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GABA is a key mediator of neural activity in the mammalian central nervous system, and a 
diverse set of GABAergic neurons utilize GABA as a transmitter. It has been widely accepted 
that GABAergic neurons typically serve as interneurons while glutamatergic principal cells send 
excitatory signals to remote areas. In general, glutamatergic projection neurons monosynaptically 
innervate both principal cells and local GABAergic interneurons in each target area, and these 
GABAergic cells play a vital role in modulation of the activity of principal cells. The formation and 
recall of sensory, motor and cognitive representations require coordinated fast communication 
among multiple areas of the cerebral cortex, which are thought to be mostly mediated by 
glutamatergic neurons. However, there is an increasing body of evidence showing that specifi c 
subpopulations of cortical GABAergic neurons send long-range axonal projections to subcortical 
and other cortical areas. In particular, a variety of GABAergic neurons in the hippocampus 
project to neighboring and remote areas. Using anatomical, molecular and electrophysiological 
approaches, several types of GABAergic projection neurons have been shown to exist in the 
hippocampus. The target areas of these cells are the subiculum and other retrohippocampal 
areas, the medial septum and the contralateral dentate gyrus. The long-range GABAergic 
projection system of the hippocampus may serve to coordinate precisely the multiple activity 
patterns of widespread cortical cell assemblies in different brain states and among multiple 
functionally related areas.

Keywords: GABAergic neuron, long-range projection, hippocampus, medial septum, subiculum, retrosplenial cortex, 

multiregional coordination

are mostly mediated by long-range glutamatergic projections. 
Interestingly, a number of studies show that specifi c subpopulations 
of cortical GABAergic neurons also send long-range inhibitory 
projections to subcortical and other cortical areas. For instance, the 
medial septum is one of the extrahippocampal targets of a subset 
of GABAergic neurons in the hippocampus (Alonso and Köhler, 
1982). The existence of additional remote targets of hippocampal 
GABAergic neurons, such as subiculum and retrosplenial cortex, 
has also been demonstrated (Jinno et al., 2007; Losonczy et al., 
2002; Miyashita and Rockland, 2007; van Groen and Wyss, 2003). 
Long-range GABAergic projections have also been described in the 
isocortex (Fabri and Manzoni, 2004; Gonchar et al., 1995; Jinno 
and Kosaka, 2004; Tomioka and Rockland, 2007).

Starting with the seminal work of Ramón y Cajal (1911) reveal-
ing the morphological features of cortical neurons, many studies 
reported the diversity of GABAergic interneurons in the cortex 
based on anatomical, neurochemical and electrophysiological anal-
yses (DeFelipe, 1993; Freund and Buzsáki, 1996; Maccaferri and 
Lacaille, 2003; Markram et al., 2004). Current evidence indicates 
that distinct classes of GABAergic neurons specifi cally coordinate 
the activity of cortical pyramidal neurons in a spatially and tem-
porally different and brain-state-dependent manner (Klausberger 
and Somogyi, 2008). In this article, I aimed to summarize the recent 
fi ndings and outline the structural organization of GABAergic pro-
jection system of the hippocampus.

INTRODUCTION
GABA is a key mediator of neural activity in the mammalian 
central nervous system, and a diverse set of GABAergic neurons 
utilize GABA as a transmitter. The majority of cortical GABAergic 
neurons are considered to work as local interneurons. Excitatory 
glutamatergic projection neurons monosynaptically innervate 
both principal cells and local GABAergic interneurons in each 
target area, where GABAergic synaptic inhibition strictly regulates 
the spatial and temporal extent of neuronal activity. As such, topo-
graphically organized GABAergic inputs are essential to regulate 
sleep, arousal, cognition, locomotion and mood. For instance, a 
specifi c subset of GABAergic neurons in the cerebral cortex can be 
part of the neurobiological substrate that underlies homeostatic 
sleep regulation (Gerashchenko et al., 2008). In addition, recent 
studies have emphasized that dysfunctions in the GABAergic 
system might be associated with various pathological conditions 
including epilepsy, Parkinson’s disease, Alzheimer’s disease and 
mental illness (Kalueff and Nutt, 2007). In particular, increasing 
evidence suggests the possible involvement of GABA in the neuro-
biology of mood disorder and the mechanisms of antidepressant 
action (Gos et al., 2009; Jinno and Kosaka, 2009; Sanacora and 
Saricicek, 2007).

