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Neuronal circuitry relies to a large extent on the presence of functional myelin produced in 
the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered 
brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white 
matter and reduction in myelin content in patients with schizophrenia. In particular, alterations 
in the directionality and alignment of axons have been documented in schizophrenia. Moreover, 
the expression levels of several myelin-related genes are decreased in postmortem brains 
obtained from patients with schizophrenia. These fi ndings have led to the formulation of the 
oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a 
brief overview of the neuropathologic fi ndings obtained on white matter and oligodendrocyte 
status observed in schizophrenia patients, and relate these changes to the processes of brain 
maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and 
present some recent mouse models of myelin defi ciencies. The use of transgenic and mutant 
animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that 
may have a clinical impact. Lastly, we present some recent morphological fi ndings supporting 
possible causal involvement of white and grey matter abnormalities, in the aim of determining 
the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction 
that possibly underlies the pathogenesis of schizophrenia.
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although such sensations can affect any sensory modality. In 
 addition to hallucinations, the patients may experience paranoid 
delusions, present with disorganized thoughts and speech, and a 
variable degree of social and occupational dysfunction. There is a 
considerable degree of inheritability of the disease and prenatal 
causes, such as insult to the brain during embryonic development, 
have also been considered to play a key role in the expression of 
the disease at a later time (see Fallon et al., 2003).

Schizophrenia has been shown to exhibit myelin defi ciencies 
and changes in white matter volume in the brain (Davis et al., 
2003; Dwork et al., 2007; Karoutzou et al., 2008; Segal et al., 2007b; 
Sokolov, 2007; Walterfang et al., 2006). The myelin hypothesis in 
schizophrenia was fi rst presented by Hakak et al. (2001) after their 
pivotal fi nding of altered expression of myelin-related genes in 
human postmortem tissue (Hakak et al., 2001). Myelin-related 
gene expression levels have matched the observations made on 
white matter abnormalities by diffusion tensor imaging (DTI), and 
were later confi rmed in several other studies. Since the fi rst sugges-
tions of a myelin-related pathophysiology underlying schizophre-
nia, there have been numerous and extensive reports and reviews 
on the myelin hypothesis (Davis et al., 2003; Dwork et al., 2007; 
Karoutzou et al., 2008; Segal et al., 2007b; Sokolov, 2007; Walterfang 
et al., 2006).

Substantial defi cits in myelination occur in schizophrenia, which 
is interesting to consider in light of previous hypotheses that the 
disease results from abnormal brain development (Lewis and Levitt, 

WHITE MATTER AND COGNITIVE FUNCTION
The role of white matter in neural circuit integrity may be appreci-
ated in terms of supporting neural functioning. Most neurons in 
the brain necessitate adequate myelination of their axons in order to 
maintain functional processing at all levels of neural systems, from 
autonomic processes and sensorimotor integration, to mood and 
thought. The importance of myelination for cognitive functioning 
becomes apparent in diseases that are known to be caused or affected 
by defi ciencies in myelin, where patients show defi cits in intellectual, 
social and emotional functioning (Dwork et al., 2007; Schmahmann 
et al., 2008). Leukodystrophies and leukoencephalopathies, diseases 
characterized by progressive degeneration of the white matter, if 
diagnosed in late adolescence or early adulthood can present with 
psychotic symptoms sometimes indistinguishable from those of 
schizophrenia (Davis et al., 2003; Denier et al., 2007; Walterfang 
et al., 2005). Likewise, patients with multiple sclerosis who display 
cognitive and psychiatric symptoms frequently have white matter 
lesions in the frontal and temporal lobes, which are the brain regions 
most implicated in schizophrenia (Davis et al., 2003).

Schizophrenia is a severe psychiatric illness that affects close to 
1% of the population worldwide. The diagnosis is generally estab-
lished at fi rst onset of the symptoms, which occurs in most cases 
in early adulthood. The disease is characterized by a number of 
mental abnormalities that result in a distortion of perception and 
expression of reality. There are prominent sensory symptoms, most 
frequently taking the form of auditory and visual  hallucinations, 
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assessment of macromolecular structural integrity enables separate 
analysis of white and grey matter, which may help to elucidate early 
neuropathological changes. Foong et al. (2001) found MTI changes 
in the grey matter of frontal and temporal areas, while white matter 
abnormalities were observed only in temporal areas.

OLIGODENDROCYTE AND MYELIN STUDIES
In attempts to localize and identify a cellular correlate of the white 
matter changes observed by brain imaging in vivo, oligodendrocytes 
have come to be an important focus of investigation. Analyses of the 
number, densities and distribution patterns of oligodendrocytes can 
be performed in both the white and grey matter. Stark et al. (2004) 
found decreased oligodendrocyte densities in cingulate area 24 but 
not in the adjacent paracingulate area 32, and Hof et al. (2003) found 

2002; Rapoport et al., 2005; Weinberger, 1986, 1987) and altered 
neuronal circuitry (Selemon and Goldman-Rakic, 1999), particu-
larly in the prefrontal cortex (PFC). Neuropathologic fi ndings in 
both white matter and grey matter suggest that myelin alterations in 
the anterior cingulate cortex (ACC) may underlie some of the behav-
ioral defi cits related to prefrontal dysfunction. We discuss some of 
the white matter fi ndings and relate these to grey matter pathologies 
in schizophrenia, elucidating a possible impact that white matter 
abnormalities have on neuronal morphology and function.

IMAGING AND NEUROPATHOLOGIC FINDINGS IN 
SCHIZOPHRENIA
IMAGING STUDIES
Fractional anisotropy (FA), a measure of the directionality of water 
movement within the spaces in-between axons, provides an indi-
cation of white matter tract directionality and, by measuring the 
strength of the direction vector of water diffusion, possibly of tract 
integrity or coherence. A major advantage of this approach is that 
it can be used to study changes in schizophrenia in vivo, allowing 
investigation of different stages of the disease. In vivo DTI studies 
have revealed decreased FA in several major white matter tracts 
in schizophrenia (Buchsbaum et al., 1998, 2006; Kubicki et al., 
2007; Lim et al., 1999; Shergill et al., 2007), including the cingu-
lum (Kubicki et al., 2003; Wang et al., 2004). In addition, positron 
emission tomography (PET) imaging has demonstrated increased 
relative metabolic rates in white matter in schizophrenia, which may 
represent white matter ineffi ciency or defects resulting in increased 
metabolic needs (Buchsbaum et al., 2007), in contrast to fi ndings 
in the grey matter which have shown decreases in regional cerebral 
blood fl ow in the ACC (Tamminga et al., 1992).

