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miRNAs have been implicated in many distinct processes in the 
nervous system, ranging from neuronal differentiation (Krichevsky 
et al., 2006; Kim et al., 2007; Shibata et al., 2008), neuronal stem 
cell commitment (Rybak et al., 2008), brain development (Giraldez 
et al., 2005; Leucht et al., 2008; Maller Schulman et al., 2008), neu-
rite outgrowth (Barik, 2008; Yu et al., 2008) to synaptic plasticity 
(Schratt et al., 2006; Siegel et al., 2009). In addition, evidence for 
the involvement of miRNAs in a range of neurological diseases 
has been obtained (Abelson et al., 2005; Kim et al., 2007; Hébert 
et al., 2008; Packer et al., 2008; Stark et al., 2008). We have recently 
shown that the brain specifi c miRNA, miR-134, regulates spine 
morphogenesis of primary hippocampal neurons in culture by 
regulating the local translation of LimK1 mRNA, a regulator of 
actin fi lament dynamics (Schratt et al., 2006). More recently, we 
found that myocyte enhancing factor 2 (Mef2) dependent tran-
scription of miR-134 is required for activity-dependent dendritic 
outgrowth of primary hippocampal neurons, through miR-134 
mediated regulation of the translational repressor Pumilio2 
(Pum2) (Fiore et al., 2009). The potentially important roles of 
miRNAs in synapse development and function indicated by these 
in vitro studies highlight the need for the construction of tools that 
enable effi cient in vivo miRNA manipulation. In vivo delivery of 
synthetic miRNA duplexes is possible, but this approach is lim-
ited owing to the low stability of RNA oligonucleotides in vivo, 
the lack of regulated expression and the ineffi cient uptake of the 
oligonucleotides by the neurons.

INTRODUCTION
microRNAs (miRNAs) have emerged as important post-
 transcriptional regulators of gene expression. Mature miRNAs are 
processed from primary transcripts (pri-miRNAs) by two RNase 
III enzymes, fi rst by Drosha yielding a ∼70 nt (nucleotide) precur-
sor miRNA (pre-miRNA) followed by Dicer processing of the pre-
miRNA into a ∼22 nt miRNA duplex. Usually, only one strand of 
the miRNA duplex defi nes the functional miRNA, which is guided 
to the 3′-untranslated region (3′-UTR) of target mRNAs by the 
RNA-induced silencing complex (RISC). Here, miRNAs bind to 
partially complementary regions, thereby exerting their function as 
regulators of gene expression (Bartel, 2004). Dicer cleaves double-
stranded RNA (dsRNA) in 21–23 nt intervals independent of the 
specifi c sequence (Zamore et al., 2000; Elbashir et al., 2001; Zhang 
et al., 2002), thus the site of Drosha cleavage of pri-miRNAs pre-
 determines cleavage specifi city within the pre-miRNAs. However, 
relatively little is known about the elements of individual pri- miRNAs 
that are required for Drosha processing. Drosha forms a complex, 
the Microprocessor, with the dsRNA binding protein DGCR8 which 
facilitate binding of Drosha to the pri-miRNAs (Denli et al., 2004; 
Gregory et al., 2004; Han et al., 2004). DGCR8 recognition motifs 
within pri-miRNAs appear to be largely determined by structural 
features (Han et al., 2006). In particular, Drosha processing requires 
both dsRNA elements at the base of the miRNA stem-loop structure 
and fl anking single-stranded RNA (ssRNA) tails (Lee et al., 2003; 
Zeng and Cullen, 2005; Han et al., 2006).
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Here, we describe the construction of a vector based tool, which 
allows stable and effi cient delivery of miRNAs in vivo by use of 
rAAV. We expressed miRNAs from chimeric hairpins located in 
the 3′-UTR of enhanced GFP (eGFP) on an adeno-associated virus 
(AAV) vector. The resulting co-expression of miRNAs and eGFP 
allowed tracing of neurons in vivo in which miRNAs had been 
delivered. Using this tool, we found that miR-134 delivery into 
cortical layer V neurons impaired dendritogenesis in the mouse 
brain in vivo. In principle, rAAV-directed expression and inhibi-
tion of miRNAs should allow us to investigate the in vivo effect of 
any miRNA during mammalian neuron development in a rapid, 
specifi c and cost-effective manner.

MATERIALS AND METHODS
DNA CONSTRUCTS
The chimeric hairpins were engineered by polynucleotide clon-
ing into the 3′-UTR of eGFP on pAAV-6P-SEWB using the BsrGI/
HindIII sites (Figure 1 in Supplementary Material). Cloning of 
pGL3-LimK1-3′UTR is described in Schratt et al. (2006). The 
miR-134 binding site in the pGL3-LimK1-3′UTR construct was 
mutated to a miR-134 perfect binding site using the QuikChange 
II Site-Directed Mutagenesis kit (Stratagene), resulting in pGL3-
LimK1-3′UTR-134pbds. The rat Hs3st2-3′UTR was amplifi ed by 
use of PCR from cDNA made from rat brain total RNA (Ambion), 
comprising a region from 225 nts to 736 nts downstream of the 
coding region (Ensemble transcript ID: ENSRNOT00000023773). 
The PCR product was cloned into psiCHECK-2 (Promega) 
using the NotI/XhoI sites, resulting in the psiCHECK-Hs3st2-
3′UTR  construct. The miR-99a binding site in the psiCHECK-
Hs3st2-3′UTR construct was mutated to a perfect miR-99a binding 
site by overlapping extension PCR (An et al., 2005), resulting in 
psiCHECK-Hs3st2-3′UTR-99apbds. All primer sequences are listed 
in Supplementary Materials.

