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precision. The stimulus-dependent and behavior-dependent mod-
ulations of spike correlations between distantly located neurons 
(greater than ca. 100 µm) within a precision of more than 1 ms have 
been reported in various cortical areas including visual (Singer and 
Gray, 1995), auditory (Sakurai, 1996), somatosensory (Nicolelis 
et al., 1995), motor (Riehle et al., 1997) and frontal (Vaadia et al., 
1995) areas, and in the hippocampus (Sakurai, 1996; Harris et al., 
2003). Conventional single-unit and multi-unit recordings, how-
ever, failed to detect fi ring synchrony with sub-millisecond preci-
sion among closely neighboring neurons (less than ca. 100 µm) 
because, when two or more neurons recorded from one electrode 
co-fi re with sub-millisecond precision, the waveforms overlap and 
are not easily separated. This is designated as ‘the spike overlap-
ping problem’ (Gray et al., 1989; Henze et al., 2000; Takahashi et al., 
2003a,b; Buzsaki, 2004; Takahashi and Sakurai, 2005). To solve the 
problem, we recently developed an innovative spike sorting algo-
rithm with an extension of independent component analysis (ICA) 
(Hyvarinen, 1999) (ICSort) (Takahashi et al., 2003a) and the use 
of 12-channel recording electrodes (dodecatrodes) (Takahashi and 
Sakurai, 2005). Our previous studies (Takahashi et al., 2003a,b; 
Takahashi and Sakurai, 2005, 2007; Sakurai and Takahashi, 2006) 

INTRODUCTION
In several brain regions, strongly modulated fi ring rates of neurons 
can provide accurate information about external stimuli (Hubel 
and Wiesel, 1977) and behaviors (Georgopoulos et al., 1986), as 
well as internal cognitive processes (Funahashi et al., 1989). These 
rate changes of neurons in relation to internal or external events 
have yielded extremely valuable insights into the functioning of 
the brain. However, the synaptic strength to downstream neurons 
by the fi ring rate of a single neuron per se is extremely weak. On 
the other hand, according to the cell assembly hypothesis, the rela-
tive timing of spikes among neurons within a functional group 
underlies cognitive processing (Hebb, 1949). The synaptic infl u-
ence of multiple neurons converging onto downstream neurons is 
much stronger if they fi re simultaneously (Tsodyks and Markram, 
1997; Bi and Poo, 1998). Therefore, strong fi ring synchronization 
with high temporal precision is optimal for conveying informa-
tion (Diesmann et al., 1999; Reyes, 2003). Previous experimental 
(Macvicar and Dudek, 1981; Schmitz et al., 2001; Litvak et al., 2003; 
Reyes, 2003) and theoretical (Softky, 1994; Gerstner et al., 1996; 
Diesmann et al., 1999) studies have suggested that neurons and 
neuronal networks are able to propagate spikes with high  temporal 
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demonstrated that ICSort and dodecatrodes can detect sub-mil-
lisecond neuronal interactions in local circuits.

Using a combination of ICSort and dodecatrodes, we inves-
tigated whether closely neighboring pyramidal neurons in the 
hippocampus synchronize with sub-millisecond precision and 
whether synchronization codes salient information. To investigate 
these phenomena, we used an auditory delayed non-matching to 
sample (DNMS) task because this task enabled us to study neu-
ronal synchrony in the hippocampus under conditions in which 
the processing of internal cognitive events (retention of a stimulus 
and comparison of stimuli) and external events (stimulus inputs) 
and motor outputs (go/no-go responses) are contained and dis-
tinguishable. Results reveal robust sub-millisecond synchronized 
spikes (SSSs) among closely neighboring pyramidal neurons; the 
SSSs, together with the rate modulation of single neurons, code 
salient information in a behavioral task.

MATERIALS AND METHODS
ANIMAL PREPARATION AND RECORDINGS
Six male Wistar rats were implanted with three to fi ve movable 
dodecatrodes (Takahashi and Sakurai, 2005, 2007), each of which 
consisted of 12 microwires (8 µm diameter), in the hippocampus 
(3–4 mm posterior to the bregma, 1.5–3.5 mm from the midline). 
To stabilize the recording conditions and minimize electrode drift, 
the maximum range for the movement of dodecatrodes was held 
at 100 µm per day. This minimized the pressure to the brain tissue 
attributable to the lowering of the dodecatrodes. We recorded neu-
ronal data only upon confi rmation that the distributions of spike 
amplitudes across channels were constant. One dodecatrode recorded 
up to six neurons simultaneously from the CA1 region of the hippoc-
ampus. Multi-neuronal activities were amplifi ed, fi ltered (band-pass 
500 Hz–10 kHz), and recorded at 20 kHz on a custom-made PC with 
three 24-channel A/D converters (16-bit resolution; Contec Co. Ltd., 
Osaka, Japan). All experimental procedures accorded with NIH and 
Kyoto University guidelines and were conducted with the approval 
of the Animal Research Committee, Kyoto University.

SPIKE SORTING
Because we must detect synchronized events with sub-millisecond 
precision among closely neighboring neurons, extracellular action 
potentials were extracted and sorted using ICSort, i.e., an automatic 
sorting system with ICA.

ICSort completed three steps. First, in the clustering step, using 
k-means clustering, ICSort automatically sorted feature vectors 
of all extracted spikes in the high-dimensional clustering space. 
Then, the extracted spike waveforms in each sorted cluster were 
concatenated. Second, in the separation step, ICSort used ICA to 
fi nd spatial fi lters that separate the spike waveforms into spatially 
fi xed and distinct, maximally independent components (ICs). The 
only assumption underlying ICA is that the unknown components 
are statistically independent and have non-Gaussian distributions. 
Consequently, even if two or more neurons showing similar spike 
shapes co-fi re within a precision of less than 1 ms, ICSort can sepa-
rate and identify them.

Simply, a matrix X denoting a multi-unit activity recorded using 
a dodecatrode can be formulated as:

X = A × S

where a mixing matrix A represents the relative distances between 
the tips of the electrode and the source of a single cell and a matrix 
S represents the single-unit activities.