Although previous DTI studies have shown decreases in FA in 
the cingulum bundle as well as in the overlying cingulate gyrus in 
patients with schizophrenia (Fujiwara et al., 2007; Kubicki et al., 2003; 
Kumra et al., 2005; Sun et al., 2003; Wang et al., 2004; White et al., 
2008), the fi ndings have been somewhat inconsistent, due in large 
part to small subject samples and different methods of identifying 
particular brain regions of interest (Kubicki et al., 2007). Segal and 
collaborators recently investigated the volume and FA in the cingulate 
gyrus in a large group of subjects with chronic schizophrenia along 
with a group of patients with recent-onset schizophrenia and healthy 
control subjects matched for age and sex (Segal, 2008; Segal et al., 
2007a). The anterior cingulate gyrus was traced and segmented into 
axial portions allowing detection of localized changes. Volume was 
calculated for the anterior cingulate gyrus, and average FA values 
were calculated for each segment looking separately at grey and white 
matter. A signifi cant decrease in the overall grey matter volume was 
found in the anterior cingulate gyrus in persons with schizophrenia. 
In both grey and white matter, persons with recent-onset schizophre-
nia had the highest FA in several regions, and persons with chronic 
schizophrenia had the lowest (Figure 1). These results demonstrate 
both white and grey matter abnormalities in the cingulate gyrus 
in schizophrenia (Segal, 2008), which may refl ect abnormalities in 
neuron spacing or columnar organization.

MRI studies of the grey matter have revealed regionally reduced 
cortical volumes in schizophrenia (Honea et al., 2005, 2008; Nesvag 
et al., 2008; Okugawa et al., 2007), including the ACC (Baiano 
et al., 2007; Wang et al., 2007). Magnetic transfer imaging (MTI) 
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FIGURE 1 | Human DTI along rostrocaudal axial segments of the entire 

cingulate gyrus, spanning from area 32 (segment 1) to area 23 

(segment 8). (A) FA values showing a signifi cant region × diagnosis effect in 
the cingulate white matter, with patients with recent-onset schizophrenia 
displaying the highest FA in most segments, followed by control subjects and 
then patients with chronic schizophrenia (ANCOVA F14,567 = 2.42, p = 0.003). 
(B) The same pattern was noted in cingulate grey matter, also with a 
signifi cant region × diagnosis effect (ANCOVA F14,567 = 3.01, p < 0.001). Vertical 
bars indicate 95% confi dence intervals and values are computed for the age 
covariate at its mean. Normal controls (n = 38), recent-onset schizophrenia 
(n = 6), chronic schizophrenia (n = 41); sz, schizophrenia; FA, fractional 
anisotropy.
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decreased densities of oligodendrocytes in the prefrontal area 9 of 
the superior frontal gyrus in subjects with schizophrenia. In contrast, 
in a subsequent study, Hof and coworkers evaluated the degree of 
oligodendrocyte clustering in the anterior cingulum bundle, but 
found no differences using postmortem tissue from chronic schiz-
ophrenics versus age-matched controls (Segal et al., 2009). These 
results suggest that more subtle oligodendrocyte or myelin anoma-
lies may underlie the structural defi cits observed by brain imaging 
in the cingulum bundle in schizophrenia. On the ultrastructural 
level, electron microscopy studies of oligodendrocytes in the PFC 
have demonstrated apoptotic oligodendrocytes, irregularities of 
mitochondria in oligodendrocytes and damaged myelin in area 10 
in schizophrenic brains (Uranova et al., 2001, 2004).

GREY MATTER AND NEURON STUDIES
Postmortem studies, assessing the gyrifi cation index, have found 
reductions in cortical folding in schizophrenia (Kulynych et al., 
1997). Studies on changes in neuronal densities in different corti-
cal regions in schizophrenia have been confl icting, and no defi nite 
pattern of neuronal density alterations has yet been established. 
These differences in observation may in part be due to differences 
in methodological approaches and procedures and the cortical 
regions studied. Some postmortem studies of the ACC and dor-
solateral PFC (DLPFC) have suggested a decrease in neuronal den-
sity. Benes reported a lower neuronal density (mainly in layer II) 
in areas 24 and 10, primarily of small interneurons (Benes et al., 
1991), which suggested an alteration in intrinsic neuronal circuits 
(Benes, 2000). Other investigators have shown increased neuro-
nal density in areas 9 and 46, without increased absolute numbers 
of neurons in patients with schizophrenia (Selemon et al., 1995, 
1998). This implied that cortical volume in select cortical regions 
is reduced in schizophrenia, possibly because of reduced neuropil. 
Goldman-Rakic and coworkers proposed that an altered brain con-
nectivity plays a critical role in the development of schizophrenia 
(Selemon and Goldman-Rakic, 1999). In other studies on subcor-
tical regions, observations have been made of reductions in the 
size and total neuron numbers, but not in neuronal density, in the 
putamen and the amygdala (Kreczmanski et al., 2007).

Cytoarchitectural studies have analyzed neuronal arrangements 
in terms of interneuronal distances, or mean cell spacing (Casanova 
et al., 2005, 2008) showing that mean cell spacing was reduced in 
area 9 in schizophrenic patients, which would imply a higher neu-
ronal density. Rajkowska and coworkers found that in area 9, there 
was a downward shift in neuronal sizes, accompanied by increases in 
the density of “small neurons” in layer II, interpreted as GABAergic 
interneurons, while there was a decrease in the density of “very large 
neurons” in layer III, presumably pyramidal neurons, in patients 
with schizophrenia. Concomitant morphological studies at the 
single neuron level have demonstrated impoverished dendritic 
structures of pyramidal neurons (Broadbelt et al., 2002) and loss 
of dendritic spines in schizophrenia (Garey et al., 1998; Glantz and 
Lewis, 2000; Sweet et al., 2009), as well as in non-human primate 
models (Selemon et al., 2007).