CELL CULTURE, TRANSFECTION AND VIRUS INFECTION 
OF PRIMARY NEURONS
Dissociated primary cortical and hippocampal neurons from 
embryonic day 18 (E18) Sprague Dawley rats (Charles River 
Laboratories, Sulzfeld, Germany) were prepared and cultured as 
described in Schratt et al. (2004). The neurons were transfected 
by mixing 1 µg total DNA/RNA per well of a 24 well plate with 
100 µl of a 1:50 dilution of Lipofectamine 2000 (Invitrogen) in 
Neurobasal Medium (Invitrogen). After 20 min incubation at RT 
the transfection mixtures were diluted 1:5 in Neurobasal Medium 
and applied onto the neurons for 2 h.

HEK293T cells were cultured in MEM media (Invitrogen) 
 supplied with 10% fetal bovine serum, 1 mM glutamine, 100 units/
ml penicillin and 100 µg/ml streptomycin. HEK293 cells were trans-
fected using the calcium phosphate method. A fi nal CaCl

2
 concen-

tration of 0.1 M was used and an incubation time of 5 h.
Primary neurons (75.000 hippocampal neurons, 250.000 

cortical neurons per 24-well) were transduced with rAAV 
by applying the viral particles into the culture media using 
a  volume of the viral stock resulting in a visual GFP signal 
after 4–5 days and ∼100% transduction efficiency. rAAV titers 
were estimated to 0.6–2.7 × 108 IFU/ml based on HEK293 cell 
 titration experiments.

PREPARATION OF INFECTIOUS rAAV
Infectious rAAV was generated by a 1:1:1 co-transfection of 
pAAV-6P-SEWB (Shevtsova et al., 2005) or pAAV-6P-SEWB deriva-
tives with helper plasmids (pDP1 and pDP2) (Grimm et al., 2003) 
into HEK293 cells using 13 µg of each plasmid per 15 cm cell culture 
dish. Following incubation for 2.5–3 days, the HEK293 cells were 
harvested for virus purifi cation.

rAAV crude lysates were prepared by resuspending harvested 
HEK293 cells in PO buffer (20 mM Tris, 150 mM NaCl, pH 8.0) 
followed by lysis by three freeze-thaw cycles. After fi ltering the 
virus containing supernatant using a 0.45 µm syringe fi lter unit, 
the crude lysates were centrifuged to remove cell debris origi-
nating from the HEK293 cells. rAAV was purifi ed by use of the 
Iodixanol density step gradient method (Zolotukhin et al., 1999). 
The detailed protocol can be found in the “Methods” section in 
Supplementary Material.

IN VIVO INJECTION
The experimental protocol for in vivo injection was approved by 
the Regierungspräsidium Karlsruhe (AZ 35-9185.81/G-170/07) 
and designed to minimize suffering and reduce the number of 
animals used. Postnatal day 0 (P0) C57BL/6 mice (Charles River 
Laboratories, Sulzfeld, Germany) were cryoanesthetized and 
injected with 2 µl purifi ed rAAV stock into each lateral ventricle 
(2 mm ventral of lambda, ±0.7 mm from midline, depth: 1.8 mm) 
using a 10-µl Hamilton microliter syringe. Individual experiments 
were performed on pups from the same litter, which were previously 
tattooed on the footpads to identify the groups injected with rAAV 
carrying different pAAV-6P-SEWB derivatives. Following injection, 
the pups were placed on a 37°C warming pad and returned to the 
mother after regaining normal activity and color.

IMMUNOHISTOCHEMISTRY
Injected mice were killed at P21, the brains were dissected and 
fi xed ON in 4% paraformaldehyde, 4% sucrose in PBS at 4°C. 
Coronal brain sections (100 µm) were washed 3× 5 min in PBS, 
pre-incubated for 1 h at RT in blocking buffer (10% normal goat 
serum, 0.25% TritonX-100 in PBS) followed by ON incubation at 
4°C with rabbit anti-GFP antibody (1:2000; Invitrogen, A6455). 
After wash in blocking buffer at RT (2× 2 min and 2× 20 min) the 
brain sections were incubated for 2 h at RT with goat Alexa-488 
coupled anti-rabbit antibody (1:250; Invitrogen, A11034). After 
another round of washing in blocking buffer the sections were 
counterstained with Hoechst and mounted for microscopy.

IMAGE ANALYSIS
Image capture and image analysis was performed with the experi-
menter blinded to the experimental conditions. In vivo dendri-
togenesis assays were performed on cortical layer V pyramidal 
neurons imaged from 100 µm immunostained coronal brain sec-
tions obtained from mice injected with rAAV. Projection images 
were made from seven 20× z-stack images with an interval of 
5.5 µm and a resolution of 1024 × 1024 pixels using a confocal 
laser scanning microscope (LSM 5 Pascal, Zeiss, Germany). To 
analyze dendritic branching, a grid of 10 concentric circles spaced 
by 25 µm was placed centered on the soma of the neurons and the 
number of dendritic crossings (intersections) with each circle was 
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counted. The data was obtained from three independent litters of 
mice, each litter providing two to three brains per experimental 
condition. On average, seven different neurons were imaged per 
experimental  condition, resulting in the following data set: (a) AAV 
vector: 9 brains, 69 neurons, (b) control1.1: 8 brains, 61 neurons, 
(c) miRNA134.1: 8 brains, 57 neurons.