Actually, ICA estimates the mixing matrix A from multi-unit 
recordings X; then using an unmixing matrix (spatial fi lters; W: 
pseudoinverse matrix of A), ICA obtained the ICs Y as single unit 
activities using the following equation:

Y = W × X

To fi nd the sources of the IC as a single-unit activity, ICSort 
applied ICA to each concatenated spike waveforms using a sym-
metric FastICA algorithm (Hyvarinen, 1999), which is a fi xed-
point algorithm that maximizes an approximation of negentropy 
as a measure of non-Gaussianity. In the fi nal step, ICSort aggre-
gated the ICs to single units based on each ICA basis vector that 
represents the relation of the distance between the source of the IC 
and the tips of the electrode. Because a separated spike waveform 
in each IC may be shifted from the original, overlapped spike 
waveform, the time-stamps of the spikes in each IC were reas-
signed by remapping each IC onto real extracellular spaces using 
the following equation:

R = a × s

where R denotes a matrix of the remapped waveforms of an IC, 
a represents an ICA basis vector corresponding to the IC, and s 
denotes a vector of the IC.

Details of the ICSort were described in previous reports 
(Takahashi et al., 2003a,b).

In fact, ICSort was important for this study because conven-
tional spike sorting cannot detect sub-millisecond synchronization 
of spikes of different neurons on one electrode because of the over-
lapped spike waveform (Gray et al., 1995; Buzsaki, 2004). The spike 
overlaps occurred when two or more neighboring single-neurons 
co-fi re with sub-millisecond precision. Figures 1A,B present typical 
examples of dodecatrode recordings in the start and end periods of 
the task. The overall distribution of spike amplitudes across chan-
nels does not change during the task. Figure 1C shows that spike 
waveforms of neurons 1 and 2, which are reconstructed from each 
IC estimated using ICSort, are similar and that the distribution of 
spike amplitudes across 12 channels is constant. Noise components 
were identifi ed and eliminated during thresholding in ICSort. To 
determine whether spikes from different neurons are intermingled 
(Type I error; false positive), we calculated auto-correlograms of all 
single neurons sorted in this study. Each auto-correlogram shows 
clear refractory periods (1–2 ms; Figure 1D). To determine whether 
spikes from a single neuron are sorted to different neurons (Type 
II error; false negative), we calculated cross-correlograms of all 
pairs of single neurons sorted in this study. No cross-correlogram 
shows a refractory period (Figures 1D and 3B). Figure 1E presents 
typical examples of overlapped (black) and separated waveforms 
(green and red) from two neurons co-fi ring with long (0.40 ms, 
left, see the gap separating red and green dashed vertical lines) and 
short (0.15 ms, right, see the gap separating red and green dashed 
vertical lines) jitters of delay. Red and green dashed vertical lines 
respectively depict the detected spike timing of neurons 1 and 2. 
In our entire dataset (n = 36 units), the correlation coeffi cients R 
between averaged waveforms of identical neurons detected from 
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overlapping and non-overlapping spikes are >0.86. (neuron 1, 
R = 0.99; neuron 2, R = 0.98 in Figures 1C,E).

IDENTIFICATION AND CLASSIFICATION OF NEURONS
After spike sorting, we identifi ed pyramidal cells based on their 
wide spike shape (mean width, >0.4 ms), low average fi ring rate 

(<5 Hz), and a sign of bursts in the auto-correlogram. We used 
spike trains only from putative pyramidal neurons that show clear 
refractory periods (1–3 ms), high signal-to-noise ratios (greater than 
fi vefold the noise level), and suffi ciently high fi ring rates (>0.1 Hz) 
(Takahashi et al., 2003a; Takahashi and Sakurai, 2005). If this clas-
sifi cation process is performed before the separation step during 

FIGURE 1 | Performance of the combination of ICSort and dodecatrodes. 

(A,B) 200 ms segments of multi-neuronal activity recorded by one 
dodecatrode at the start and end periods of the task. (C) 1000 superimposed 
waveforms of two putative pyramidal neurons (neurons 1 and 2) reconstructed 
from each independent component estimated using ICSort. Noise 
components are eliminated. Because the reconstruction process remaps each 
independent component to real extracellular spaces, the waveforms are 

scaled channel by channel (see Materials and Methods). (D) Auto- and 
cross-correlograms between neurons 1 and 2. The bin size is 50 µs. 
(E) Overlapped (black solid lines) and separated waveforms reconstructed 
from independent components identifi ed as neurons 1 and 2 (red dashed lines 
separated waveforms of neuron 1, green dashed lines separated waveforms 
of neuron 2). Neurons 1 and 2 co-fi re respectively with a jitter of 0.40 ms (left) 
and 0.15 ms (right).
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the ICSort, then neurons showing a low fi ring rate (<0.1 Hz) are 
excluded. In that case, the probability of omission error for detecting 
overlapping spikes is increased because neurons showing a low fi ring 
rate might be a set of overlapping spikes generated simultaneously 
from two or more neurons. Therefore, this classifi cation process 
was performed after all processes of the ICSort had been completed. 
Moreover, to eliminate the inclusion of dendritic spikes, we excluded 
putative pyramidal neurons showing signifi cant spike amplitude 
attenuations during bursts (t-test; P < 0.01) (Stuart et al., 1997, 1999; 
Quirk et al., 2001; Takahashi and Sakurai, 2005, 2007).

TASK PROCEDURE
The rate modulation of hippocampal neurons is strongly asso-
ciated with non-spatial behavior (Sakurai, 1990, 1994; Otto and 
Eichenbaum, 1992), and spatial behavior (Wilson and McNaughton, 
1993). For that reason, we used an auditory DNMS task (Sakurai, 
1990, 1994). A training session consisted of approximately 200 tri-
als performed for about 1 h. One of two tones (high tone, 10 kHz, 
85 dB SPL; low tone, 2 kHz, 85 dB SPL) was presented for 15 s in 
each trial, randomly following a 5 s delay period (inter-trial inter-
val). One second after tone onset, a guillotine door opened to reveal 
the illuminated response panel immediately behind the door; the 
panel was thereafter available for 3 s. A food pellet was delivered 
immediately after the go response in a non-match trial, in which the 
presented tone (high/low) differed from that in the preceding trial. 
The criterion for performance was 80% correct trials per session. 
Training was continued for more than 1 month. During each trial, 
a rat was required to make a go response in non-match trials and 
a no-go response in match trials. During the delay period, the rat 
had to remember which stimulus (high tone or low tone) had been 
presented most recently. All behavioral events were controlled using 
custom-written software running in an analytical software environ-
ment (LabVIEW; National Instruments Corp., Austin, TX, USA).