It has been well established that the formation and recall of 
sensory, motor and cognitive representations require coordinated 
communication among multiple areas of the cerebral cortex, which 
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EXTRA HIPPOCAMPAL TARGETS OF GABAergic PROJECTION 
SYSTEM OF THE HIPPOCAMPUS
The diagram of the long-range GABAergic projection system of 
the hippocampus is schematically summarized in Figure 1. In this 
section, I describe the diversity of GABAergic neurons projecting 
to the following major extrahippocampal targets: medial septum, 
subiculum, retrosplenial cortex and contralateral dentate gyrus 
(cDG). Using in vivo recording (Jinno et al., 2007), we have previ-
ously reported that some of the GABAergic neurons project to 
multiple areas, such as the medial septum and the subicular area 

(i.e., double projection cells). Here, I discuss the characteristics of 
GABAergic neurons innervating each target separately, and then 
summarize the signifi cance of multiple targeting cells in the fol-
lowing section.

MEDIAL SEPTUM
The most studied remote target of the hippocampal GABAergic 
 projection neurons is the medial septum (Figure 1). Using intraseptal 
injection of horseradish peroxidase as the retrograde tracer, Alonso 
and Köhler (1982) found that a subset of GABAergic  neurons of 

FIGURE 1 | Summary diagram of the GABAergic efferents of the 

hippocampus. The long-range GABAergic projection system (blue) and major 
glutamatergic circuit (red) of the hippocampus and related limbic structures 
are schematically described. Four extrahippocampal targets are colored in 
green: medial septum (MS), subiculum (Sub Area), retrosplenial cortex (Rsp 
Ctx) and contralateral dentate gyrus (cDG). This fi gure highlights the efferent 
GABAergic pathway of the hippocampus, and thus its local collaterals and 
related glutamatergic circuits are only partially described. In the dentate gyrus, 
some of the hilar GABAergic neurons project to the medial septum (1) and 
others project to the cDG via the commissural pathway (2). The existence of 
GABAergic cells projecting to both the medial septum and the cDG has not 
been proven. The granule cells (g) in the dentate gyrus (DG) send mossy fi ber 
axons to the ipsilateral CA3 area, while hilar mossy cells (m) send commissural 
axon to the contralateral side of the dentate gyrus. In the CA3 region, 
GABAergic cells projecting to the medial septum are scattered throughout all 

the layers (3). Some of the CA3 pyramidal cells (p) project back to the dentate 
gyrus, but they were omitted from this diagram for simplicity. In the CA1 
region, there are three types of GABAergic projection neurons, i.e., those 
projecting exclusively to the medial septum (4), projecting to both the medial 
septum and subicular/retrosplenial area (5), and projecting exclusively to the 
subicular/retrosplenial area (6). In the CA1 region, the pyramidal cells (p) 
project not only to the subicular area but also to the lateral septum (not 
shown). In addition to the above hippocampal GABAergic projection neurons, 
earlier studies have also shown the existence of other interareal GABAergic 
connections in parallel to the glutamatergic circuits. For instance, the 
projection from the presubiculum comprises a small inhibitory component 
from GABAergic neurons (7) and targets entorhinal interneurons (van Haeften 
et al., 1997). The perforant path that originates from the entorhinal cortex may 
also have a small GABAergic component (8) in addition to the main 
glutamatergic projection (Germroth et al., 1989).



Frontiers in Neuroanatomy www.frontiersin.org July 2009 | Volume 3 | Article 13 | 3

Jinno GABAergic projection system of hippocampus

the hippocampus innervate the medial septum (H-MS cells) in 
the rat brain. The H-MS cells were found in all regions of the hip-
pocampus, but they were distributed in a layer specifi c manner: in 
the CA1 region, they were mainly located in the stratum oriens; in the 
CA3 region, they were scattered throughout all the layers; and in the 
dentate gyrus (DG), they were exclusively located in the hilar area 
(Figure 2A, Jinno and Kosaka, 2002; Totterdell and Hayes, 1987).