WESTERN BLOTTING
For western blotting primary hippocampal neurons were trans-
duced with purifi ed rAAV at 10–11 DIV and the cells were lysed 
and prepared for blotting 8 days later. Western blot was performed 
as described in Siegel et al. (2009) using the following primary 
antibodies: mouse anti-LimK1 antibody (1:2000; Transduction 
Laboratories, L13020), mouse anti-β-actin antibody (1:10000; 
Sigma, A5441) and rabbit anti-Pum2 antibody (1:2000; NOVUS 
Biologicals, NB100-387). For recognition of the primary anti-
bodies HRP-conjugated goat anti-rabbit antibody (1:20000; 
Calbiochem, 401315) or HRP-conjugated rabbit anti-mouse 
 antibody (1:20000; Calbiochem, 402335) was used. Sizes of pro-
tein bands were  determined using the Precision Plus Protein Dual 
Color Standard (BIO-RAD).

LUCIFERASE ASSAY
Primary cortical neurons were transfected at 4 DIV and luci-
ferase assays were performed 3 days later using the Dual-
Luciferase Reporter Assay System (Promega). For assays using 
luciferase reporter constructs containing a miRNA perfect binding 
site 500 ng of the AAV-6P-SEWB derivatives were co-transfected 
along with 125 ng of the luciferase reporter construct per well of a 
24 well plate. When using luciferase reporter constructs containing 
miRNA wild type target sites only 12.5 ng of the luciferase construct 
was used. pre-miR control (Ambion, Negative control #1) and 99a 
pre-miR (Ambion) were used in a fi nal concentration of 20 nM.

QUANTITATIVE REAL-TIME PCR (qPCR)
RNA was purifi ed using QIAZOL (Qiagen) and treated with TURBO 
DNase (Ambion) to remove DNA contamination. Quantitative 
real-time PCR was performed with a 7300 Real Time PCR System 
(Applied Biosystems) using TaqMan MicroRNA Assays (Applied 
Biosystems) and iTaq SybrGreen Supermix with ROX (BIO-RAD) 
for the detection of miRNAs and mRNAs, respectively. Primers 
for detection of U6 snRNA and β-3-tubulin can be found in the 
“Methods” section in Supplementary Material.

NORTHERN BLOT
RNA was purifi ed as for Quantitative real-time PCR. Northern 
blots for detection of small RNAs were performed as described 
in Schratt et al. (2006). As molecular marker we used the Decade 
Marker system (Ambion). Sequences of northern probes used can 
be found in the “Methods” section in Supplementary Material.

RESULTS
ENGINEERING OF AAV PLASMIDS EXPRESSING microRNAs FROM 
CHIMERIC HAIRPINS
In the interest of overexpressing miRNAs in vivo and guiding this 
expression to neurons, we used pAAV-6P-SEWB as a cloning vec-
tor, an AAV vector expressing eGFP under control of the synapsin 

 promoter (Shevtsova et al., 2005). For in vivo delivery, we packed 
rAAV particles using two helper plasmids expressing AAV sero-
type-1 and -2 capsid proteins (Grimm et al., 2003), respectively, 
which are serotypes leading to widespread transduction of  neurons 
throughout the neonatal mouse brain after intraventricular injec-
tion (Passini and Wolfe, 2001; Passini et al., 2003; Broekman et al., 
2006). Close to 100% transduction effi ciency was observed when 
transducing primary cortical and hippocampal neurons using 
rAAV serotype 1/2, compared to only 20–25% effi ciency when 
using Lipofectamine as transfection agent (unpublished obser-
vations). Therefore, rAAV could be used to perform biochemi-
cal assays in dissociated neurons for validation of the potential 
of rAAV-expressed miRNAs to regulate target gene expression. 
Due to the small promoter fragment used (ca. 600 bp), we also 
observed eGFP expression driven by the synapsin promoter upon 
transfection of the pAAV-6P-SEWB vector into non-neuronal 
HEK293 cells. This allowed us to use HEK293 cells for many of 
our mechanistic studies.

