dfmr1-null mutant background, 
these studies similarly demonstrate a temporally restricted role 
for dFMRP in sculpting synaptic architecture (Gatto and Broadie, 
2008). Re-introduction of dFMRP only during the period of normal 
NMJ synaptogenesis enabled the correct development and main-
tenance of standard, sustainable terminal structure. In contrast, 
dFMRP introduction at maturity provided very little rescue of 
the mutant overgrown synaptic defects, with only weak, partial 
reduction in the number of synaptic boutons (Gatto and Broadie, 
2008). The partial rescue achieved likely refl ects the fact that syn-
aptogenesis continues throughout the larval period in Drosophila, 
and therefore development and maturity are not as well separated 
as in the brain clock circuit. Overall, these previous fi ndings at the 
NMJ strongly support our current results of a transient develop-
ment requirement for dFMRP within the sLN

v
 clock neurons.

Interestingly, a host of FraX-associated phenotypes are known to 
be developmentally transient, also suggesting  temporally-restricted 
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FMRP function. In the Drosophila FraX model, dfmr1-null mush-
room body neurons display heightened axonal and dendritic com-
plexity, with excessive synaptic connectivity (Pan et al., 2004). 
These defects become evident only very late in pupal brain devel-
opment, with the appearance of abnormally long axonal branches 
and associated excessive synaptic processes (Tessier and Broadie, 
2008). Upon initial use following eclosion, activity-dependent syn-
aptic pruning occurs in wild-type but completely fails in dfmr1-
null mutant neurons. Following this normal dFMRP-dependent 
developmental window, delayed and inappropriate pruning occurs 
in the absence of dFMRP (Tessier and Broadie, 2008). This refi ne-
ment process takes days in Drosophila, but occurs over the course 
of weeks in mice. Similar to the Drosophila fi ndings, in Fmr1-null 
mouse layer V somatosensory barrel cortex, the increase in synaptic 
dendrite spine length and density manifests during postnatal week 
1, attenuates by week 2 and is undetectable by week 4 (Nimchinsky 
et al., 2001; Galvez and Greenough, 2005). Likewise, Fmr1-null 
ascending projections connecting layers III and IV display aberrant 
transmission strength, experience-dependent plasticity and axonal 
arborization at postnatal week 2, which also resolves by postnatal 
week 3–4 (Bureau et al., 2008). These studies suggest a transient 
FMRP role in synaptic development and refi nement. It should be 
noted that differences could yet arise between the Drosophila and 
murine FraX models with regard to the temporal requirements for 
FMRP. Mice harbor the two Fmr1 paralogs, Fxr1 and Fxr2 (Siomi 
et al., 1995; Zhang et al., 1995), which could infl uence the effects 
of Fmr1 deletion during development. However, the protracted 
postnatal period required for circuit refi nement in mammals needs 
to be carefully considered to defi ne developmental vs. adult FMRP 
requirement. We eagerly await the establishment of similar mouse 
conditional Fmr1 expression models to provide further insight 
into the etiology of FraX.

In the Drosophila FraX model, the P3–P4 critical period defi -
nition for sLN

v 
synaptic structuring is entirely consistent with 

our recent fi nding that dFMRP levels are transiently elevated 
during this same period (Tessier and Broadie, 2008), with sub-
sequent rapid decrement following maturation (Tessier and 
Broadie, 2008; Bushey et al., 2009). A similar transient period 
of FMRP elevation is reported in rodents, likewise correspond-
ing to the restricted period of synaptogenesis and synaptic 
refi nement (Khandjian et al., 1995; Singh et al., 2007; Singh and 
Prasad, 2008). During the corresponding period, dFMRP has 
been shown to regulate a similar stage-dependent mechanism 
of activity-dependent axonal pruning and synapse elimination 
in the Drosophila mushroom body (Tessier and Broadie, 2008). 
Assuming a conserved mechanism within the clock circuit, this 
role would explain the temporally-restricted dFMRP function in 
establishing appropriate sLN

v
 synaptic connections. Consistent 

with this transient critical window for dFMRP function, assays to 
ameliorate dfmr1-null clock defects by decreased metabotropic 
glutamate receptor (mGluR) signaling, via treatment with mGluR 
antagonists such as 2-methyl-6-phenylethynyl- pyridine (MPEP), 
fail to resolve circadian impairments with treatment either dur-
ing larval development or in the adult (McBride et al., 2005). We 
suggest that such previous pharmacological treatment attempts 
have inadvertently missed the therapeutic target window of late 
brain development.