The morphological characteristics of H-MS cells were  examined 
using fi xed slice preparations of the rat hippocampus (Schwerdtfeger 
and Buhl, 1986), and the following cells were identifi ed: stellate 
cells in the hilus, horizontal basket cells in the stratum oriens of 
CA1 and CA3, stellate cells in the stratum radiatum of CA3 and 
pyramid-like cells in the stratum radiatum of CA1. The main 
postsynaptic targets of H-MS cells in the medial septum were 

FIGURE 2 | Distributions of retrogradely labeled GABAergic projection 

neurons following Fluoro-gold injection into the medial septum (A) or the 

subiculum (B). Each panel represents a 70-µm thick triple immunofl uorescence 
labeled section for somatostatin (SOM), metabotropic glutamate receptor 1α 
(mGluR1α) and muscarinic acetylcholine receptor type 2 (M2R). (A) The H-MS 
cells are distributed in all regions of the hippocampus. In the CA1 area, most of 
them are in the stratum oriens (so). In the CA3 area, they are in the all layers, 
whereas they are restricted to the hilus (h) in the dentate gyrus (DG). Virtually all 
H-MS cells are SOM-positive, and the majority of them are SOM-positive/
mGluR1α-positive/M2R-negative. In addition, there are also some triple-positive 
cells and SOM-positive/mGluR1α-negative/M2R-positive cells. (B) The H-Sub 

cells are mainly present in the CA1 region, and rarely found in the CA3 region 
and in the dentate gyrus. In the CA1 area, SOM-positive/mGluR1α-positive/
M2R-negative projection cells are mostly detected in the stratum oriens, 
whereas SOM-negative/mGluR1α-negative/M2R-positive cells are present 
throughout all layers. In addition, SOM-negative/mGluR1α-positive/
M2R-negative cells are distributed in strata radiatum (sr) and 
lacunosum-moleculare (slm). There are a few H-Sub cells immunonegative 
for all three molecules. Scale bar in (A) = 500 µm [applies to (A) and (B)]. gl, 
granule cell layer; ml, molecular layer; sl, stratum lucidum; sp, stratum 
pyramidale. Panels (A) and (B) are modifi ed and reproduced from Jinno et al. 
(2007), with permission of the publisher.
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cells were the dendritic shafts of pyramidal neurons (Jinno et al., 
2007). But, one H-Sub cell expressing enkephalin (ENK) innervated 
dendritic shafts of GABAergic and pyramidal neurons (Fuentealba 
et al., 2008). The targets of ENK-expressing H-Sub cells were associ-
ated with the location of axonal arbors, i.e., interneurons were the 
main targets in the alveus, both interneurons and pyramidal cell 
dendrites were innervated in the other layers, and interneurons 
were the exclusive targets in the subiculum.

It should be noted that four in vivo recorded cells projected 
from the CA1 stratum oriens to both the subiculum and the medial 
septum (Jinno et al., 2007). Thus, there might be three groups of 
projection neurons in the CA1 region: those sending axons exclu-
sively to the medial septum (4 in Figure 1), those innervating both 
the medial septum and the subicular are (5 in Figure 1), and those 
exclusively sending axons to the subicular/retrosplenial cortex (6 in 
Figure 1). Although the cells exclusively projecting to the medial 
septum (4) have not yet been identifi ed, their existence has been 
suggested by the numerical data showing that the numbers of 
retrogradely labeled cells after injection into the medial septum 
are much larger than those after injection into the subiculum (see 
Figures 2A,B).

RETROSPLENIAL CORTEX
A few GABAergic neurons in the CA1 region are identifi ed by 
injections of retrograde tracers into the retrosplenial cortex (van 
Groen and Wyss, 2003; Wyss and van Groen, 1992). The majority 
(about 65%) of hippocampal GABAergic neurons projecting to 
the granular retrosplenial cortex (H-Rsp cells) were detected at the 
border between strata radiatum and lacunosum-moleculare of the 
CA1 region, and a smaller population was located in the stratum 
radiatum (Miyashita and Rockland, 2007). Many fewer cells (<10%) 
were found in the stratum oriens or stratum pyramidale of the CA1 
region. In the CA3 and DG, virtually no cells were retrogradely 
labeled after the injection of tracer into the granular retrosplenial 
cortex. It should also be noted that two in vivo recorded cells pro-
jected from the CA1 region to the retrosplenial cortex through the 
subicular area (Jinno et al., 2007). The morphological characteris-
tics of H-Rsp cells at the border of strata radiatum and lacunosum-
moleculare are rather similar to those of H-Sub cells.