STATISTICAL ANALYSIS
Occurrence probability of SSS
The occurrence probability of SSS among N neurons, P

N
, is cal-

culated as the number of SSSs among N neurons divided by the 
number of all possible opportunities in which N neurons synchro-
nize within 1 ms precision. We defi ned the opportunity as a circum-
stance in which at least one of N neurons fi res in a 1 ms window.

P
S

A SN
N

N N

=
+ −2

In that equation, S
N
 denotes the number of SSSs among N 

neurons. In other words, S
N
 means the number of spikes gener-

ated simultaneously from all N neurons in a 1 ms window (see 
Figures 2A,B). A

N
 denotes the number of asynchronous spikes 

with 1 ms precision. Asynchronous spikes are defi ned as spikes 
generated from only one of N neurons in a 1 ms window (see 
Figures 2A,B). S

2-N
 represents the number of SSSs among two or 

more of N neurons.

Continuous U-test
To confi rm whether SSSs can code information as well as rate 
modulations, we analyzed the association between the fi ring rate 
of SSS of a group of neurons (or spikes of participating neurons) 

and behavioral events during a task. We defi ned that the fi ring rate 
of SSS as a frequency of spikes co-fi red from two or more neurons 
within precision of less than 1 ms. Unitary event analysis (UEA) 
(Riehle et al., 1997) is a good tool that enables us to investigate such 
dynamic synchronies. However, because it has a limitation related 
to fi ring rates (Roy et al., 2000), neurons in our datasets whose 
fi ring rates cannot exceed the limitation cannot be analyzed using 
UEA. For that reason, we modifi ed UEA using a conventional non-
parametric statistical test: the Mann–Whitney U–test. Each fi ring 
rate of SSS of a group of neurons (e.g. Figure 5I) and of spike of 
the participating neurons (e.g. Figures 5D,H) was computed by 
sliding a boxcar window of 1 s in 1 ms steps over the behavioral 
events (stimulus inputs, retention of a stimulus, motor outputs 
and comparison of stimuli). To determine whether the spikes of 
a neuron or SSSs among the considered neurons are associated 
with behavioral events, the statistically signifi cant difference in the 
fi ring rate of spikes of an individual neuron or SSSs of a group of 
neurons between the sets of behavioral events (stimulus inputs and 
retention of a stimulus: high/low tone; motor outputs: go/no-go 
responses; comparison of stimuli: correct/erroneous match trials) 
was tested using a two-tailed Mann–Whitney U-test for each boxcar 
window of 1 s in 1 ms steps. For SSSs, to eliminate the expected 
rate of fi ring coincidence, we subtracted the product of individual 
fi ring rates of participating neurons from the fi ring rate of SSS of 
a group of neurons based on the null hypothesis of independent 
fi ring (Aertsen et al., 1989; Riehle et al., 1997). To verify the hypoth-
esis, we performed a simple simulation in which two Poisson spike 
trains for 10 s whose fi ring rates are set at 0.1, 0.5, 1, 2, 3, 4, 5, 6, 
7, 8, 9, and 10 Hz were constructed and analyzed. The correlation 
coeffi cient and linear regression coeffi cient between the product 
of individual fi ring rates of two Poisson spike trains and the fi ring 
rates of the SSS between them were 0.97 and 1.0, respectively, under 
the simulation (Figure 2C), validating this hypothesis.

For spikes of individual neurons and SSSs among neurons, we 
calculated P values, P

is
(i) and P

sss
(i) in the i-th window using the 

following two equations:

P
is
 (i) = U (s

1i
,s

2i
), 

P
sss

 (i) = U [(t
1i
 − p

1i
), (t

2i
 − p

2i
)].

Therein, s
1i
 and s

2i
 denote vectors of the number of spikes gener-

ated from a neuron in the i-th window over all trials in a pair of 
behavioral events (For stimulus inputs and retention of a stimu-
lus: 1, high tone; 2, low tone. For motor outputs: 1, go response; 
2, no-go response. For comparison of stimuli: 1, correct match 
trial; 2, erroneous match trial), t

1i
 and t

2i
 denote vectors of the 

number of SSSs among neurons in the i-th window over all trials 
in a pair of behavioral events, and p

1i
 and p

2i
 denote vectors of 

the number of coincident spikes estimated using the product of 
fi ring rates of participating neurons in the i-th window over all 
trials in a pair of behavioral events. The function U performs a 
two-tailed Mann–Whitney U-test between the vectors, returning 
the P value.

To enhance visual resolution at the relevant low P values, 
P values are shown on a negative logarithmic scale (−log

10
). When 

the value exceeded the fi xed threshold α (=2; P = 0.01) for >10 ms, 
this defi ned a period with signifi cantly more fi rings. The P value 
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of SSS tends to be less than that of the fi ring rate of the considered 
neuron pairs because the fi ring rate of SSS is always much less than 
that of the considered neuron pairs; moreover, the P value of the 
U-test depends on the number of spikes. Because this test is based 
on a non-parametric U-test, the signifi cant period represents that 
not a specifi c subpopulation of neurons but all considered neurons 
become synchronous from trial to trial. We defi ned SSS among 
three or more neurons as spike co-fi red by all three or more neu-
rons within a precision of less than 1 ms. Consequently, instead of 
testing possible pairs of neurons selected from a group of three or 
more neurons, we applied one continuous U-test to a group of three 
or more neurons at once without a process of multiple compari-
sons. All analyses were performed using custom-written software 
(MATLAB; The MathWorks Inc, Natick, MA, USA/C++).

Occurrence rate for the SSS
To test whether SSSs occur at any spike frequency and to identify the 
optimal, if any, bands of spike frequency for SSSs, we calculated the 
occurrence rate for the SSSs between two participating neurons as 
a function of the instantaneous spike frequency. The instantaneous 

spike frequency of each neuron is calculated as a reciprocal number 
of only one preceding inter-spike interval. The resolution of the 
inter-spike interval is set at 1 ms. The occurrence rate for the SSS, 
RS, at a spike frequency, f, is calculated as:

RS
NS

TS
( )

( )

( )
,f

f

f
=

where NS(f ) denotes the number of SSSs whose spike frequency is 
f, and TS(f ) denotes the number of spikes generated from one of 
two participating neurons whose spike frequency is f.