The exact fl anking sequences of miRNA hairpin stem-loop struc-
tures required for Drosha processing of individual pri-miRNAs are 
unknown, though 125 nts on each side of the  hairpin appears to be 
suffi cient in many cases (Chen et al., 2004). Interestingly, the well 
studied miR-30a hairpin requires only ∼20 nts on each side at its 
base in the pri-miRNA for effi cient cleavage by Drosha (Figure 1A). 
Processing is abolished by disruption of dsRNA structures of this 
fl anking region (Lee et al., 2003; Zeng and Cullen, 2003), suggesting 
that these structures are recognized by the Microprocessor com-
plex. To bypass the uncertainty of elements required for Drosha 
cleavage of individual pri-miRNAs, we used the fl anking elements 
of the miR-30a hairpin required for Drosha processing to design 
chimeric hairpins expressing candidate miRNAs. Importantly, a 
similar miR-30 hairpin design was recently described for the expres-
sion of artifi cial siRNAs in RNA interference studies (Dickins et al., 
2005; Stegmeier et al., 2005). Two different designs of chimeric hair-
pins were engineered. The fi rst design (Figure 1A, miRNA134.1, 
miRNA99a.1, control1.1 and control2.1) was obtained by substi-
tuting the miR-30a sequence within the miR-30a precursor with a 
miRNA or control sequence of interest. Subsequently, the 3′end of 
the stem of the chimeric hairpins, the so-called star sequence, was 
modulated in a way that the overall secondary structure of the engi-
neered hairpins mimicked the secondary structure of the miR-30a 
precursor. For construct miRNA134.1 and miRNA99a.1, the miR-
134 and miR-99a mature sequences were inserted into the miR-
30a backbone, respectively. Control1.1 and control2.1 contained 
sequences (AACCTTGTGGTCCTTAGGTGCG and cel-miR-67, 
respectively) which are not natural components of the small RNA 
pool of rodents, and therefore served as important negative controls 
for potential non-specifi c effects of small RNA overexpression in 
general (Grimm et al., 2006; Narvaiza et al., 2006). Based on the GC 
content, miR-134, miR-99a and control1 all display weaker 5′-end 
base pairing to their complement strands when inserted into the 
chimeric hairpins compared to their 3′-ends. Therefore, the sense 
strand of these duplexes should be preferentially loaded into the 
RISC complex (Khvorova et al., 2003; Schwarz et al., 2003). The 
second design (Figure 1B, miRNA134.2 and control1.2) is a modi-
fi cation of the fi rst hairpin design (Figure 1A), where the single 
stranded terminal loop originating from the miR-30a  precursor 
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The chimeric hairpins were cloned into the 3′-UTR of eGFP 
on pAAV-6P-SEWB immediately at the end of the eGFP coding 
region (Figure 1 in Supplementary Material). This allowed co-
expression of eGFP and miRNAs or control sequences expressed 
from the chimeric hairpins. The pAAV-6P-SEWB derivatives all 
effi ciently expressed eGFP, though slightly less effi ciently than the 
parental pAAV-6P-SEWB vector, presumably due to the insertion 
of a hairpin. Nevertheless, we inferred that the stability of the eGFP 
transcript was not signifi cantly reduced either due to insertion of 
extra sequence in the 3′-UTR or due to a possible cleavage of the 
3′-UTR by Drosha.

VALIDATION OF microRNA EXPRESSION FROM CHIMERIC HAIRPINS
To examine the capacity of the chimeric hairpins to express  miRNAs 
and control sequences we fi rst transfected the miRNA134.1, con-
trol1.1 and control2.1 constructs into primary cortical neurons 
and analyzed the expression by northern blot (Figure 2A, left 
panel). An approximately fourfold higher level of miR-134 was 
detected in the cortical neurons transfected with the miRNA134.1 
construct, which originated from a transfection effi ciency of only 
20–25%. Interestingly, a large fraction of the product expressed 
from the miRNA134.1 clone displayed a slightly larger size than 
endogenously expressed miR-134 detected in the control condi-
tions. Control1.1 and control2.1 expressed small RNA products 
of the expected sizes. Importantly, expression from the constructs 
was also observed by northern blot when transducing primary 
cortical neurons with the constructs packed into virus particles 
(Figure 2A, right panel). We estimated transduction effi ciency to be 
close to 100%,  suggesting that miR-134 levels were fourfold lower 
in individual virus- transduced cells compared to transfected cells. 
As further validation of miR-134 expression from the chimeric 
hairpin, we transfected the miRNA134.1 clone into primary cortical 
neurons and analyzed the expression by qPCR (Figure 2B) using 
specifi c stem-loop primers. Thereby, we observed an approximately 
10-fold induction of detectable miR-134 compared to the con-
dition transfected with AAV vector. Expression of miR-134 after 
transduction of primary cortical neurons with rAAV carrying the 
miRNA134.1 construct was in addition followed over time and ana-
lyzed by qPCR (Figure 2 in Supplementary Material). Here, a con-
tinuous increase of detectable miR-134 was observed over a period 
of 11 days, displaying an approximately fi vefold up- regulation at 
the peak of expression.

To test the general applicability of our approach, we designed 
an expression construct for an additional neuronal miRNA, 
miR-99a. miR-99a displays high endogenous levels in our pri-
mary cortical neuron cultures which preclude effi cient detection 
of miR-99a overexpression by northern blot (data not shown). 
Therefore, we validated expression obtained with the miR-99a 
construct by transfecting HEK293 cells, which display lower 
levels of miR-99a. Using northern blot, we observed a ∼twofold 
upregulation of detectable miR-99a from miRNA99a.1 compared 
to the endogenous level of miR-99a observed in the control condi-
tions (Figure 2C). The product expressed from the miRNA99a.1 
construct displayed a similar size as the endogenously expressed 
miR-99a. In addition, a clear ∼60 nt long precursor band of the 
expected size was observed, showing effi cient processing of the 
chimeric hairpin by Drosha.

FIGURE 1 | Secondary structures and sequences of chimeric hairpins. 