Another interesting fi nding is an anomalous distribution of the 
so-called interstitial white matter neurons in schizophrenia. These 
interstitial neurons have been suggested to be remnants of subplate 
neurons that normally undergo programmed cell death during 

brain maturation (Chun and Shatz, 1989). However, in certain 
species including human, these white matter interstitial neurons 
are to some degree normally found in healthy adults (Kostovic 
and Rakic, 1980). The interstitial white matter neurons have been 
found to be increased in prefrontal white matter (Akbarian et al., 
1996; Anderson et al., 1996) and temporal white matter (Rioux 
et al., 2003) in subjects with schizophrenia, supporting further the 
presence of a neurodevelopmental abnormality in schizophrenia 
(Weinberger, 1986, 1987) (See Table 1 for a summary of imaging, 
and grey and white matter studies in schizophrenia.).

THE INVOLVEMENT OF ACC IN SCHIZOPHRENIA
THE CINGULATE GYRUS AND THE CINGULUM BUNDLE
The ACC has been studied in many neuropathologic investigations of 
schizophrenia. From a topographical viewpoint, the ACC consist of 
Brodmann area 24, and includes the subgenual area 25, and accord-
ing to some authors also the paracingulate prefrontal area 32. In the 
human, area 24 can be subdivided along its rostrocaudal and dors-
oventral extent, through which it shows gradients in cytoarchitecture 
as well as topography in its afferent and efferent projections (Ongür 
et al., 2003; Palomero-Gallagher et al., 2008; Vogt et al., 1995), and 
area 32 extends dorsocaudally as a dorsal strip (32′) overlying area 24 
(Figure 2). The cingulum bundle is the major coherent white matter 
tract of the cingulate gyrus, radiating superiorly from the corpus 
callosum to the cingulate cortex. The ACC receives processed multi-
modal sensory information from insular, temporal, parietal associa-
tion cortices, and emotional information from the amygdala and the 
orbitofrontal cortex (Jones and Powell, 1970). The multimodal sen-
sory input enables the ACC to respond to stimuli with motivational 
signifi cance, activating motor and visceromotor responses, including 
vocalizations. For details on cingulate circuitry, see Beckmann et al. 
(2009), Iversen (1984), Kunishio and Haber (1994), Van Hoesen et al. 
(1993), Vogt and Pandya (1987) and Vogt et al. (1987).

THE ROLE OF ACC IN BEHAVIOR WITH IMPLICATIONS FOR 
SCHIZOPHRENIA
The fi rst observation that the ACC had a role in emotional and 
visceromotor behavior was from non-human primate studies. 
Electrical stimulation of the ACC in monkeys generates changes 
in blood pressure, heart rate, respiratory rate, and agitation and 
vocalizations (Devinsky et al., 1995; Jürgens et al., 1967; Neafsey, 
1990; Smith, 1945). Primate lesion studies have shown aggressive-
ness, emotional blunting, and impaired infant-mother interactions, 
further indicating that the ACC has an important role in emotional 
and social functions (Devinsky et al., 1995; Glees et al., 1950; Mirsky 
et al., 1957). However, these early lesion studies commonly involved 
more than just area 24 or area 32 and often included the parts 
of the OFC, and later confi rmation studies have shown various 
effects in monkeys (Devinsky et al., 1995; Hadland et al., 2003). In 
the human, different observations have been made from tumors, 
strokes, seizures and electrical stimulation studies involving the 
ACC, but these have been quite variable (Devinski and Luciano, 
1993; Devinsky et al., 1995). For example, surgical interventions 
of the ACC have focused on management of pain, chronic depres-
sion and obsessive-compulsive behavior (Devinsky et al., 1995). It 
is likely that the social aspects of the ACC that have been observed 
are related to its connections with the OFC. For an overview of the 
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Table 1 | Examples of neuropathological observations on the human cerebral cortex and underlying white matter in schizophrenia.

Parameter Method Observations in schizophrenia References

IMAGING STUDIES

White matter fractional  DTI Decreased FA in the cingulum bundle Kubicki et al. (2003)
anisotropy  Decreased FA in the cingulum bundle Sun et al. (2003)
  Decreased FA in the cingulum bundle Wang et al. (2004)
  Decreased FA in the frontal WM Kumra et al. (2005)
Myelin water fraction MRI Reduced myelin water fraction in frontal WM Flynn et al. (2003)
White matter metabolism PET Increased in the cingulum bundle Buchsbaum et al. (2007)
Gyrifi cation index MRI Reduction in cortical folding in frontal regions Kulynych et al. (1997)
Sulcal patterning MRI Shallower sulcal depth in the parietal operculum Csernansky et al. (2008)
Cortical volume MRI Reduced volume of frontal lobes Andreasen et al. (1986)
  Reduced volume of the ACC Baiano et al. (2007)
  Reduced volume of the ACC Koo et al. (2008)
  Cortical thinning of prefrontal and temporal cortices Nesvag et al. (2008)
  Cortical thinning of ACC, temporal and parietal cortices Narr et al. (2005)
  Progressive grey matter loss starting in the parietal cortex  Thompson et al. (2001)
  and progressing towards temporal cortex and DLPFC
Grey matter metabolism rCBF Decreased rCBF in ACC Tamminga et al. (1992)
 PET Decreased glucose metabolic rates in the ACC Haznedar et al. (2004)
Macromolecular structure  MTI Alterations in frontotemporal GM and temporal WM Foong et al. (2000)
integrity

OLIGODENDROCYTE AND MYELIN STUDIES

Oligodendrocyte density  Stereology Decreased density in the WM of SFG Hof et al. (2003)
in white matter  Unaltered density in the cingulum bundle Segal et al. (2009)
Oligodendrocyte density  Stereology Decreased density in area 24 but not in area 32 Stark et al., (2004)
in grey matter  Decreased density in the SFG Hof et al. (2003)
Oligodendrocyte  EM Apoptotic oligodendrocytes in area 10 Uranova et al. (2001)
morphology
Myelin sheaths EM Damaged myelin in area 10 Uranova et al. (2001)
Gene expression of  Microarrays  Decreased expression of myelin-associated  Hakak et al. (2001)
myelin-related genes association glycoprotein (MAG), myelin and lymphocyte 
 analysis protein (MAL), 2′,3′-cyclic nucleotide  
  3′-phosphodiestase (CNP), gelsolin, transferrin  
  and HER3 (neuregulin receptor) in the DLPFC
 Association  Association of 10 single nucleotide polymorphisms  Jungerius et al. (2008)
 analysis from six myelin-related genes
Protein expression of  Decreased expression of CNP in GM of anterior PFC Flynn et al. (2003)
myelin-related genes