The occurrence rate for the non-SSS, i.e., all spikes except SSSs, 
RN, at a spike frequency, f, is calculated as:

RN
AS NS

TS
( )

( ) ( )

( )
,f

f f

f
= −

where AS(f ) denotes the number of all spikes generated from one 
of two participating neurons whose spike frequency is f.

To test the signifi cance of the occurrence rate for the SSS at 
each spike frequency, we compared the rate of occurrence for the 

FIGURE 2 | (A) Example of manipulation of spike trains generated from 
two neurons. Herein, S2 represents the number of windows in which two neurons 
fi re simultaneously. A2 signifi es the number of windows in which only one neuron 
fi res. S(2-2) denotes the number of windows in which two neurons simultaneously 
fi re. P2 is the occurrence probability of SSS between those two spike trains. 
(B) Example of manipulation of spike trains generated from three neurons. Here, S3 
signifi es the number of windows in which all three neurons simultaneously fi re. 

A3 stands for the number of windows in which only one neuron fi res. S(2-3) denotes 
the number of windows in which two or three neurons fi re simultaneously. P3 
represents the occurrence probability of SSS among those three spike trains. Each 
bar is one spike. Windows are partitioned by dashed lines. (C) The fi ring rate of 
SSSs between two Poisson spike trains is plotted as a function of the product of 
fi ring rate of those Poisson spike trains. The correlation coeffi cient, R, is 0.97. 
The solid line depicts a linear regression line. The regression coeffi cient is 1.0.
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SSS and non-SSS using two-tailed t-test. The signifi cance level was 
set to 0.05.

RESULTS
We recorded activities of 68 neurons in the CA1 region of the 
hippocampi of six rats during the DNMS task. We identifi ed 
63 neurons as pyramidal neurons based on their wide spike 
shape, low average fi ring rate, and a sign of bursts (see Materials 
and Methods). Attenuation of the spike amplitude of pyramidal 
neurons during bursts might be caused by dendrites (Buzsaki 
et al., 1996; Stuart et al., 1997; Quirk et al., 2001; Takahashi et al., 
2003a; Takahashi and Sakurai, 2005, 2007). Moreover, fi rings 
of the soma and dendrite might code different information in 
the hippocampal CA1 of behaving rats (Takahashi and Sakurai, 
2007). We therefore specifi cally examine spikes predominantly 
originated from the soma as fi nal outputs of single cell. We ana-
lyzed spike trains from 36 putative pyramidal neurons not show-
ing spike-amplitude attenuations during bursts (see Materials 
and Methods).

ROBUST SUB-MILLISECOND SYNCHRONY AMONG 
PYRAMIDAL NEURONS
The fi ring of all possible pairs of simultaneously monitored pyrami-
dal neurons by one dodecatrode often synchronized with less than 
1 ms precision (Figure 3A). The cross-correlograms of all possible 
pairs of neurons typically showed sharp peaks at approximately zero 
delay within a 1 ms range (Figures 1D and 3B). These synchronized 
spikes among closely neighboring pyramidal neurons – recorded 
from one dodecatrode, and occurring with sub- millisecond 
 precision – are designated as SSSs. Of 36 pyramidal neurons 
recorded by dodecatrodes, the average occurrence probabilities 
of SSSs of possible pairs, triplets, quadruplets, quintuplets, and 

 sextuplets of pyramidal neurons (see Materials and Methods) were, 
respectively, 8.3 ± 1.4, 0.55 ± 0.14, 0.058 ± 0.016, 0.0073 ± 0.0047 
and 0% (mean ± SEM, n = 40, 28, 16, 6, 1).

OPTIMAL BANDS OF SPIKE FREQUENCY FOR THE 
OCCURRENCE OF SSSs
To test if these robust SSSs occur at any spike frequency, we con-
structed auto-correlograms of all SSSs detected from 40 pairs of 
pyramidal neurons. Figure 4A presents that the SSSs oscillate 
slightly at frequencies of ca. 20 and ca. 150 Hz. However, it is pos-
sible that such oscillations were generated by the network effect 
and/or non-SSSs, i.e., asynchronous spikes with sub-millisecond 
precision. To test and identify the optimal bands of spike frequency 
for the SSSs statistically, we calculated the spike frequency of occur-
rence of SSSs and non-SSSs in relation to the spike frequency of the 
neurons participating in the considered pair. We then statistically 
compared the occurrence rate between SSSs and non-SSSs (t-test; 
Figure 4B; see Materials and Methods). The results show that the 
optimal bands of spike frequency for the SSS are 15–30, 70–80 and 
140–200 Hz (P < 0.05, n = 80).

RELATION BETWEEN SSS AND RATE MODULATION
To confi rm whether SSSs can code information as well as rate 
modulations, we analyzed the relation between the SSSs of closely 
neighboring neurons and behavioral events during the DNMS task. 
We used a non-parametric statistical U-test because it is often dif-
fi cult to predict the type of distribution of neuronal fi ring rates. In 
this experiment, we defi ned groups of simultaneously monitored 
neurons from one dodecatrode as a local neuron group. In our 
spike sorting, each local neuron group was shown to consist of two 
to six pyramidal neurons. In all, 13 groups were analyzed. During 
the sample, delay, and test periods of the DNMS task, both the 

FIGURE 3 | Sub-millisecond synchronizations among closely 

neighboring neurons. (A) Spike rasters of four pyramidal neurons 
recorded from one dodecatrode for a 1-s data segment. Possible 
coincidences within a 1-ms range are color-coded (Black, no coincident 

spike; Red, pairwise coincident spike; Green, triplet coincident spike; 
Blue, quadruplet coincident spike). (B) Cross-correlograms between 
pyramidal neurons, showing sharp peaks at around zero delay. The bin size 
is 50 µs.
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SSSs and rate modulations were analyzed in relation to behavioral 
events, i.e., stimulus inputs, stimulus retention, motor outputs, 
and comparison of the stimuli. At least two groups showed that 
SSSs and fi ring rate modulations of participating neurons were 
coupled and correlated with stimulus inputs (Figure 5N), stimulus 
 retention (Figure 6N), motor outputs (Figure 7N), and compari-
son of stimuli (Figure 8N), respectively.