(A) Top: structure and sequence of the hsa-miR-30a hairpin including fl anking 
sequences required for Drosha processing. Light grey shaded sequence: 
miR-30a mature sequence. Dark grey shaded sequence: miR-30a* mature 
sequence. Drosha/DGCR8: fl anking region of the miR-30a hairpin required for 
Drosha processing. Arrows: site of Drosha cleavage. Bottom: structure and 
sequence of chimeric hairpins, design 1 (see text for details). Shaded 
sequence: miRNAs or control sequences expressed from the chimeric 
hairpins. (B) Top: structure and sequence of the rno-miR-134 hairpin. Shaded 
sequence: miR-134 mature sequence. Bottom: Structure and sequence of 
chimeric hairpins, design 2 (see text for details). Shaded sequence: miRNAs or 
controls expressed from the chimeric hairpins.

was substituted by the single stranded terminal loop from the 
miR-134 hairpin. The secondary structure of the stem near the 
single stranded terminal loop was designed to mimic the secondary 
structure of the miR-134 hairpin in this region.
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We observed that miR-134 expressed from the miRNA134.1 
 construct migrated slightly slower during gel electrophoresis com-
pared to endogenously expressed miR-134 (Figure 2A),  suggesting 
that the miR-30a loop might have some infl uence on Dicer process-
ing. Therefore, we examined the constructs of single stranded termi-
nal loops originating from either the miR-30a hairpin (miRNA134.1) 
or the miR-134 hairpin (miRNA134.2) for processing. Using north-
ern blot, we found that miRNA134.2 expressed mature miR-134 
after transfection into HEK293 cells (Figure 2D). However, the 
product displayed a slightly smaller size than that expressed from 
the miR134.1 construct run in parallel resembling more the size 
of the endogenous miR-134 (Figure 2A). The dsRNA stem in the 
miRNA134.2 construct is 2 nts shorter than in miRNA134.1, and 
thus both the nature of the single stranded loop and the length of 
the dsRNA stem could infl uence processing. After transfection into 
primary cortical neurons we were able to detect miR-134 expres-
sion from the miRNA134.2 construct using qPCR (Figure 2E), 
though we observed a lower degree of overexpression compared to 
miRNA134.1 (Figure 2B). In summary, our results show that the 
Microprocessor recognition element originating from the miR-30a 
hairpin is suffi cient to ensure processing of the chimeric hairpins 
independent of the nature of the single stranded terminal loop.

Effi cient production of neural miRNAs from the engineered 
chimeric hairpins can be achieved irrespective of the individual 
miRNA sequence inserted into the miR-30a backbone. This indi-
cates that most, if not all, miRNAs can be effi ciently expressed by 
our chimeric hairpin approach.

FUNCTIONALITY OF microRNAs EXPRESSED FROM CHIMERIC HAIRPINS
Next we asked whether the miRNA products expressed from 
the chimeric hairpins could recognize target sites in the 3′-
UTR of target mRNAs and thereby regulate their translation 
and/or abundance. We performed luciferase assays using luci-
ferase reporter constructs in which the 3′-UTR of selected target 
mRNAs (LimK1, Hs3st2) had been cloned downstream of the 
luciferase coding region. These constructs were co-transfected 
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FIGURE 2 | Processing of the chimeric hairpins. (A) Expression of miR-134 
and control sequences from chimeric hairpins, design 1. Left panel: 10 µg of the 
indicated plasmids were transfected into 4 DIV primary cortical neurons per 
10 cm tissue culture dish. RNA was prepared for northern blotting at 7 DIV and 
assayed for the indicated miRNAs. Right panel: 1 DIV primary cortical neurons 
were induced with rAAV (crude lysate) carrying the indicated plasmids. RNA 
was extracted at 7 DIV for northern blot assaying for the indicated miRNAs. 
ImageJ software was used to extract expression data and the levels of miR-134 
were normalized against the levels of endogenously expressed miR-138. 
(B,E) Expression of miR-134 from the miRNA134.1 (B) and the miRNA134.2 (E) 
construct. 4 DIV primary cortical neurons were transfected with 250 ng the 
indicated plasmids per well of a 24 well plate. At 7 DIV, RNA was harvested and 
qPCR analysis was performed. miR-134 levels were normalized against the 
levels of endogenously expressed U6 snRNA. Fold of induction is expressed 
relative to the miR-134 levels in cells transfected with AAV vector, which are 
arbitrarily set to 1. Results are shown as means + s.d. [(B): n = 2; (E): n = 2]. 
(C,D) Expression of miR-99a and miR-134 from the miRNA99a.1 (C) and the 
miRNA134.2 (D) construct, respectively. HEK293 cells were transfected with 
8 µg of the indicated plasmids per 10 cm cell culture dish. RNA was harvested 
2 days later and subjected to northern blot analysis. Expression data were 
extracted using ImageJ software. miR-99a levels (C) were normalized against 
the levels of endogenously expressed U6 snRNA.
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along with the chimeric hairpins into primary cortical neurons, 
and  luciferase activity was measured 3 days later. To validate the 
functionality of the product expressed from the miRNA134.1 
clone we used a luciferase construct, pGL3-LimK1-3′UTR-
134pbds, carrying the LimK1 3′-UTR in which the miR-134 tar-
get site had been mutated from an imperfect to a perfect match 
binding site. This perfect match binding site makes the construct 
more susceptible to binding of miR-134, and therefore should be 
more effi ciently regulated than the construct carrying the wild 
type miR-134 target site. Using pGL3-LimK1-3′UTR-134pbds, we 
observed a reduction of luciferase activity upon miRNA134.1 co-
 transfection compared to control1.1 and control2.1 transfected 
cells (50% and 42%, respectively) (Figure 3A). Therefore, the 
product expressed from the miRNA134.1 construct effi ciently 
targeted the miR-134 perfect match binding site in the luciferase 
construct. On the other hand, we did not detect reduced luciferase 