GREY MATTER AND NEURON STUDIES 

Capillary lengths Stereology No differences in are 24 and area 9 Kreczmanski et al. (2005)
Neuronal density 2D morphometric  Decreased in area 24  Benes et al. (1991)
 analysis* and area 10
 3D morphometric  Increases in area 9  Selemon et al. (1995, 1998)
 analysis* and area 46
Interstitial white matter  2D analysis Increased neurons in prefrontal white matter Akbarian et al. (1996) and
neurons   Anderson et al. (1996)
Neuronal distribution Stereology Decreased mean cell spacing in area 9 Casanova et al. (2005, 2008)
Neural soma size 3D analysis* Smaller mean neuronal somas in area 9 Rajkowska et al. (1998)
Neuronal integrity Golgi stains Decreased number of dendrites in area 32 Broadbelt et al. (2002)
  Decreased dendritic spine density in DLPFC Glantz and Lewis (2000), 
   Kolluri et al. (2005) and
   Sweet et al. (2009)
Synaptic proteins Synaptophysin Alterations in synaptic protein expression Glantz and Lewis (1997) and
   Eastwood and Harrison (1995)

This table is not a comprehensive summary of all neuropathologic fi ndings in schizophrenia. Rather, it gives examples of some of the latest morphological observations 
in which the myelin hypothesis may have an impact, in relation to some of the classical neuropathologic fi ndings.
WM, white matter; GM, grey matter; ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; SFG, superior frontal gyrus; FA, fractional anisotropy; DTI, 
diffusion tensor imaging; MTI, magnetic transfer imaging; MRI, magnetic resonance imaging; rCBF, regional cerebral blood fl ow; PET, positron emission tomography; 
EM, electron microscopy
*Biased to tissue orientation and limited sampling.
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ACC in social function, see Amodio and Frith (2006), Bush et al. 
(2000), Rudebeck et al. (2008) and Rushworth et al. (2007a,b). It is 
noteworthy that both the sensory integration and social process-
ing modalities are pertinent to the presumed ACC dysfunction 
in schizophrenia. It is however important to keep in mind that 
social and emotional functions are separate entities though they 
commonly interact.

BRAIN MATURATION AND MYELINATION
MYELINATION SEQUENCES
During ontogeny, the cognitive development of children and 
young adults depends closely on the progressive myelination of 
 cortical axons (Casey et al., 2005; Fuster, 2002; Gibson and Petersen, 
1991; Paus, 2005). As fi rst shown by Flechsig in 1901, and later by 
Yakoklev in human postmortem myelin preparations (Flechsig, 
1901; Yakovlev and Lecours, 1967), the regions that are myelinated 
fi rst include the spinal cord and brainstem, and then myelina-
tion continues dorsally towards the frontal cortex, with proximal 
pathways myelinating prior to distal pathways, sensory pathways 
prior to motor pathways, and downstream projection pathways 
prior to association pathways (Volpe, 2000) and prefrontal regions 
myelinating the last (Lenroot and Giedd, 2006). Although initiated 
prenatally in humans, most tracts and regions become myelinated 

during the fi rst year of life, and myelination continues into the 
second and third decade of life in humans (Figure 3). These early 
reports have been confi rmed and further refi ned with modern brain 
imaging techniques (Ballesteros et al., 1993; Knickmeyer et al., 
2008; Lenroot and Giedd, 2006; Miller et al., 2003; Mukherjee and 
McKinstry, 2006; Mukherjee et al., 2001, 2002; Paus et al., 2001; 
Sowell et al., 2003; Volpe, 2000). In addition, the number of oli-
godendrocytes drastically increases after birth through maturity 
(O’Kusky and Colonnier, 1982). It is this increase in oligodendro-
cytes and myelination that accounts for the large increase in white 
matter volume observed during the fi rst years of life (Knickmeyer 
et al., 2008; Lenroot and Giedd, 2006).

The PFC is the last region of the brain to mature (Fuster, 2002). 
The volume of prefrontal white matter increases through childhood 
and early adolescence, and is not complete until early adulthood 
(Paus et al., 2001). As such, myelination per se can be used as an 
index of cortical maturation (Fuster, 2002). In the human cingu-
lum bundle, the onset of myelination is around gestational week 
38 and is fully myelinated at 1 year of age in humans (Gilles et al., 
1983). It should be kept in mind however that when adulthood 
is reached, the cortical areas 24, 25 and 32 are poorly myelinated 
(Ongür et al., 2003), although the underlying cingulum bundle is 
highly myelinated.

CS
CG

A B

D

C

FIGURE 2 | The cingulate cortex and cingulum bundle. (A) Medial surface 
view of the human brain, depicting the cingulate gyrus (CG) and the cingulate 
sulcus (CS). (B) Human fl at map of the cingulate cortex and surrounding areas. 
Note that the anterior cingulate is composed of the subgenual area 25, the 
paracingulate area 32, and six cytoarchitecturally different subregions of area 24 