Even if SSSs play an important role in biological and computa-
tional processes, the rate modulation of individual neurons can play 
other roles; SSSs and rate modulations might contain independent 
information (Riehle et al., 1997). We tested this hypothesis for all 
detected groups. Results showed that SSSs were observed with or 
without modulations of the fi ring rates of participating neurons. 
A summary of the analysis is shown in Figure 9. Figures 5–8 show 
that SSS occurred at the probability of 79% if at least one participat-
ing neuron show signifi cant fi ring rate modulations in relation to 
both internal (retention and comparison) and external (stimulus 
input and motor output) events. This consistent relation among 
SSS, rate modulation, and behavioral events implies the functional 
signifi cance of both SSS and rate modulation. Of six groups related 
to stimulus inputs, half (3/6) showed that SSS was not associated 
with modulations of the fi ring rates of participating neurons, as 
portrayed in Figure 10. In each behavioral event, at least one group 
showed that SSSs were not related to behavioral events, even when 
the fi ring rate of participating neurons was modulated, as pre-
sented in Figure 11. Moreover, the analysis used to identify the 
statistical signifi cance of the SSS incorporates the expected rate of 
coincidence caused by the fi ring rate modulation of participating 
neurons. Therefore, we conclude that SSSs are not simply a conse-
quence of the rate modulations of participating neurons.

SSSs AMONG TRIPLETS OF NEURONS
Similarly to pairs of pyramidal neurons, we found in our datasets 
that triplets of closely neighboring pyramidal neurons also co-fi re 
with sub-millisecond precision. Of 28 triplets of closely neighbor-
ing pyramidal neurons, we found that 27 triplets have SSSs that 

were unrelated to behavioral events, as presented in Figure 12. 
Three neurons participating in each triplet did not show fi ring 
rate modulations in relation to the same behavioral event simul-
taneously. However, in one group, SSSs among a triplet of neurons 
were signifi cantly related to the comparison of stimuli (Figure 13). 
The SSSs between one possible pair of neurons participating in the 
triplet were related to the same behavioral event (Figure 8). The 
average occurrence probabilities of quadruplets, quintuplets, and 
sextuplets of neurons were <0.06%; the SSSs among four or more 
neurons could not be analyzed statistically because of the insuf-
fi cient number of SSSs.

DISCUSSION
Taken together, our fi ndings demonstrate that robust SSSs exist 
between two closely neighboring pyramidal neurons in the hip-
pocampal CA1 of behaving rats. Furthermore, SSSs are gener-
ally coupled with modulations of the fi ring rates of participating 
neurons and correlate with both internal and external behavioral 
events during the DNMS task. However, because SSSs related to 
stimulus inputs are not always accompanied with rate modulations, 
the SSSs are not simply a consequence of the rate modulations of 
participating neurons.

ICSort AND DODECATRODES ENABLE US TO INVESTIGATE THE SSSs
The combined use of ICSort and dodecatrodes is a key method 
used for this study. Simultaneous intracellular and extracellular 
measurements (Harris et al., 2000) comparing tetrodes (Wilson and 
McNaughton, 1993) to single electrodes suggest that a multi-electrode 
with multiple microwires can improve spike isolation performance. 
In addition, the dodecatrode tip diameter resembles that of a normal 
tetrode (Takahashi and Sakurai, 2005). Consequently, a dodecatrode 
with 12 microwires (8 µm diameter) provides more accurate infor-
mation about the location of neurons than a tetrode, with its four 
microwires (12–13 µm diameter; Figures 1A,B). Type I error of spike 
sorting is caused by overlapping spikes (Harris et al., 2000). Our previ-
ous studies (Takahashi et al., 2003a,b; Takahashi and Sakurai, 2005, 

FIGURE 4 | (A) Auto-correlograms of whole SSSs among all possible pairs of 
neurons in a window of ±200 ms (left) and ±25 ms (right). The bin sizes are set, 
respectively, at 5 and 1 ms. The SSS oscillates slightly at ca. 20 and ca. 150 Hz 
(arrows). (B) The occurrence rate for the SSS (red) and non-SSS (green) as a 

function of the spike frequency. The blue shaded box highlighted bands of 
signifi cant spike frequency (t-test; P < 0.05; see Materials and Methods). Error 
bars show SEM. The lower portion shows the bands of the beta, gamma and 
fast-ripple oscillations.
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FIGURE 5 | SSSs related to stimulus inputs are associated with fi ring rate 

modulations. Comparison of SSSs and rate modulations between high tone and 
low tone trials was selected in this example. Each subfi gure averages all correct 
trials of a session. Results of U-tests of 5 s of tone presentation in the preceding 
trial, 5 s of delay, and 2 s of tone presentation in the next trial are shown. 
Additional details are described in Section ‘Materials and Methods’. (A) Firing 
rates of neuron 7 in high tone (red) and low tone (blue) trials. (B,C) Raster plots of 
spikes of neuron 7 in high tone (red) and low tone (blue) trials. (D) P-values of 

neuron 7 for a difference between rates in high tone and low tone trials. The 
dotted red line represents the level of signifi cance, α (=2; P = 0.01). The 
signifi cant period (P < 0.01) is enclosed in the green shaded box. (E)–(I) and (N) 
are shown in the same manner as in (A)–(D). (E) Firing rates of neuron 8. (F,G) 
Raster plots of neuron 8. (H) P-values of neuron 8. (I) Rates of the SSS between 
neurons 7 and 8. (J–M) In copies of raster plots from (B), (C), (F), and (G) (black 
dots), SSSs are shown as green dots. (N) P-value of the SSS between neurons 7 
and 8. The signifi cant fi ring rates of neurons 7 and 8 are associated with SSS.
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FIGURE 6 | SSSs related to retention of the stimulus are associated with 

fi ring rate modulations. Comparison of SSSs and rate modulations between high 
tone and low tone trials was selected in this example. Each subfi gure averages all 
correct trials of a session. Results of U-tests of 5 s of tone presentation in the 
preceding trial, 5 s of delay, and 2 s of tone presentation in the next trial are shown. 
(A) Firing rates of neuron 3 in high tone (red) and low tone (blue) trials. (B,C) Raster 
plots of spikes of neuron 3 in high tone (red) and low tone (blue) trials. (D) The 