 activity of the pGL3-LimK1-3′UTR reporter, which contains the 
wild type miR-134 target site, when co-transfecting it along with 
the miRNA134.1 construct (Figure 3 in Supplementary Material). 
To investigate the effects on endogenous target protein levels, we 
transduced 10–11 DIV primary hippocampal neurons with rAAV 
carrying the miRNA134.1 construct and prepared cell extracts 
8 days later. We used western blot analysis to determine protein 
levels of the two validated miR-134 target genes, LimK1 and Pum2 
(Schratt et al., 2006; Fiore et al., 2009). We observed reduced Pum2 
protein levels compared to the control conditions (Figure 3B). 
This strongly suggests that the product of the miRNA134.1 con-
struct is a functional miR-134, which most likely binds directly 
to the cognate target site in the 3′-UTR of the Pum2 transcript, 
thereby inhibiting Pum2 protein production. We further detected 
a less consistent but moderate reduction in the LimK1 protein 
levels by western blot (data not shown).

FIGURE 3 | Functionality of products expressed from miRNA134.1, 2 and 

miRNA99a.1. (A,C) Products of the miRNA134.1 (A) and miRNA134.2 
(C) constructs regulate expression of a luciferase reporter construct carrying a 
miR-134 perfect binding site. The indicated plasmids (or AAV vector) were 
co-transfected along with the pGL3-LimK1-3′UTR-134pbds construct into 
primary cortical neurons for luciferase assay analysis (see Materials and 
Methods for details). Values are expressed relative to the internal Renilla 
luciferase activity and normalized to the activity of the luciferase reporter when 
co-transfected with (A) AAV vector and (C) control1.1, which both are arbitrarily 
set to 1. Results are shown as means + s.d. [(A): n = 4; (C): n = 3]. Indicated 
p-values were calculated using Student′s t-test. (B) miR-134 expressed from 
the miRNA134.1 construct affects the Pum2 protein levels. 10–11 DIV 
hippocampal neurons were transduced with purifi ed rAAV carrying the 
indicated plasmids. Eight days later whole cell extracts were prepared and 

subjected to western blot analysis probing with Pum2 antibody and a β-actin 
antibody as loading control. Here we show one out of three representative 
blots, on average displaying a signifi cant 64% reduction in Pum2 protein levels. 
(D,E) miR-99a expressed from miRNA99a.1 regulates expression of luciferase 
reporter constructs carrying a miR-99a perfect binding site (psiCHECK-Hs3st2-
3′UTR-99apbds) (D) as well as a construct carrying the Hs3t2-3′UTR containing 
a wild type miR-99a target site (psiCHECK-Hs3st2-3′UTR) (E). The indicated 
plasmids, AAV vector or synthetic pre-miRs were co-transfected along with 
luciferase reporter constructs into primary cortical neurons for luciferase assay 
(see Materials and Methods for details). Values are expressed relative to the 
internal Firefl y luciferase activity and normalized to the activity of the luciferase 
reporter when co-transfected with (D) AAV vector and (E) synthetic pre-miR 
control, which arbitrarily are set to 1. Results are shown as means + s.d. 
[(D): n = 3; (E): n = 3]. Indicated p-values were calculated using Student’s t-test.
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(Figure 4A) were analyzed using Sholl analysis (see Materials and 
Methods for details). Only the basal dendritic arbor was considered, 
since the large apical dendrites were often mechanically severed 
during the cutting of the brains. We detected an 11% and 13% 
reduction in dendritic complexity (as expressed by total dendritic 
length) of basal dendrites of the cortical layer V pyramidal neurons 
infected with miRNA134.1 compared to neurons infected with the 
AAV vector or control1.1, respectively (Figure 4B). The reduction 
was seen along the length of the dendrites as illustrated by the Sholl 
profi le in Figure 4C. Thus, miR-134 overexpression interferes with 
dendritogenesis of cortical layer V pyramidal neurons, suggesting 
an important function of miR-134 in neuronal morphology in vivo. 
Notably, ectopic expression of miR-134 in dissociated hippocam-
pal neurons similarly interfered with activity-dependent growth 
of dendrites (Fiore et al., 2009).

DISCUSSION
In this study, we describe a rAAV-based tool for stable expression 
of miRNAs, which enables studies of miRNA function in post-
mitotic neurons in vitro and in vivo. We designed miRNA express-
ing chimeric hairpins using elements from the well characterized 
miR-30a hairpin known to ensure Drosha processing (Figure 1) 
(Lee et al., 2003; Zeng and Cullen, 2003), thereby bypassing our lim-
ited knowledge about sequence requirements for Drosha process-
ing of individual miRNAs. We tested our designs on two neuronal 
 miRNAs, miR-134 and miR-99a, which were both effi ciently proc-
essed (Figures 2A,C). Therefore, the processing of the designed 
chimeric hairpins seems completely independent of the inserted 
miRNA sequences, thereby likely allowing effi cient processing 
and expression of any miRNA of interest.

