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Modulator property of the intrinsic cortical projection from 
layer 6 to layer 4

Charles C. Lee* and S. Murray Sherman
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Layer 4 of the sensory neocortex receives widespread convergent inputs from thalamic, 
intracortical, and corticocortical sources. Yet, the relative information bearing roles for most 
of these pathways remain largely undefi ned. Here we show that the intracortical projections 
from layer 6 to layer 4 exhibit a physiological property that is consistent with a modulator role. 
Using in vitro slice preparations of the auditory and somatosensory cortices, we found that 
electrical stimulation or photostimulation of layer 6 elicits a prolonged depolarizing response 
that is attributable to the activation of group 1 metabotropic glutamate receptors. These results 
complement the known physiological properties of the layer 6 to layer 4 pathway, and further 
suggest that this pathway is not a principle conduit for information fl ow, but rather acts as a 
modulator of cortical activity.
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found to correlate strongly with modulator synapses in the thalamus 
(Bartlett and Smith, 2002; Reichova and Sherman, 2004). It is this 
property that is of particular interest, since group 1 mGluRs have 
been reported on layer 4 neurons in the sensory neocortex (López-
Bendito et al., 2002; Ryo et al., 1993; Stinehelfer et al., 2000), and 
thus may be activated postsynaptically by the intracortical pathway 
from layer 6. Indeed, it is known that the thalamic inputs to layer 4, 
which exhibit driving synaptic properties, do not elicit a group 1 
mGluR response, while the intracortical layer 6 inputs exhibit all of 
the other synaptic properties associated with modulator pathways 
(Lee and Sherman, 2008). Thus, determining whether the layer 6 
inputs to layer 4 also elicit a group 1 mGluR response would help 
further to characterize its role in information processing.

Therefore, we investigated whether this modulator property was 
present in the intracortical projection from layer 6 to layer 4 using 
in vitro slice preparations of the somatosensory and auditory cortices. 
Using both electrical stimulation and photostimulation with caged 
glutamate to activate the intracortical inputs from layer 6 to layer 4, 
we found that a group 1 mGluR component could be elicited. These 
results and their functional implications are described below.

MATERIALS AND METHODS
Slice preparations were made from mice (ages 10–16 days), as 
described in previous work (Lee and Sherman, 2008). All proce-
dures were approved by the Institutional Animal Care and Use 
Committee of the University of Chicago. Briefl y, mice were anesthe-
tized with isofl urane then decapitated. Whole brains were quickly 
dissected and placed into cool, oxygenated, artifi cial cerebral spinal 
fl uid (ACSF). A vibratome (Campden Instruments, Lafayette, IN, 
USA) was used to cut slices (500 µm), which were then recovered 
in physiological ACSF (in mM: 125 NaCl, 25 NaHCO

3
, 3 KCl, 1.25 

NaH
2
PO

4
, 1 MgCl

2
, 2 CaCl

2
, 25 glucose) for 1 h at 32°C. Slices 

were then placed in a submersion-type recording chamber on a 
modifi ed microscope stage, and maintained at 32°C with constant 
perfusion of ACSF.

INTRODUCTION
The sensory neocortex is composed of six layers whose distinct pat-
terns of connectivity underlie their functional properties. A major 
challenge for understanding information processing in the sensory 
neocortex is to determine how information is transferred and trans-
formed from the principal cortical input layers to the principal 
cortical output layers. In this regard, multiple inputs converge onto 
layer 4 neurons of the sensory neocortex from thalamic (Sherman 
and Guillery, 2002), intracortical (Hirsch and Martinez, 2006) and 
corticocortical (Rockland and Pandya, 1979) sources. Quantitative 
estimates suggest that the intrinsic cortical projections provide 
about half of this total convergent input, while inputs from tha-
lamic sources are an order of magnitude less (∼5%; Ahmed et al., 
1994; Binzegger et al., 2004; Latawiec et al., 2000; Lee et al., 2004). 
In addition, previous work has demonstrated the importance of the 
thalamic inputs to layer 4 for information processing (Ferster et al., 
1996; Lee and Sherman, 2008; Reid and Alonso, 1995; Sherman and 
Guillery, 2002), but the role of the other inputs, in particular those 
from intracortical layer 6 (Stratford et al., 1996; Tarczy Hornoch 
et al., 1999), remains less clear.