The retrosplenial cortex has been implicated in various functions 
including spatial navigation and memory (Cain et al., 2006; Keene 
and Bucci, 2009; Wolbers and Büchel, 2005). There is increasing 
evidence that the retrosplenial cortex has a close functional relation-
ship with the hippocampus (Burwell and Amaral, 1998; van Groen 
and Wyss, 2003). Anatomical studies indicate that, in addition to 
the hippocampal glutamatergic output to the retrosplenial cortex 
relayed through the subiculum, direct GABAergic projections by 
H-Rsp cells might play a role in processing of spatial information, 
but the signifi cance remains to be elucidated.

COMMISSURAL PROJECTION
A small number of GABAergic neurons in the hilus of the DG 
have axonal projections to the cDG through the hippocampal com-
missure (Ribak et al., 1986; Seress and Ribak, 1983). Although the 
targets of these neurons are not strictly extrahippocampal, hilar 
GABAergic neurons with commissural projection should logi-
cally be included as long-range GABAergic projection neurons. 

parvalbumin (PV)- expressing GABAergic neurons and, to a lesser 
extent, cholinergic neurons (Tóth et al., 1993). On the other hand, 
several studies, employing different methods, have demonstrated 
confl icting results with regard to the local targets of H-MS cells. In 
juvenile rats, the local axons of CA1 H-MS cells recorded in vitro 
were reported to innervate predominantly hippocampal GABAergic 
neurons (Gulyás et al., 2003). By contrast, the main local targets of 
in vivo recorded (Jinno et al., 2007) or retrogradely labeled (Takács 
et al., 2008) GABAergic cells projecting to the medial septum and 
subiculum were pyramidal neurons in the CA1 area of the adult 
rats. Although it is diffi cult to explain the discrepancy, differences 
in ages of animals and labeling methods might be related to the 
inconsistent results in local postsynaptic targets of H-MS cells.

The hippocampus also receives GABAergic inputs from the 
medial septum, and thus the medial septum and the hippocampus 
are connected reciprocally (Raisman, 1966). The two major com-
ponents of the septo-hippocampal projection are cholinergic and 
GABAergic neurons (Köhler et al., 1984; Shute and Lewis, 1963). 
The cholinergic projection terminates on all types of hippocam-
pal cells (Frotscher and Léránth, 1985), whereas septal GABAergic 
neurons specifi cally innervate hippocampal GABAergic neurons 
(Freund and Antal, 1988; Gulyás et al., 1991). Recently, Takács et al. 
(2008) demonstrated direct reciprocity by using combined retro-
grade and anterograde tracing; that is, H-MS cells are the postsyn-
aptic targets of GABAergic septo-hippocampal axons. On the other 
hand, GABAergic terminals of H-MS cells in the medial septum 
were shown to innervate septo-hippocampal neurons retrogradely 
labeled from the ventral hippocampus (Tóth et al., 1993). This 
reciprocal loop between the hippocampus and the medial septum 
via GABAergic neurons is considered to play a critical role for gen-
erating the rhythmic activity and synchronization (Dragoi et al., 
1999; Wang, 2002).

SUBICULUM
Recent studies have demonstrated the existence of hippocam-
pal GABAergic cells projecting to the subiculum (H-Sub cells; 
Figure 1). The fi rst hint of a possible projection of GABAergic 
neurons from the hippocampus to the subiculum was shown by 
using slice preparations (Losonczy et al., 2002). They found that 
the oriens-bistratifi ed (O-Bi) cells located in the CA1 region inner-
vated the CA3 region and the subiculum in juvenile mice. One 
trilaminar cell recorded in vivo was decorated by metabotropic 
glutamate receptor 8a (mGluR8a)-enriched boutons, and exhibited 
a large projection from the CA1 stratum oriens to the subiculum 
(Ferraguti et al., 2005).