In the interest of guiding miRNA expression to all neuronal cell 
types in vivo, we positioned the chimeric hairpins under the con-
trol of the synapsin promoter within the AAV vector (Shevtsova 
et al., 2005). However, our system is easily adaptable for diverse 
studies in the postnatal mammalian brain. For example, the deliv-
ery of miRNAs can be directed to specifi c brain regions based 
on promoter choice. Furthermore, the introduction of inducible 
promoters (Guo et al., 2008; Stieger et al., 2009) would allow a 
precise temporal control over miRNA expression, thereby facili-
tating studies on synaptic plasticity which are often confounded 
by developmental effects. Compared to classical genetics, the AAV 
technology offers an acute and inexpensive alternative for the 
study of neuronal miRNA function. In principle, the same plat-
form can be used to introduce vector based competitive miRNA 
inhibitors, such as miRNA sponges containing several miRNA 
target sites in tandem (Ebert et al., 2007). Our tool, in addition, 
improves miRNA studies in vitro using primary neurons as a 
model system. In contrast to conventional transfection-based 
methods, rAAV infection makes primary neurons amenable to 
biochemistry, as illustrated here by the detection of reduced 
Pum2 protein levels by western blot after the introduction of 
miR-134 (Figure 3B).

miRNA target sites can be divided into two categories. Category 
one targets mainly rely on strong base pairing to the 5′-end of 
miRNAs (7mer seed match) whereas category two targets  display 
weak seed pairing compensated by strong base pairing to the 
3′-end (Brennecke et al., 2005; Bartel, 2009). miR-134 and miR-99a 

We next wanted to test the functionality of miR-134 expressed 
from miRNA134.2, which yielded slightly less mature miR-134 
as detected by qPCR (Figure 2E vs. Figure 2B), but of similar 
size as endogenous miR-134. Therefore, we co-transfected the 
miRNA134.2 construct and its control, control1.2, along with the 
luciferase reporter construct pGL3-LimK1-3′UTR-134pbds into 
primary cortical neurons. Here, we detected a decrease of luciferase 
activity (∼41%) in the miRNA134.2 condition compared to the 
control1.2 condition (Figure 3C). Interestingly, despite the lower 
expression levels, the product expressed from the miRNA134.2 
clone was equally effi cient in repressing luciferase activity compared 
to the miRNA134.1 construct assayed in parallel. This suggests that 
at least some of the product expressed from miRNA134.1 might be 
less functional, possibly due to aberrant Dicer processing leading 
to a slightly longer miR-134 form.

A putative target gene of miR-99a is heparan sulfate (glu-
cosamine) 3-O-sulfotransferase 2 (Hs3st2) predicted by the micro-
RNA.org resource (Betel et al., 2008). We cloned the Hs3st2-3′UTR 
downstream of the luciferase coding region on psiCHECK-2, result-
ing in the psiCHECK-Hs3st2-3′UTR construct. We then mutated 
the miR-99a putative binding site to a miR-99a perfect binding 
site and initially used this new construct, psiCHECK-Hs3st2-3′U
TR-99apbds, to validate the functionality of the product expressed 
from the miRNA99a.1 clone. The product expressed from the 
miRNA99a.1 construct was capable of reducing luciferase activity 
(∼38%) compared to products expressed from control1.1, control2.1 
and miRNA134.1 assayed in parallel (Figure 3D). In addition, the 
product of the miRNA99a.1 construct targeted the miR-99a wild 
type binding site in the Hs3st2-3′UTR, since co- transfecting of 
the psiCHECK-Hs2st2-3′UTR construct along with miRNA99a.1 
into primary cortical neurons similarly reduced luciferase activ-
ity compared to co-transfection of control1.1 and control2.1 
(Figure 3E). The observed reduction was comparable to the reduc-
tion of luciferase activity obtained when co-transfecting synthetic 
pre-miR-99a along with the luciferase construct. This implies that 
Hs3st2 is indeed a target of miR-99a, and more importantly, that 
the miRNA99a.1 construct expresses functional miR-99a. Taken 
together, we could demonstrate effi cient expression of two neuronal 
miRNAs, miR-134 and miR-99a, with our approach.

miR-134 EXPRESSION IMPAIRS DENDRITOGENESIS IN VIVO
Infection with the virus particles described here should in princi-
ple allow for stable miRNA overexpression in postmitotic neurons 
in vivo, thereby providing a tool to study the physiological roles of 
neuronal miRNAs in vivo. We initially focused on miR-134, since 
this miRNA has been shown to play important roles in the regula-
tion of neuronal morphology in primary neuronal cultures, yet 
its in vivo role is unknown (Schratt et al., 2006; Fiore et al., 2009). 
For these studies we used purifi ed rAAV carrying the miRNA134.1 
construct as well as rAAV carrying either the AAV vector or the 
control1.1 construct as negative controls. We injected the virus 
particles into the lateral ventricles of P0 mice and harvested their 
brains after 3 weeks for analysis. To study the effect of miR-134 on 
dendritogenesis, we focused on cortical layer V pyramidal neurons 
since the density of viral infection in the hippocampal granular 
layer was too high to permit the effective analysis of individual neu-
rons. Projection images of the cortical layer V pyramidal neurons 
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expressed from the chimeric hairpins showed affi nity towards their 
target sites in the 3′-UTR of Pum2 (Fiore et al., 2009) and Hs3st2 
(Figures 3B,E), respectively, both of which belong to category 
one targets. This observed functionality refl ects correct 5′-end 
Drosha processing of the miRNAs. The miR-134 target site in 
the LimK1 3′-UTR (Schratt et al., 2006) is a category two target 
site. We detected minimal regulatory effect on this target gene by 
miR-134 expressed from its chimeric hairpin (data not shown). 
One could speculate that category two targets are lower affi nity 
targets than category one targets, and if so, the obtained expres-
sion of miRNAs from our hairpins might not be strong enough to 
ensure regulation of category two targets. To increase the miRNA 
expression levels, improvements in hairpin design, changing the 
location of the chimeric haripins in the 3′-UTR of eGFP and/or 
insertion of more than one copy of the chimeric hairpins could 
be alternative options.