P-values of neuron 3 for the difference between rates in high tone and low tone 
trials. (E) Firing rates of neuron 5. (F,G) Raster plots of neuron 5. (H) The P-values of 
neuron 5. (I) Rates of the SSS between neurons 3 and 5. (J–M) In copies of raster 
plots from (B), (C), (F), and (G) (black dots), SSSs are shown as green dots. (N) 
P-value of the SSS between neurons 3 and 5. The signifi cant fi ring rates of neurons 
3 and 5 are associated with SSS. Additional details are presented in Figure 5 and 
described in Section ‘Materials and Methods’.
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FIGURE 7 | SSSs related to motor outputs are associated with fi ring rate 

modulations. Comparison of SSSs and rate modulations between non-match/
match (go/no-go) trials was selected in this example. Each subfi gure averages all 
correct trials of a session. Results of U-tests of 11 s of tone presentation in the 
preceding trial, 5 s of delay, and 2 s of tone presentation in the next trial are shown. 
(A) Firing rates of neuron 9 in match (red) and non-match (blue) trials. (B,C) Raster 
plots of spikes of neuron 9 in match (red) and non-match (blue) trials. (D) P-values of 

neuron 9 for a difference between rates in match trials and in non-match trials. 
(E) Firing rates of neuron 10. (F,G) Raster plots of neuron 10. (H) P-values of 
neuron 10. (I) Rates of the SSS between neurons 9 and 10. (J–M) In copies of 
raster plots from (B), (C), (F), and (G) (black dots), SSSs are shown as green dots. 
(N) P-value of the SSS between neurons 9 and 10. The signifi cant fi ring rates of 
neurons 9 and 10 are associated with SSS. Additional details are presented in 
Figure 5 and described in Section ‘Materials and Methods’.
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FIGURE 8 | SSSs related to comparison of the stimuli are associated with 

fi ring rate modulations. Comparison of SSSs and rate modulations between 
correct match and error match trials was selected in this example. Results of 
U-tests of 5 s of delay and 2 s of tone presentation are shown. (A) Firing rates 
of neuron 3 in correct match (red) and error match (blue) trials. (B,C) Raster 
plots of spikes of neuron 3 in correct match (red) and error match (blue) trials. 
(D) P-values of neuron 3 for a difference between rates on correct match trials 

and on error match trials. (E) Firing rates of neuron 5. (F,G) Raster plots of 
neuron 5. (H) P-values of neuron 5. (I) Rates of the SSS between neurons 
3 and 5. (J–M) In copies of raster plots from (B), (C), (F), and (G) (black dots), 
SSSs are shown as green dots. (N) P-value of the SSS between neurons 
3 and 5. The signifi cant fi ring rates of neuron 3 are associated with SSS. 
Additional details are presented in Figure 5 and described in Section 
‘Materials and Methods’.
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FIGURE 9 | Relation between SSSs and rate modulations. The number of 
local neuron groups with signifi cant SSSs and rate modulations is shown in 
relation to stimulus, retention, motor and comparison events. Red signifi es 
the groups in which more than one pair of neurons showed SSSs that are 
associated with fi ring rate modulations of at least one of the participating 
neurons in relation to each behavioral event. Green signifi es the groups in 
which more than one pair of neurons showed SSSs in relation to each 
behavioral event, even when no pair exhibited fi ring rate modulations. Blue 
signifi es the groups in which more than one pair of neurons modulated their 
fi ring rates, even when no pair exhibited SSSs.

2007; Sakurai and Takahashi, 2006) and the present results in Figure 1, 
however, suggest that ICSort can separate overlapping spikes. Another 
major source of error for spike sorting is the dramatic changes in 
spike waveforms which occur during complex spike bursts (Harris 
et al., 2000). In the present analysis, units showing signifi cant spike 
amplitude attenuations during bursts were excluded (see Materials 
and Methods) because some reports of in vitro studies of dendrites 
(Stuart et al., 1997) have described that, in contrast to somatic spikes, 
dendritic spikes imply amplitude attenuation during bursts. Results of 
a previous study (Takahashi and Sakurai, 2007) suggest that the infor-
mation coded by the soma and dendrite of pyramidal cells differ in the 
hippocampal CA1 of behaving rats. In light of these methodological 
considerations and considering the results presented in Figure 1, we 
conclude that our datasets, compiled through the combined use of 
ICSort and dodecatrodes, are reliable for detection of sub-millisecond 
synchronization among closely neighboring neurons.

CANDIDATES FOR SSS GENERATION
Two promising candidates exist for generating SSSs. First, reports of 
computational and in vitro experiments have described that sub-mil-
lisecond synchronizations can be propagated in neuronal networks 
only via chemical synapses, as stated in the hypotheses of synfi re 
chains (Abeles, 1991; Diesmann et al., 1999), of the development of 
synchrony through multiple layers (Reyes, 2003), and of common 
(shared) inputs from synchronized neuronal assemblies to closely 
neighboring neurons. Especially because of the specifi c anatomical 
structure of the hippocampus, hippocampal CA1 pyramidal cells that 
are the recording target of our study can receive such near-synchro-
nous synaptic inputs from the CA3 and entorhinal cortex (Freund 
and Buzsaki, 1996). Consequently, the SSS may be generated by the 

effect of such neuronal networks. Second, results of some in vitro 
studies suggest that pyramidal cells in the hippocampus are coupled 
electrically via axo-axonal gap junctions (Macvicar and Dudek, 1981; 
Schmitz et al., 2001) and that such electrically coupled pyramidal 
cells contribute to generation of fast-ripple oscillations (Draguhn 
et al., 1998; Traub and Bibbig, 2000). The neurons analyzed in our 
present study are pyramidal cells detected from narrow-spaced mul-
tiple microwires (dodecatrodes). Therefore, the anatomical distance 
between neurons of each pair might be suffi ciently small to form 
connections via axo-axonal gap junctions. Consequently, such elec-
trically coupled pyramidal cells via axo-axonal gap junctions might 
generate SSSs. Although our results suggest that SSS is not a simple 
consequence of fi ring rate modulations of participating neurons, it is 
not known whether electrically coupled pyramidal neurons via axo-
axonal gap junctions constantly produce synchronized spikes in any 
state. Therefore, the possibility that electrical coupling is the origin 
of SSSs cannot be excluded. From these perspectives, we conclude 
that neuronal networks and electrically coupled pyramidal cells via 
axo-axonal gap junctions can support SSS generation.