Using retrograde labeling, the distributions of H-Sub cells were 
estimated in the rat brain (Figure 2B). Differently from the H-MS 
cells, the retrogradely labeled H-Sub cells were mainly found in 
the CA1 region, and only a few cells were detected in the CA3 
region and the dentate hilus. In the CA1 region, H-Sub cells were 
scattered throughout all the layers. The majority of H-Sub cells in 
the stratum oriens were large-sized horizontal cells, while those 
in the strata radiatum and lacunosum-moleculare were small to 
medium-sized bipolar and multipolar cells. The postsynaptic tar-
gets of long-range axons in the subiculum were assumed to be 
pyramidal neurons, although the ratios were not determined due 
to technical limitations. The major local targets of seven H-Sub 
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The postsynaptic targets of GABAergic commissural projections 
are thought to be dendrites of granule cells (Deller, 1998). It has not 
been clearly proven whether the hilar cells innervating the medial 
septum (1 in Figure 1) simultaneously send commissural axons to 
the cDG (2 in Figure 1).

NEUROCHEMICAL CHARACTERIZATION OF GABAergic 
PROJECTION NEURONS IN THE HIPPOCAMPUS
A number of studies have reported the neurochemical characteriza-
tion of hippocampal GABAergic projection neurons in combination 
with tracer labeling. Some of the previously identifi ed molecular 
markers might be expressed in neurons innervating different target 
areas, because a given neurochemical marker is not always spe-
cifi cally related to the connectional characteristics (Freund and 
Buzsáki, 1996). But there is ample evidence for the importance 
of molecular markers in the classifi cation of GABAergic neurons 
tested (Jinno and Kosaka, 2006). Thus in this section, I describe 
the eight major molecules identifi ed so far in GABAergic neurons 
projecting to the extrahippocampal areas.

Before entering into a detailed discussion, it might be better to 
briefl y argue on a possible species difference in chemical charac-
teristics of GABAergic projection neurons. In the neocortex, there 
is a considerable difference between mice and rats with respect to 
the basic microcircuits (DeFelipe et al., 2002). Several species dif-
ferences have also been reported in the functional organization of 
the hippocampus. Most notably, glutamatergic hilar mossy cells 
showed neurochemical discrepancies between mice and rats. The 
calcium-binding protein calretinin (CR) is expressed in mossy cells 
in the mouse ventral hilus, but not in the rat hilus (Blasco-Ibáñez 
and Freund, 1997; Fujise et al., 1998; Liu et al., 1996). On the con-
trary, calcitonin gene-related peptide is localized in the rat mossy 
cells, but not in the mouse mossy cells (Freund et al., 1997; Sakurai 
and Kosaka, 2007). However, interestingly enough, the morpho-
functional similarities in hippocampal GABAergic neurons have 
been repeatedly reported in mice and rats. For example, Mátyás 
et al. (2004) showed that the neurochemical and morphological 
classifi cations of hippocampal GABAergic interneurons estab-
lished in the rat were largely valid for mouse strains. The numeri-
cal densities of chemically defi ned subpopulations of GABAergic 
neurons in the mouse hippocampus were comparable to those 
in the rat hippocampus (Jinno and Kosaka, 2006; Nomura et al., 
1997). Taken together, it is possible to hypothesize that the chemi-
cal characteristics of GABAergic projection neurons in the rat and 
mouse hippocampus are rather similar to each other. But I leave 
the matter open.

SOMATOSTATIN
Somatostatin (SOM) is a neuroactive peptide, and one of the key 
molecules of H-MS cells (Zappone and Sloviter, 2001). The vast 
majority (93.0%) of the H-MS cells express SOM in the mouse 
hippocampus (Jinno and Kosaka, 2002). The percentages were very 
high both in the Ammon’s horn (95.5% in the CA1 region, 92.6% in 
the CA3 region) and the DG (92.1%) in the mouse hippocampus. In 
contrast, one half of SS-positive neuron in the CA3 region (49.6%) 
and DG (44.1%) projected to the medial septum, and 22.5% in the 
CA1 region projected to the medial septum. Similar results were 
obtained from the rat hippocampus.