Processing of the chimeric hairpins only relied on the Drosha 
site from miR-30a hairpin independently of the nature of the 
terminal loop (Figure 2D). This allows replacement of the ter-
minal loop, if its identity is of biological relevance. We observed 
different sizes of miR-134 expressed from constructs containing 

either the terminal loop from the miR-30a hairpin, miRNA134.1, 
or from the miR-134 hairpin, miRNA134.2 (Figure 2D). This 
probably refl ects differences in Dicer processing, either due to 
differences in length of the dsRNA stem of the two constructs 
or the nature of their terminal loops. miR-134 expressed from 
the miRNA134.2 construct resembled more closely the size of 
endogenous miR-134, whereas a signifi cant fraction of miR-134 
expressed from the miRNA134.1 was slightly larger, ∼2 nts longer 
(Figures 2A,D). Since the two constructs regulated luciferase 
expression to a similar extent (Figure 3C), equal levels of func-
tional miR-134 appears to be expressed from the two clones. 
Two possibilities could explain our fi ndings. First, miRNA134.1 
expresses two isoforms of miR-134 of different lengths, and only 
the shorter form is biologically active. Second, miRNA134.1 
expresses higher levels of the longer miR-134 isoform that is 
only partially active. Further studies are required to distinguish 
between these possibilities.

Here, we provide evidence that miR-134 expression impairs 
dendritogenesis of mouse cortical layer V pyramidal neurons 
in vivo. To our knowledge, this is the fi rst demonstration of 
an in vivo role of a specifi c miRNA in the control of neuronal 
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FIGURE 4 | miR-134 affects dendritogenesis in vivo. P0 mice were injected 
with purifi ed rAAV carrying miRNA134.1, AAV vector or control1.1. Brains were 
harvested at P21, fi xed ON and cut into 100 µm coronal brain sections. The 
sections were immunostained using an eGFP antibody and mounted for confocal 
microscopy. (A) Representative projection images of cortical layer V pyramidal 
neurons infected with AAV vector or miRNA134.1. Arrows point out the location of 
the primary apical dendrite for orientation. (B) miR-134 negatively affects 
dendritogenesis in vivo. Dendritic branching of cortical layer V pyramidal neurons 
was analyzed by Sholl analysis (see Materials and Methods for details), only 
considering the basal dendrites. The number of dendritic intersections is 

normalized to the number of intersections of neurons infected with AAV vector, 
which is arbitrarily set to 1. Results are shown as means + s.d. (n = 3 independent 
experiments; at least six neurons each from two to three different brains per 
experiment; (a) AAV vector: 9 brains, 69 neurons, (b) control1.1: 8 brains, 61 
neurons, (c) miRNA134.1: 8 brains, 57 neurons.). Indicated p-value was calculated 
using Student’s t-test. (C) Sholl profi le of the basal dendritic length of cortical layer 
V pyramidal neurons. The number of dendritic intersections with each concentric 
circles is plotted against the distance of the individual circles from soma, 25 µm 
interval (Between-Subjects ANOVA: p = 0.002 and 0.013 comparing the 
miRNA134.1 condition to the control1.1 and AAV condition, respectively).
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 morphology in post-mitotic neurons. In analogy, Mef2 induction 
of miR-134 is required for activity dependent dendritogenesis of 
primary  hippocampal  neurons in culture, an effect mediated by 
miR-134 dependent  downregulation of Pum2 protein levels (Fiore 
et al., 2009). Interestingly, both overexpression and inhibition of 
miR-134 impair activity-dependent dendritogenesis, implying that 
the role of miR-134 is to fi ne-tune Pum2 levels within a physi-
ologically benefi cial level. Given that in vivo overexpression of 
miR-134 impaired dendritogenesis under normal developmental 
conditions, neurons within cortical circuits in vivo probably receive 
suffi cient synaptic input to reveal the activity-dependent function 
of miR-134. Whether the effect of miR-134 on dendritogenesis 
in vivo is also due to deregulated Pum2 expression remains to be 
investigated. Surprisingly, in preliminary experiments we found 
no signifi cant effect on spine morphology of hippocampal and 
cortical layer V pyramidal neurons in vivo after delivery of miR-
134 expressed from miRNA134.1 (data not shown). This could 
be explained by our fi ndings that LimK1, whose regulation by 
miR-134 is critical for spine growth, is not effi ciently regulated by 
rAAV-expressed miR-134 (data not shown). The clarifi cation of 
this and other issues will have to await the development of miR-
134 loss-of-function tools.

In summary, we present a tool for the stable delivery of any 
miRNA in vivo. This tool should be extremely useful for future 
studies addressing the role of miR-134 and other miRNAs in nerv-
ous system function.
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