(24a,b,c,a′,b′,c′, respectively). (C) Human sagittal myelin stain showing the 
cingulate cortex and the cingulum bundle (arrows) as a thin fi ber tract overlying 
the corpus callosum. (D) The cingulum bundle in the rhesus monkey, as 
visualized with DTI. Panels (A,B) modifi ed from Vogt et al. (1995), and panel (D) 
from Schmahmann et al. (2007), with permissions. Scale bars 1 cm.
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BRAIN MATURATION AND SCHIZOPHRENIA
It is possible that the regionally specifi c remodeling of grey and 
white matter that takes place into the third decade of life underlies 
some of the structural and functional changes that leads to the 
development of psychiatric disorders such as schizophrenia. The 
fact that the PFC matures last and that myelination is not complete 
until late adolescence may be signifi cant, as the timing coincides 
with the typical onset of symptoms in schizophrenia. This suggests 
that a dysfunctional myelination process could underlie the patho-
genesis of schizophrenia. Also several other psychiatric diseases, 
such as anxiety, mood, and personality disorders, fi rst manifest 
themselves during early adulthood, possibly refl ecting aberrations 
in brain maturation mechanisms (Paus et al., 2008). In fact, Paus 
and others discusses that “an exaggeration of typical adolescent 
changes…has occurred in patients with schizophrenia” (Keshavan 
et al., 1994). In fact, several of the observed neuropathologic fi nd-
ings in schizophrenia, such as reductions in frontal grey matter 
volumes (Baiano et al., 2007; Sporn et al., 2003), reductions in 
prefrontal metabolism (Andreasen et al., 1992), and reductions in 
plasma membrane phospholipid levels (Pettegrew et al., 1991) are 
“consistent with an exaggeration of the changes that occur in typical 
development” (Paus et al., 2008). Imaging work by Thompson and 
coworkers have also related brain maturation with the development 
of schizophrenia (Gogtay et al., 2008; Thompson et al., 2001).

However, it is interesting to note the lack of neurological comor-
bities in schizophrenia in comparison with other more typical 
white matter diseases. In dysmyelinating and hypomyelinating 
diseases such as the leukoencephalopathies, the effects of a myelin 

FIGURE 3 | Myelination during brain maturation in the human. From Yakovlev and Lecours (1967), with permission.

This brain maturation process of myelination and white matter 
volume expansion occurs simultaneously with a grey matter vol-
ume reduction (Pfefferbaum et al., 1994), and an increase in syn-
aptogenesis which is followed by synaptic pruning and elimination 
(Huttenlocher, 1979). For example, Pfefferbaum showed with MRI 
that the volume of cortical grey matter decreases starting at 5 years 
of age in the human, while the white matter volume continues to 
increase through the third decade of life (Pfefferbaum et al., 1994). 
This has been confi rmed and extended to include an analysis of the 
progression of white and grey matter changes through the complete 
human lifespan, in which frontal and parietal grey matter volumes 
peak at around 10–12 years of age and temporal grey peaks at 
16–18 years of age (Thompson et al., 2005), and the white matter 
volume does not start to decline until after the age of 50 (Figure 4) 
(Sowell et al., 2003). The classic work of Huttenlocher (1979) showed 
that in the human medial PFC, the peak synaptic density occurs at 
3–4 years of age, and starts to decline at mid-to-late adolescence. 
The pruning of axonal connections during brain development and 
maturation may be necessary for adequate formation of appropriate 
neuronal circuits. Thus, there is an interplay between progressive and 
regressive events that occur during brain maturation (Gogtay et al., 
2004; Lenroot and Giedd, 2006; Sowell et al., 2003, 2004; Toga et al., 
2006). In summary, the overall brain development and maturation 
occurs at several levels: (i) axonal, with wiring and myelination; 
(ii) dendritic, with arborization and spine formation; (iii) synap-
tic, with synaptogenesis and pruning; (iv) neuronal, with postnatal 
overshoot of neurons and programmed cell death; and (v) glial, with 
oligodendrocyte, astrocyte, and microglia maturation.
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 defi ciency may be striking and fatal (see reviews by Lyon et al., 2006; 
Schmahmann and Pandya, 2007; Schmahmann et al., 2007, 2008; 
Walterfang et al., 2005). If the myelin hypothesis holds true, and 
myelin defi ciencies prove to be one of the central causes of the devel-
opment of schizophrenia, one might argue and question why classic 
schizophrenia patients show so few neurologic symptoms. Several 
other white matter abnormalities often generate disturbances at the 
neuron level, such as seizures and/or psychomotor developmental 
delays. Why patients with schizophrenia do not particularly exhibit 
similar neurologic comorbidities, such as seizures or sensorimotor 
defi cits, is unknown. It may be that only specifi c pathways become 
myelin-defi cient, such as the late developing and poorly myelinated 
regions of the PFC, leading to the generation of behavioral symp-
toms seen in schizophrenia. Since the diverse circuits in the brain 
do not mature at the same time, if there is a developmental insult, 
this may affect only a certain population of neurons undergoing 
myelination, and result in a pathway-specifi c defi ciency.

GENETICS
GENETIC ASSOCIATION OF OLIGODENDROCYTE AND MYELIN-RELATED 
GENES IN SCHIZOPHRENIA
In a groundbreaking study using gene microarray analysis to 
examine gene expression levels in postmortem samples from 
schizophrenia patients (Hakak et al., 2001), it was found that the 
expression of six myelin-related genes predominantly expressed 
in oligodendrocytes, including the myelin-associated glycoprotein 
(MAG), myelin and lymphocyte protein (MAL), 2′,3′-cyclic nucle-
otide 3′-phosphodiestase (CNP), gelsolin, transferrin and HER3 
(ErbB3) was signifi cantly decreased in the DLPFC in postmortem 
schizophrenic brains. The decreased expression of oligodendrocyte-
related gene products was later confi rmed and extended to other 
brain areas, implying that there is a pathology of oligodendro-
cytes underlying schizophrenia (Dracheva et al., 2006; Hakak et al., 
2001; Haroutunian et al., 2006, 2007; Katsel et al., 2005a,b, 2008; 
McCullumsmith et al., 2007; Tkachev et al., 2003). Genetic linkage 

studies have also implicated myelin-related loci in schizophrenia 
(Bailer et al., 2000; Levinson et al., 1998) although linkage studies 
are now considered somewhat controversial in complex psychiatric 
disorders. This molecular pathology, showing a reduced myelin-
related gene expression, has been shown in the DLPFC, hippocam-
pus, superior temporal cortex, and the cingulate gyrus (Katsel et al., 
2005b; McCullumsmith et al., 2007; Sugai et al., 2004). These results 
from gene expression studies led to genetic association studies, to 
clarify whether reduced expression of oligodendrocyte and myelin 
genes in schizophrenia represents an early event in the etiology of the 
disorder, or merely result from treatment with no direct causative 
relation to the disorder. Much evidence, including whole genome 
association studies, have identifi ed myelin- and oligodendrocyte-
related genes as susceptibility genes for schizophrenia.