The optimal bands of spike frequency for the occurrence of the 
SSS may be physiologically important because they correspond to 
the beta band (Traub et al., 1999), a part of the gamma band (Traub 
et al., 1999; Bibbig et al., 2001; Csicsvari et al., 2003b) and the fast-
ripple oscillations (Buzsaki et al., 1992; Siapas and Wilson, 1998) 
in the several regions (Gray et al., 1989; Vanderwolf and Zibrowski, 
2001) which are thought to play key roles in propagation and 
information storage. Regarding fast-ripple oscillations, some in 
vivo studies have suggested that they play a key role in information 
processing in the hippocampus during both awake and sleep states 
(Buzsaki, 1989; Siapas and Wilson, 1998; O’Neill et al., 2006). In 
addition, Traub and Bibbig (2000) suggested that fast-ripple oscil-
lations are based on axo-axonal gap junctions between pyramidal 
cells. Consequently, the SSS among pyramidal neurons coupled 
via gap junctions might generate fast-ripple oscillation to propa-
gate and store information. Additional experiments with local fi eld 
potentials will be necessary for assessing this hypothesis.

CAN DISTANTLY LOCATED NEURONS CO-FIRE WITH 
SUB-MILLISECOND PRECISION?
Although our results demonstrate that two to fi ve closely neigh-
boring pyramidal neurons in the hippocampus co-fi re with sub-
 millisecond precision, it remains unknown whether SSSs exist 
among distantly located neurons. For this study, we performed sta-
tistical identifi cation and classifi cation of pyramidal neurons after 
whole recordings. We identifi ed that 43% of detected pyramidal 
neurons originated predominantly from dendrites. They were there-
fore not used for fi nal analyses. In the remaining datasets, there is no 
pair of pyramidal neurons simultaneously recorded using different 
dodecatrodes. Reports of some previous studies (Nicolelis et al., 
1995; Singer and Gray, 1995; Vaadia et al., 1995; Sakurai, 1996; Riehle 
et al., 1997; Harris et al., 2003) describe that distantly located (more 
than 100 µm apart) neurons synchronize with greater than 1 ms 
precision. Therefore, it is possible that robust SSSs exist between 
distantly located pyramidal neurons in the hippocampus. Additional 
experiments using many dodecatrodes and a new technique for 
real-time identifi cation and classifi cation of dendrites might help 
to resolve this issue.
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FIGURE 10 | SSSs related to stimulus inputs are not associated with fi ring 

rate modulations. Comparison of SSSs and rate modulations between high 
tone (red) and low tone (blue) trials was selected in this example. Results of 
U-tests of 6 s of tone presentation in the preceding trial, 5 s of delay, and 2 s of 
tone presentation in the next trial are shown. (A) Firing rates of neuron 11 in high 
tone (red) and low tone (blue) trials. (B,C) Raster plots of spikes of neuron 11 in 
high tone (red) and low tone (blue) trials. (D) P-values of neuron 11 for a 

difference between rates in high tone trials and in low tone trials. (E) Firing rates 
of neuron 12. (F,G) Raster plots of neuron 12. (H) The P-values of neuron 12. 
(I) Rates of the SSS between neurons 11 and 12. (J–M) In copies of raster plots 
from (B), (C), (F), and (G) (black dots), SSSs are shown as green dots. (N) The 
P-values of the SSS between neurons 11 and 12. Signifi cant SSSs were not 
associated with fi ring rate modulations of neurons 11 and 12. Additional details 
are presented in Figure 5 and described in Section ‘Materials and Methods’.
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FIGURE 11 | Rate modulations related to stimulus inputs are not associated 

with SSSs. Comparison of SSSs and rate modulations between high tone (red) 
and low tone (blue) trials was selected in this example. Results of U-tests of 5 s 
of tone presentation in the preceding trial, 5 s of delay, and 2 s of tone 
presentation in the next trial are shown. (A) Firing rates of neuron 13 in high tone 
(red) and low tone (blue) trials. (B,C) Raster plots of spikes of neuron 13 in high 
tone (red) and low tone (blue) trials. (D) P-values of neuron 13 for a difference 

between rates on high tone trials and on low tone trials. (E) Firing rates of neuron 
14. (F,G) Raster plots of neuron 14. (H) P-values of neuron 14. (I) Rates of the 
SSS between neurons 13 and 14. (J–M) In copies of raster plots from (B), (C), 
(F), and (G) (black dots), SSSs are shown as green dots. (N) P-values of the SSS 
between neurons 13 and 14. Signifi cant fi ring rate modulations of neurons 13 and 
14 were not associated with SSSs. Additional details are presented in Figure 5 
and described in Section ‘Materials and Methods’.
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FIGURE 12 | Rate modulations related to stimulus inputs are not 

associated with SSSs among a triplet of neurons. Comparison of SSSs and 
rate modulations between high tone (red) and low tone (blue) trials was selected 
in this example. Results of U-tests of 5 s of tone presentation on the preceding 
trial, 5 s of delay, and 2 s of tone presentation in the next trial are shown. 
(A) Firing rates of neuron 3 in high tone (red) and low tone (blue) trials. (B,C) 
Raster plots of spikes of neuron 3 in high tone (red) and low tone (blue) trials. 
(D) P-values of neuron 3 for a difference between rates in high tone trials and in 

low tone trials. (E) Firing rates of neuron 5. (F,G) Raster plots of neuron 5. 
(H) P-values of neuron 5. (I) Firing rates of neuron 6. (J) and (K) Raster plots of 
neuron 6. (L) P-values of neuron 6. (M) Rates of the SSS among neurons 3, 5, 
and 6. (N–S) In copies of raster plots from (B), (C), (F), (G), (J), and (K) (black 
dots), SSSs are shown as green dots. (T) P-values of the SSS among neurons 3, 
5, and 6. The signifi cant fi ring rate modulations of neurons 3 and 5 were not 
associated with SSSs among a triplet of neurons. Additional details are 
presented in Figure 5 and described in Section ‘Materials and Methods’.
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FIGURE 13 | SSSs among a triplet of neurons related to comparison of the 