Using slice preparations of juvenile mice, Losonczy et al. (2002) 
showed that a large population of O-Bi cells in the CA1 stratum 
oriens innervating both the CA3 and subiculum were SOM- positive 
(7 of 10 cells tested). The patterns of expression of SOM in the 
H-Sub cells in the rat hippocampus were systematically assessed 
by retrograde labeling (Jinno et al., 2007). In the CA1 region, 50% 
of H-Sub cells were SOM-positive, while no H-Sub cells were 
immunoreactive for SOM in the strata radiatum and lacunosum-
moleculare. In the CA3 strata radiatum/lacunosum-moleculare 
and the dentate hilus, SOM was detected in 43 and 75% of H-Sub 
cells, respectively.

In the rat CA1 region, SOM was not detected in H-Rsp cells so 
far examined (Miyashita and Rockland, 2007). On the other hand, 
the vast majority (as high as 96%) of SOM-positive cells project 
to the contralateral hippocampus via the commissural pathway in 
the rat dentate hilus (Zappone and Sloviter, 2001). Some of the 
hilar commissurally projecting GABAergic cells receive cholinergic 
inputs (Léránth and Frotscher, 1987).

NEUROPEPTIDE Y
Neuropeptide Y (NPY) is a peptide belonging to the pancreatic 
polypeptide family (Tatemoto et al., 1982). The frequent co-
 localization of NPY and SOM has been reported in cortical and 
subcortical cells in the rodent and primate brain (Chan-Palay, 1987; 
Köhler et al., 1987). Using “mirror” technique, Tóth and Freund 
(1992) showed that 20% of H-MS cells were NPY-positive in the 
rat brain. Regional differences in the expression of NPY in H-MS 
cells were shown in the rat hippocampus (Jinno et al., 2007). In the 
Ammon’s horn, less than half of H-MS cells (46% in the CA1 region, 
25% in the CA3 region) were positive for NPY, whereas virtually 
all H-MS cells (92%) in the DG contained NPY. The expression 
ratios of NPY in H-Sub cells (20% in the CA1 region, 43% in the 
CA3 region, and 80% in the DG) were generally similar to those 
in H-MS cells.

The expression of NPY in H-Rsp cells has not yet been estab-
lished. In the dentate hilar area, a small population (2%) of 
NPY-positive hilar neurons has been reported to project to the 
contralateral hippocampus via the commissural pathway (Deller 
and Léránth, 1990). But the percentage might be underestimated 
due to the limitation of detection sensitivity.

CALBINDIN D28K
Another key molecule of H-MS cells is calbindin D28K (CB), which 
belongs to the EF-hand calcium-binding protein family. It has been 
reported that the majority of H-MS cells are CB-positive in the rat 
hippocampus (Tóth and Freund, 1992). Although the authors did 
not demonstrate the GABAergic nature of cell bodies of retrogradely 
labeled CB-expressing H-MS cells, subsequently they showed that 
the anterogradely labeled terminals in the septum originating from 
the hippocampus were GABA like-immunoreactive (Tóth et al., 
1993). Immunofl uorescent multiple labeling showed that 38% of 
retrogradely identifi ed H-MS cells were CB-positive in the mouse 
hippocampus (Jinno and Kosaka, 2002). Approximately half of 
H-MS cells in the Ammon’s horn expressed CB (57% in the CA1 
region, 41% in the CA3 region), while none of them were positive 
for CB in the DG. Similar results were shown in the rat hippocam-
pus (Jinno et al., 2007).
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study showed that ENK was expressed in 11.3% of H-Sub cells using 
a highly sensitive viral vector for retrograde labeling (Fuentealba 
et al., 2008). The ENK-positive H-Sub cells (n = 7) were located 
in the middle and deep stratum radiatum, close to the stratum 
lacunosum-moleculare. All tested ENK-positive H-Sub cells were 
co-labeled for the orphan nuclear receptor chicken ovalbumin 
upstream promoter-transcription factor II, but none for CR.