FMRP is an RNA-binding, polysome-associated protein that 
infl uences mRNA traffi cking/stability (Zalfa et al., 2005; Zhang 
et al., 2007; Dictenberg et al., 2008; Estes et al., 2008) and regu-
lates protein translation (Laggerbauer et al., 2001; Li et al., 2001; 
Sung et al., 2003; Zalfa et al., 2003; Lu et al., 2004; Qin et al., 2005; 
Tessier and Broadie, 2008; Bechara et al., 2009). In the Drosophila 
brain, dFMRP negatively regulates cytoskeleton organizing pro-
teins such as Futsch, the mictrobule-binding MAP1B homolog, 
and Chickadee, the actin-binding Profi lin homolog (Zhang et al., 
2001; Reeve et al., 2005; Tessier and Broadie, 2008). In sLN

v
 clock 

neurons, overexpression of Chickadee mimics dfmr1-null archi-
tectural defects, while concurrently decreasing Chickadee levels 
in the dfmr1 null suppresses the phenotypes (Reeve et al., 2005). 
Importantly, dfmr1 mutants display only a developmentally tran-
sient elevation of Chickadee expression at P4 into post-eclosion 
day 1 (Tessier and Broadie, 2008). Thus, targeted reintroduction 
of dFMRP at this time point would prevent the elevated protein 
levels, providing for normal synaptic architecture and connectiv-
ity. In parallel, dFMRP also modulates the actin cytoskeleton by 
regulating the small GTPase Rac1 (Lee et al., 2003), CYFIP/Sra-1 
(cytoplasmic FMRP interacting protein) (Schenck et al., 2003) 
and the actin depolymerizing factor/Cofi lin (Castets et al., 2005; 
Le Clainche and Carlier, 2008), which all may contribute to the 
normalization of sLN

v
 architecture. In fact, the dFMRP N-terminal 

region specifi cally interacts with CYFIP, cooperatively regulating 
sLN

v
 axonal projections and synaptic development (Reeve et al., 

2008). Thus, we posit that the temporally-specifi c regulation of 
these cytoskeleton-modifying dFMRP targets is fundamentally 
important in establishing and/or maintaining proper synaptic 
connections within the clock circuit.

The PDF cells have been described as “GABA-responsive 
wake-promoting” neurons in the clock circuit (Parisky et al., 
2008). Suppression of neuronal activity in these cells increases 
sleep, while coordinately increasing LN

v
 excitability decreases 

sleep. sLN
v
s express the Rdl GABA

A
 receptor, and sLN

v
-specifi c 

Rdl knockdown impairs sleep while Rdl over-expression yields 
more rapid sleep onset and enhanced sleep (Parisky et al., 2008). 
These fi ndings are particularly relevant to the Drosophila FraX 
model, as it has been recently reported that dfmr1 nulls display 
increased sleep, while dFMRP over-expression decreases sleep 
(Bushey et al., 2009). However, dfmr1 nulls have been shown to 
under express all known Drosophila GABA

A
 receptor subunits 

(D’Hulst et al., 2006). Consistently, the Fmr1 mutant mouse has 
reduced GABA

A 
receptors (D’Hulst et al., 2006; Gantois et al., 

2006), associated with both structural and functional alterations 
of the GABAergic circuits in the neocortex and hippocampus, 
respectively (D’Antuono et al., 2003; Selby et al., 2007). These 
changes may correlate with recent accounts of neuronal hyper-
excitability in both Drosophila and mouse FraX models (Gibson 
et al., 2008; Repicky and Broadie, 2009). A small molecule screen 
for rescue of dfmr1-mutant phenotypes identifi ed GABA, nipe-
cotic acid (GABA reuptake inhibitor) and creatinine (suspected 
GABA

A
 receptor activator), again implicating GABAergic signal-

ing (Chang et al., 2008). In dfmr1 nulls, GABA treatment spe-
cifi cally relieved misregulation of the MAP1B homolog, Futsch, 
mushroom body β-lobe midline crossing and courtship defects. 
Together, these data suggest that manipulation of GABA signaling 
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may alleviate PDF neuron and circadian behavioral phenotypes. 
With the emergence of information to direct appropriate tempo-
ral targeting of such interventions, implementation of this and/or 
any therapeutic option should be more effective and ultimately 
more successful.
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