stimuli are associated with fi ring rate modulations. The comparison of SSSs 
and rate modulations between correct match (red) and error match (blue) trials 
was selected in this example. Results of U-tests of 4 s of delay and 2 s of tone 
presentation are shown. (A) Firing rates of neuron 3 in correct match (red) and 
error match (blue) trials. (B,C) Raster plots of spikes of neuron 3 in correct match 
(red) and error match (blue) trials. (D) P-values of neuron 3 for a difference 
between rates in correct match trials and in error match trials. (E) Firing rates of 

neuron 4. (F,G) Raster plots of neuron 4. (H) P-values of neuron 4. (I) Firing rates 
of neuron 5. (J,K) Raster plots of neuron 5. (L) P-values of neuron 5. (M) Rates 
of the SSS among neurons 3, 4, and 5. (N–S) In copies of raster plots from (B), 
(C), (F), (G), (J), and (K) (black dots), SSSs are shown as green dots. (T) P-values 
of the SSS among neurons 3, 4, and 5. The signifi cant SSSs among a triplet of 
neurons were associated with fi ring rate modulations of neuron 3. Additional 
details are presented in Figure 5 and described in Section ‘Materials and 
Methods’.
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SSS AMONG THREE OR MORE CLOSELY NEIGHBORING 
PYRAMIDAL NEURONS
The results from SSS of pairs of closely neighboring pyramidal neu-
rons suggested that a suffi cient condition in which SSSs are related 
with the behavioral events is that fi ring rate modulations of both of 
two participating neurons are related to the same behavioral event. 
However, in our dataset, no triplet satisfi ed this condition: we were 
unable to observe that all three participating neurons show fi ring 
rate modulations simultaneously in relation to the same behavio-
ral event. Therefore, this might be one reason why almost no SSS 
among a triplet of neurons was related to the behavioral events. On 
the other hand, because the dodecatrode tip diameter (ca. 70 µm) 
is a few times greater than that of the cell body of a pyramidal 
neuron, possible sources of SSS among some closely neighbor-
ing pyramidal neurons such as axons and gap junctions might be 
damaged severely, thereby decreasing the occurrence probability of 
the SSS among three or more neurons. Thinner electrodes such as 
silicon probes (Csicsvari et al., 2003a) are expected to be necessary 
for minimizing these effects in future studies.

POSSIBLE REASONS WHY HIPPOCAMPAL PLACE CELLS 
DO NOT CO-FIRE
In contrast to results obtained through a few studies of neigh-
boring place cells (O’Keefe et al., 1998; Redish et al., 2001) under-
taken without spike-separation techniques, the present study and 
a few others (Eichenbaum et al., 1989; Hampson et al., 1999) have 
demonstrated that the activities of neighboring pyramidal neurons 
synchronize. Major differences between these studies are the tasks 
that were used and the spike-sorting techniques. In neighboring 
place cell studies, neuronal activities during movement are only 
analyzed because, during immobility, neurons fi re independently 
the rat’s location. In contrast, in the present study and other stud-
ies, neuronal activities during immobility were analyzed mainly 
by maintaining a rat in a sitting position. The behaviors strongly 
correlate with the EEG state, i.e., a theta rhythm appears during 
movement, whereas a large-amplitude irregular activity punctu-
ated by sharp wave-ripple complexes appears during immobility 
(Buzsaki et al., 1983). On the other hand, in results reported from 
use of conventional spike-sorting techniques ignoring the spike-
 overlapping problem, whether or not signifi cant SSSs exist among 
closely neighboring neurons remains unknown. Moreover, results 
of our previous study implied that spatial information coded by 
the soma and dendrite differs in the hippocampal CA1 of freely 
foraging rats (Takahashi and Sakurai, 2007). The conclusion that 

neighboring place cells do not signifi cantly synchronize might be 
modifi ed by results from studies using spike sorting along with a 
spike-separation technique such as that of our ICSort. Consequently, 
the incompatibility of the results might be attributable to the task 
and associated EEG state, and to technical issues associated with 
the spike-overlapping problem.

FIRING RATE MODULATIONS WITH SSSs MIGHT BE IMPORTANT 
FOR PROPAGATING INFORMATION
The occurrences of fi ring synchrony among closely neighboring 
pyramidal neurons with sub-millisecond precision were unclear 
before this study, as was the question of whether or not such syn-
chronization codes salient information in the brains of behaving 
animals. Through this study, using the extracellular multi-unit 
recording technique with ICSort and dodecatrodes, we identifi ed 
robust SSSs in the hippocampal CA1 of behaving rats. Several lines 
of evidence clarifying the fi ring rate modulations have provided 
remarkable information related to external stimuli (Hubel and 
Wiesel, 1977) and behaviors (Georgopoulos et al., 1986), as well 
as internal cognitive processes (Funahashi et al., 1989). However, 
the impact of fi ring rate modulations of single neuron is too weak 
to depolarize downstream neurons. The synchronization of mul-
tiple neurons with sub-millisecond precision is suffi ciently strong 
to convey information (Diesmann et al., 1999; Reyes, 2003) and 
change synaptic effi cacies (Tsodyks and Markram, 1997; Bi and Poo, 
1998). Therefore, the SSSs must propagate information suffi ciently 
to downstream neurons. Our results suggest that the SSSs and the 
fi ring rate modulations are generally coupled and correlate with 
both internal and external events during the DNMS task, suggest-
ing that the SSS is not related to any specifi c event, as some previ-
ous reports have suggested (Deadwyler et al., 1996; Sakurai, 1996; 
Eichenbaum et al., 1999): hippocampal neurons show multiple 
representations and conjunctive encoding.

Consequently, we conclude that sub-millisecond fi ring syn-
chrony in groups of closely neighboring pyramidal neurons in the 
hippocampal CA1 might be an important carrier for propagating 
information that is not easily transmitted, but which is strikingly 
represented by fi ring rate modulations of participating neurons to 
downstream neurons in neural circuits.
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