MULTIREGIONAL COORDINATION BY LONG-RANGE 
GABAergic PROJECTION NEURONS
This fi nal section considers the potential signifi cance of long-range 
GABAergic projection systems both in basic and clinical research. 
It has been repeatedly described that GABAergic neurons exhibit 
substantial diversity in their anatomical, neurochemical and elec-
trophysiological characteristics (Markram et al., 2004; Somogyi 
and Klausberger, 2005). Due to this phenotypic variety, the clas-
sifi cation of cortical GABAergic neurons has been a big challenge. 
Although the situation appears diffi cult, by now, at least 21 distinct 
classes of cells have been identifi ed in the rat CA1 region using 
multidisciplinary approaches (Klausberger and Somogyi, 2008). 
Interestingly, different types of cells innervating specifi c extrahip-
pocampal targets fi re with distinct spike timing during network 
oscillation (Jinno et al., 2007). The fi ring pattern of GABAergic 
neurons projecting to both the medial septum and the subiculum 
(double-projection cells) is an example of the spatiotemporal 
requirements of long-range coordination. During theta oscilla-
tions (4–10 Hz), which can co-occur in hippocampal and iso-
cortical areas (Jones and Wilson, 2005), double- projection cells 
fi re preferentially at or after the trough of theta cycles, recorded 
extracellularly in stratum pyramidale, with low discharge frequen-
cies. In contrast, the fi ring of H-Sub cells in the stratum radia-
tum (radiatum-retrohippocampal cells) strongly increases during 
theta oscillation. In fi ring preferentially on the descending theta 
phase, radiatum- retrohippocampal cells are different from the 
local  dendrite- innervating oriens- lacunosum- moleculare (O-LM), 
 cholecystokinin-expressing and bistratifi ed cells (Klausberger et al., 
2003, 2004, 2005). During ripple oscillations (100–200 Hz), double-
projection cells fi re with a high discharge rate. This activity might 
lead to a suppression of the majority of cells in the medial septum 
and inhibit the generation of theta oscillations. Their local axons 
in the CA1 area innervate pyramidal cell dendrites, and coopera-
tively release GABA with the bistratifi ed cells, which fi re at high 
frequency during the ascending phase of the extracellular ripple 
cycle (Klausberger et al., 2004). Together, they temporally structure 
the excitation of the CA3 input in CA1 pyramidal dendrites at ripple 
frequency. The other long-range axonal arbors of double-projection 
cells in the subiculum also innervate dendrites of pyramidal cells 
and contribute to communicating the temporal structure of ripple 
oscillations to the subiculum, which oscillates coherently with the 
CA1 area (Chrobak and Buzsáki, 1996). Unlike double-projection 
cells, radiatum- retrohippocampal cells do not change their activity 
during ripples and are unlikely to contribute to coordinating this 
network state, indicating a different function for these neurons. 
The diversity of GABAergic projection cell classes in the hippocam-
pus may result from the need to coordinate precisely the multiple 
activities of distributed neural circuits in different brain states and 
among multiple functionally related brain areas.

Expression ratios of CB in retrogradely labeled H-Sub cells were 
generally lower than those in H-MS cells (Jinno et al., 2007). In the 
CA1 region, 27% of H-Sub cells in the stratum oriens expressed CB, 
and only a few cells (3–4%) in the strata radiatum and lacunosum-
moleculare were CB-positive.

CB was not detected in H-Rsp cells so far examined (Miyashita 
and Rockland, 2007). Possible expression of CB in commissurally 
projecting GABAergic neurons has not yet been examined.

PARVALBUMIN
PV is a low-molecular-weight, high-affi nity calcium-binding pro-
tein of the EF hand family. Although infrequently, PV is detected in 
5–15% of H-MS cells in the mouse and rat brain (Jinno and Kosaka, 
2000; Jinno et al., 2007). PV is also expressed in a small population 
(4%) of H-Sub cells in the rat hippocampus. On the other hand, 
no H-Rsp cells contained PV (Miyashita and Rockland, 2007). In 
the DG, the majority (as high as 84%) of PV-positive neurons com-
missurally project to the contralateral hippocampus (Goodman and 
Sloviter, 1992; Zappone and Sloviter, 2001).