One of the most promising schizophrenia-related genes is neu-
regulin 1 (NRG1) gene (Stefansson et al., 2002, 2003; Williams et al., 
2003). NRG1 and the NRG1-receptor ERBB4 are involved in several 
aspects of nervous system development including oligodendro-
cyte development (Calaora et al., 2001; Corfas et al., 2004; Sussman 
et al., 2005). Several lines of studies support genetic association of 
NRG1 with schizophrenia (Munafo et al., 2006), and associated 
endophenotypes (Bramon et al., 2008; Mata et al., 2009). A genetic 
locus–locus interactive analyses between NRG1 and ERBB4 genes 
provided evidence for a signifi cant interaction between the NRG1 
Icelandic schizophrenia risk haplotype and ERBB4 (Norton et al., 
2006), suggesting that NRG1 may mediate its effects on schizo-
phrenia susceptibility through functional interaction with ERBB4. 
Given the emerging role of NRG1 and ERRB4 in oligodendrocyte 
development, it is possible that alterations in NRG1 and ERBB4 
affect oligodendrocytes, leading to schizophrenia.

Reticulin 4 (RTN4, also known as NOGO) is a myelin-associated 
protein that inhibits the outgrowth of neurites and nerve terminals. 
Novak et al. (2002) reported over-expression of RTN4 in the brains 
of people with schizophrenia and also evidence for genetic associa-
tion between a marker in the 3′UTR of the gene. Several groups 
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have subsequently failed to replicate these genetic fi ndings (Chen 
et al., 2004; Covault et al., 2004; Gregorio et al., 2005; Xiong et al., 
2005), however, a moderately large study (Woo and Crowell, 2005) 
demonstrated modest evidence for association (Chen et al., 2004). 
Interestingly, three rare non-synonymous variants have recently 
been reported in the RTN4 receptor in schizophrenia cases but not 
in controls (Sinibaldi et al., 2004).

Additional genes showing reduced expression have been ana-
lyzed in genetic association studies. These genes include OLIG2 
and CNP1. Olig2 is a basic helix-loop-helix (bHLH) oligodendro-
cyte transcription factor that, together with Olig1 is suffi cient and 
necessary for the formation of oligodendrocytes (Ross et al., 2003; 
Sauvageot and Stiles, 2002). Association analysis revealed strong 
evidence for association for this gene. Of six informative single 
nucleotide polymorphisms (SNPs) analyzed, four showed genetic 
association (Georgieva et al., 2006), which has been further con-
fi rmed in Chinese (Huang et al., 2008), but not Japanese (Usui 
et al., 2006), cohorts. CNP1, encodes CNPase, which is important 
for process formation of oligodendrocytes (Hakak et al., 2001). 
The CNP1 gene maps to a region in which there is a previously 
reported signifi cant linkage to schizophrenia in a single large pedi-
gree. Signifi cant association of a functional SNP was observed, and 
interestingly, this SNP is shown to be associated with low CNPase 
expression using allelic expression analysis in human brain (Peirce 
et al., 2006). This association was replicated in Caucasian (Voineskos 
et al., 2008), but not in Asian, cohorts (Tang et al., 2007; Usui et al., 
2006). There have also been reports of genetic association between 
schizophrenia and myelin-oligodendrocyte glycoprotein (MOG; 
(Liu et al., 2005), proteolipid protein 1 (Qin et al., 2005), claudin 5 
(Sun et al., 2004) and gelsolin (Xi et al., 2004). The gene encoding 
QKI, the quaking homologue KH domain RNA binding, is located 
in 6q25-27, and this region had been shown to be a  susceptibility 
locus for  schizophrenia as identifi ed in a large pedigree from north-
ern Sweden (Lindholm et al., 2001). Some evidence of genetic asso-
ciation was reported in this population (Aberg et al., 2006a,b), but 
this was not observed in a Chinese sample (Huang et al., 2009). 
Another gene reported to be associated with schizophrenia is MAG. 
MAG is a MAG that plays important roles in myelination. Support 
for a role for MAG in schizophrenia susceptibility has been reported 
in both family based and case control studies in Han Chinese popu-
lations, but still controversial.

Finally, PTPRZ1, a gene encoding receptor protein tyrosine 
phosphatase beta (RPTPβ) is a new and promising candidate gene 
for schizophrenia (Buxbaum et al., 2008). RPTPβ is expressed in 
oligodendrocytes, and appears to modulate ERBB4 signaling. 
Association analysis of PTPRZ1 showed highly signifi cant association 
of this gene to schizophrenia in this fi rst study, however, this associa-
tion was not replicated in a Japanese cohort (Ito et al., 2008).

MOUSE MODELS OF WHITE MATTER DYSFUNCTION
Transgenic mouse models may serve as vehicles for studying the 
morphological and anatomical abnormalities that may result from 
a genetic defect affecting myelination. Some recent mouse models 
of white matter dysfunction have emerged during the last few years, 
which may serve as putative animal models for schizophrenia. The 
evidence described above are beginning to provide enough con-
struct validity for mice with disruption of oligodendrocyte and 

myelin-associated genes as animal models for schizophrenia, and 
several knockout mice for oligodendrocyte and myelin-related 
genes have been investigated.