CALRETININ
CR is a high affi nity EF-hand calcium-binding protein. It is well 
known that CR is expressed in one of the populations of GABAergic 
neurons called interneuron-specifi c (IS) cells, i.e., those exclusively 
innervating other GABAergic neurons (Gulyás et al., 1999). In addi-
tion, CR is also expressed in 18% of H-MS cells of the rat hippoc-
ampus. But, neither H-Sub cells nor H-Rsp cells were positive for 
CR (Jinno et al., 2007; Miyashita and Rockland, 2007). In the DG, 
one third of CR-positive GABAergic neurons projected commis-
surally (Zappone and Sloviter, 2001).

MUSCARINIC ACETYLCHOLINE RECEPTOR TYPE 2
Acetylcholine (ACh) modulates learning and memory in many 
tasks through actions in the hippocampus and striatum (Bartus 
et al., 1982; Gold, 2003). Muscarinic ACh receptor type 2 (M2R) is 
commonly expressed in a considerable population of H-MS cells 
(38%, Hájos et al., 1998) and H-Sub cells (42%, Jinno et al., 2007) 
in the rat hippocampus. In contrast, only a smaller subset (14%) of 
H-Rsp cells was positive for M2R (Miyashita and Rockland, 2007). 
It has not been tested whether M2R is expressed in commissurally 
projecting GABAergic neurons in the dentate hilus.

mGluR1α
Synergic activation of M2R and mGluRs induces enhancement 
of burst fi ring, and is thought to be involved in intrinsic neu-
ronal plasticity (Moore et al., 2009). Expression of mGluR1α in 
GABAergic projection neurons was tested in H-MS cells and H-Sub 
cells (Jinno et al., 2007). In the Ammon’s horn, the majority of 
H-MS cells expressed mGluR1α (69% in the CA1, and 84% in the 
CA3 region), whereas only 15% of H-MS cells showed mGluR1α 
immunoreactivity in the DG. H-Sub cells also expressed mGluR1α, 
but the expression ratios were lower (40% in the CA1 region) than 
those of H-MS cells.

ENKEPHALIN
In the CA1 area, ENK has been detected in a population of IS cells 
(Blasco-Ibáñez et al., 1998). In addition, a recent retrograde labeling 
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Alterations in GABA-mediated signaling have been found in 
various psychiatric disorders (Kalueff and Nutt, 2007). For instance, 
reduced levels of glutamic acid decarboxylase (GAD) 67 mRNA 
have been found in individuals with schizophrenia (Guidotti et al., 
2000). Some postmortem studies showed that GAD activity was 
lower in patients with major depression compared to controls 
in several brain regions (Perry et al., 1977). A modern imaging 
study using proton magnetic resonance spectroscopy showed the 
reduced GABA levels in the prefrontal area of depression suf-
ferers (Hasler et al., 2007). There is a growing body of evidence 
suggesting that the spatially and temporally organized synaptic 
inhibition mediated by specifi c subclasses of GABAergic neurons 
is impaired in mental illness (Gonzalez-Burgos and Lewis, 2008). 
Along these lines, it has also been postulated that cognitive and 
affective impairments in psychiatric disorders may be related to 
a failure to integrate the activity of widely spread neural circuits 
(Andreasen et al., 1999; Stephan et al., 2006). Interestingly, recent 
imaging data suggest that functional connectivity between remote 
regions is impaired in individuals with mental illness, such as schiz-
ophrenia (Zhou et al., 2007) and autism (Villalobos et al., 2005). 
Because GABAergic neurons are considered to play a critical role 
in the long-range fast synchronization of neural activities across 

brain regions (Buzsáki and Chrobak, 1995; Mann and Paulsen, 
2007), these fi nding suggest that defects of long-range GABAergic 
projection system might be associated with the neurobiology of 
psychiatric disorders.

In summary, through fast oscillatory synchronization, distinct 
classes of hippocampal GABAergic neurons can contribute to the 
coordination of neural activity in multiple brain regions. I propose 
that such multiple long-range GABAergic projection systems acting 
in concert are of great importance in the maintenance of psycho-
logical normalcy. Understanding the characteristics of long-range 
GABAergic projection neurons might not only inform computa-
tional modeling of brain function, but will hopefully also make it 
possible to get a clue to novel treatment for psychiatric illness.
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