For example, CNPase knockout mice show no obvious delay in 
myelination and oligodendrocyte development, but develop ataxia 
and motor defi cits at 4 months and die (Lappe-Siefke et al., 2003). 
A detailed histological analysis found axonal loss in these mice, a fea-
ture observed in schizophrenia. As NRG1 regulates oligodendrocyte 
development through ERB receptors on oligodendrocytes, Corfas 
and colleagues generated a mouse expressing a dominant nega-
tive ERB receptor in oligodendrocytes, and found oligodendrocyte 
and myelin abnormalities in this line. These mice showed reduced 
locomotion and social dysfunction, with increased dopamine sig-
naling and hypersensitivity to amphetamine, refl ecting aspects of 
the disorder (Roy et al., 2007). In the same way, mice defi cient 
in Rtn4r have been studied, and altered locomotor activity (Hsu 
et al., 2007) and reduced working memory function (Budel et al., 
2008) were observed. The transmembrane protease Bace1 is a key 
molecule that regulates NRG1 signaling and myelination (Hu et al., 
2006). Savonenko et al. (2008) reported that Bace1-null mice show 
schizophrenia-related phenotypes in multiple behavioral domains, 
including defi cits in prepulse inhibition and novelty-induced 
hyperactivity, hypersensitivity to a glutamatergic psychostimulant, 
cognitive impairments, and defi cits in social recognition. Fgfr2 is 
expressed in oligodendrocytes and involved in the formation of 
myelin membranes and Kaga et al. (2006) generated conditional 
knockout mice of this gene and found that conditional knockout 
mice are hyperactive and that dopamine receptor antagonist abol-
ished this abnormality.

The MAG knockout model is another relevant mouse model of 
myelin defi cits, in light of the studies that found decreased expres-
sion of MAG in schizophrenia (Hakak et al., 2001; McCullumsmith 
et al., 2007; Tkachev et al., 2003). MAG is known to interact with 
neuronal membranes where it helps maintain the periaxonal space 
of myelin sheaths (Li et al., 1994), is involved in initiation of 
myelination (Montag et al., 1994), and has been shown to inhibit 
 neurite outgrowth and impair axonal regeneration (Quarles, 
2009). This has led to the hypothesis that MAG promotes matu-
ration, maintenance and survival of myelinated neurons (Quarles, 
2009). MAG knockout mice may therefore have disruptions in 
normal myelinated tract development that are refl ected in altered 
anisotropy or fi ber length density. Several studies have described 
developmental abnormalities in the MAG knockout model but 
have not demonstrated a dysfunctional phenotype (Li et al., 1994; 
Loers et al., 2004; Weiss et al., 2000, 2001). Behavioral studies of 
these mice showed fairly subtle abnormalities. Mice missing the 
Mag gene are less profi cient than wild-type mice in maintain-
ing balance on a rotating cylinder and display hyperactivity and 
impaired hindlimb refl ex extension (Pan et al., 2005). However, 
the mutant mice showed no differences in spatial learning and 
memory or in swimming speed, as demonstrated in a Morris 
water maze (Montag et al., 1994).

Another mouse model recently used in research on schizophre-
nia is the QKI model or “Quaking” mutant (Haroutunian et al., 
2006; Lauriat et al., 2008). QkV is an autosomal recessive mutation in 
mice that leads to severe dysmyelination of the CNS due to defects 
in oligodendrocyte maturation and RNA metabolism of myelin 
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components, and all isoforms of QKI (QKI5, 6, 7) are deleted in 
the mice with this mutation. The “quaking” mice show reduced 
number of myelin lamellae, lack of myelin sheath compaction, and 
abnormalities in the structure of nodal regions. In addition to that, 
alterations of dopamine system parameters, including increased 
dopamine metabolism and increased dopamine D

2
 receptor bind-

ing, have been observed (Nikulina et al., 1995). Homozygous mice 
that survive to adulthood exhibit a characteristic tremor or “quak-
ing” (Sidman et al., 1964), with abnormal composition and struc-
ture of myelin (Baumann and Pham-Dinh, 2001). As a homozygote, 
this mouse has traditionally been used in epilepsy research in virtue 
of its myelin and conduction abnormalities, whereas the heterozy-
gote has a milder form of white matter dysfunction, and has been 
used as a putative schizophrenia model (Aberg et al., 2006a,b). The 
QKI gene product is an mRNA binding protein involved in deter-
mination of glial fate and oligodendrocyte differentiation (Ebersole 
et al., 1996; Larocque and Richard, 2005) and has been implicated 
in schizophrenia in several studies (Chenard and Richard, 2008; 
McCullumsmith et al., 2007; McInnes and Lauriat, 2006), in addi-
tion to the genetic studies cited above.

Mice treated with cuprizone, a drug that induces demyelination, 
demonstrated altered behavior including hyperactivity, sensori-
motor gating anomalies, and memory alterations (Franco-Pons 
et al., 2007). Interestingly, these defects lasted after the discontinu-
ation of cuprizone treatment, suggesting developmental insults to 
oligodendrocytes and myelin might contribute to schizophrenia. 
Zhang et al. found that the atypical antipsychotic, quetiapine, 
 promoted the differentiation of oligodendrocyte lineage cells and 
prevented cortical demyelination and the concomitant spatial 
working memory impairment induced by cuprizone (Xu et al., 
2009; Zhang et al., 2008).

RECENT MORPHOLOGICAL FINDINGS FROM TRANSGENIC MICE
To date, two mouse models have been investigated for morpho-
logical alterations: the MAG model and the QKI model. Hof and 
coworkers examined two measures of white matter integrity in 
the MAG knockout model (Höistad et al., 2008; Segal, 2008). The 
cingulum bundle was examined using both DTI to examine white 
matter coherence as well as histological techniques to measure 
myelinated fi ber length density. Diffusion anisotropy imaging 
was performed in adult MAG knockout mice, measuring the FA 
in a region of the cingulum bundle. At matched histological lev-
els, using sections stained for myelin with Black Gold (Schmued 
and Slikker, 1999), myelinated fi ber length density, defi ned as fi ber 
length per unit of white matter volume was evaluated (Figure 5). 
The MAG knockout model displayed no alterations in either FA 
or fi ber length density in the cingulum bundle (Segal, 2008). Thus, 
the effects of dysmyelination in the MAG model may be very subtle 
and may require ultrastructural studies to pinpoint the precise 
neuropathologic alterations.

We also performed morphological analysis of regional over-
all changes in cytoarchitecture in the ACC of the MAG and QKI 
mouse models (Höistad et al., 2008). Using stereologic methods, 
the number, density and spatial distribution patterns of neurons 
and oligodendrocytes were investigated. The effects of dysmyelina-
tion on neuron and oligodendrocyte numbers and densities in the 
ACC in these models revealed slight decreases in the overall volume 

of the ACC. Both the MAG and the QKI mouse models displayed 
lower total neuron numbers, but no difference in estimates of 
 neuronal density, and differences in oligodendrocytes in the ACC 
were observed only as a trend in the QKI model. Thus, the QKI 
model may prove to be a more valuable model of myelin defi ciencies 
than the MAG model, especially considering the absence of changes 
in the FA and fi ber length density in this model.

Furthermore, we analyzed the dendritic structure of pyramidal 
neurons in these mouse models to assess whether disrupted myeli-
nation of axonal pathways that provide inputs to the neocortex 
severely affect the dendritic integrity of target neurons, resulting in 
dendritic attrition, loss of dendritic spines, and alterations in spine 
morphology. This permits an evaluation of the effect of abnormal 
myelination on the structure and function of pyramidal neurons 
in select regions relevant to schizophrenia, for example the medial 
PFC. The hypothesis we are investigating is elucidating potential 
morphological effects on target neurons, as a consequence of myelin 
defi ciencies in the afferent axonal tracts (Segal et al., 2007b). Single 
pyramidal neurons were injected with a fl uorescent dye and then 
analyzed morphometrically.

In the MAG model, analyses of pyramidal neurons in layers II 
and III in the PFC have shown that in young mice (3 months) 
the basal dendrites showed a reduced level of dendritic branching 
compared to their wild-type littermates (Segal et al., 2007b), while 
less remarkable effects were observed on the apical branches. This 
may suggest that the dendritic tree of the MAG mice is under-
going a selective pathology that may be related to alterations in 

FIGURE 5 | Low magnifi cation photomicrograph of a myelin Black Gold 

stain of a wild-type mouse. Inset depicts the outlined cingulum bundle for 
analysis of fi ber length density. Scale bar 50 µm.
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and myelin sheaths, as well as immunogold approaches to study 
synaptic integrity by visualizing pre- and postsynaptic proteins. 
Correlative morphology and density analyses of dendritic spines 
will help clarify plastic changes in responses to myelin challenges. 

 specifi c axonal pathways infl uencing principally the basal den-
drites, and as such possibly of thalamic origin. These data imply 
that a  disturbance in the organization of myelin, due to impaired 
expression of MAG, may result in alterations in morphology of 
layers II and III pyramidal cells, particularly with respect to basal 
dendritic integrity. Such alterations may lead to abnormalities 
of specifi c white matter tracts and affect the prefrontal circuits. 
Preliminary observations of spine densities in young MAG mice 
have so far not revealed differences between knockout and control 
mice (Segal et al., 2007b). However spine pathology may be more 
prominent in aged mice as a function of aging per se.

In the QKI model, analyses of pyramidal neurons in layers II 
and III in the ACC of old mice showed shorter dendritic lengths 
of both apical and basal dendrites (Höistad et al., 2008). The api-
cal dendrites displayed shorter dendritic lengths distal from the 
soma, fewer numbers of branch radial intersections, and fewer 
higher order branches, whereas no differences were observed in 
the basal dendrites (Figures 6A–D). Preliminary observations of 
spine densities in the QKI mouse has suggested that dendritic spines 
are in fact more numerous in QKI mice compared to control lit-
termates (Figures 6E–H). This may refl ect compensatory mecha-
nisms similar to sprouting. These observations are in line with our 
stereologic fi ndings, which demonstrate that the QKI mice exhibit 
lower total neuron numbers and lower volumes of the ACC than 
control mice.

The preliminary evidence presented in Figure 6 on the QKI 
model, suggests possible support for the viability of the hypothesis 
that myelin defi ciencies may have morphological effects on target 
neurons, although the extent of these effects are not fully analyzed. 
We are aware of the fact that the relationship between disrupted 
myelin and changes in spine densities may not appear as a direct 
or causal one. It remains plausible that defi cits in myelination may 
cause signifi cant alterations in connectivity of select components 
of the afferent systems to cortical neurons, and as a result, a partial 
differentiation of those targets, which may alter the spine  densities 
and spine morphologies. Comparably, detrimental changes in spine 
densities have been found during aging and in stress conditions 
(Duan et al., 2003; Radley et al., 2008).The possibility that mye-
lin and oligodendrocyte changes impact on the integrity of the 
 pyramidal neuron dendritic tree fi ts well within the general context 
of the effects of white matter disruption in the brain.

FUTURE DIRECTIONS
Evidence from very different lines of research supports the premise 
that dysfunction of oligodendrocytes is a critical factor in the 
development of schizophrenia. The precise role oligodendrocytes 
hold in the cascade of malfunctions that results in the constel-
lation of defi cits seen in the disease is still unknown. Layers II 
and III pyramidal neurons in the ACC may be the targets of axonal 
pathways affected in schizophrenia. Quantitative information on 
neuronal integrity in mouse models is important for understand-
ing downstream effects of myelin genetic abnormalities, and to 
assess the validity of models in the context of observable neu-
ropathologic changes in human brains. These studies need to be 
extended to additional models refl ecting the genetic complex-
ity of schizophrenia, and electron microscopy studies should be 
used further to assess structural aberrations in oligodendrocytes 
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FIGURE 6 | Dendritic arbors and spines in the control and QKI mouse 

model. (A,B) Arbor analysis showing total dendritic lengths in apical and basal 
dendrites, *p < 0.05, Student’s t-test. (C,D) Dendritic lengths in apical and 
basal dendrites, as a function of the radial distance from the cell soma, 
*p < 0.05, two-way ANOVA with Bonferroni’s post hoc test (Höistad et al., 
2008). (E–H) Dendritic segments of Lucifer yellow-fi lled neurons in the medial 
PFC were scanned at high resolution on a confocal laser scanning 
microscope. 3-Dimentionally reconstructed dendritic segments, 50–100 µm 
from the cell soma, show hyperspiny dendrites on both the apical and basal 
branches in the QKI mouse. Scale bar 5 µm.
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The data obtained in transgenic mice will offer critical correlates 
to neuropathologic features that can be analyzed in postmortem 
human materials. Combined analysis of human specimen and 
relevant mouse models offers a unique opportunity to investi-
gate myelin defi cits that have a clinical impact. As a result of such 
combined approaches, a model of schizophrenia with character-
ized molecular defects that can be used for developing therapeutic 
approaches will hopefully emerge.
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