Assessing the information-bearing role of the intracortical path-
way from layer 6 to layer 4 poses an important challenge (Raizada 
and Grossberg, 2003), but it is one that can be addressed partly 
using physiological metrics, as recently demonstrated (Bartlett and 
Smith, 2002; Li et al., 2003). Glutamatergic pathways can be parsed 
into two main categories, termed “drivers” and “modulators” (Lee 
and Sherman, 2008; Reichova and Sherman, 2004; Sherman and 
Guillery, 1998), and possibly others that have yet to be demon-
strated (see Discussion). Driver pathways are the principal conduits 
for information fl ow, and exhibit synaptic properties such as a 
large all-or-none response, paired-pulse depression, and lack of 
a metabotropic glutamate receptor (mGluR) component to the 
response. In contrast, modulator pathways exhibit small, graded 
responses, paired-pulse facilitation, and activate mGluRs (Sherman 
and Guillery, 2005). In particular, the group 1 mGluRs have been 
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DIC optics was used to identify the cortical sites for recording 
and stimulation. Whole cell recordings were made with pipettes 
containing intracellular solution (135 KGluconate, 7 NaCl, 10 
HEPES, 1–2 Na

2
ATP, 0.3 GTP, 2 MgCl

2
 and 0.5% biocytin at a pH 

of 7.3 obtained with KOH and osmolality of 290 mosm obtained 
with distilled water). Current or voltage clamp recordings were 
made using the Axoclamp 2A amplifi er and pCLAMP software 
(Axon Instruments, Union City, CA, USA), and were uncorrected 
for junction potentials (∼10 mV). Depolarizing current injections 
were used to determine the spiking characteristics of layer 4 neu-
rons. Neurons were classifi ed as regular spiking (RS) if they fi red 
at slow adapting frequencies with small and slow afterhyperpolari-
zations (AHPs), in comparison to fast spiking (FS) neurons that 
had higher maximal fi ring rates, with large and fast AHPs (Lee and 
Sherman, 2008). The acquired data were digitized using a Digidata 
1200 board and then stored in a computer for later analysis.

Receptor antagonists were prepared in distilled water, diluted 
to their fi nal concentration just before use, and then bath applied. 
The fi nal bath concentration was generally estimated to be one-
fourth of the initial concentration based on the rate of injection. To 
block ionotropic GluRs during high-frequency stimulation (HFS), 
DNQX (50 µM) for AMPA and MK-801 (40 µM) for NMDA were 
used. To block GABA receptors, SR 95531 (50 nM) for GABA

A
 and 

CGP 46381 (50 nM) for GABA
B
 were used. To block the group 1 

mGluRs, LY367385 (20 µM) for mGluR1 and MPEP (30 µM) for 
mGluR5 (TOCRIS, Ellisville, MO, USA) were added together to the 
bath. To block the group 2 mGluRs, MCCG (50 µM) was used.

Electrical stimulation of the layer 6 inputs to layer 4 was performed 
using bipolar concentric electrodes (Frederick Haer, Bowdoinham, 

ME, USA). Stimulation consisted of pulses of 0.1–0.2 ms delivered 
using an electrical stimulus protocol. Photostimulation was used to 
identify the layer 6 regions projecting to layer 4, and the stimulation 
electrode was situated in the layer 6 hotspot that produced the most 
robust responses with the lowest stimulus intensity. HFS consisted 
of pulses at 125 Hz for 800 ms. Amplitudes of evoked responses 
were measured at the peak of the response. During application of 
group 1 mGluR antagonists, amplitudes were measured at the same 
time to peak from the control condition.

For photostimulation, nitroindolinyl (NI)-caged glutamate 
(0.37 mM; Sigma-RBI) was added to the recirculating ACSF (Lam 
and Sherman, 2007; Shepherd et al., 2003). Photolysis of the caged 
glutamate was done focally with an average beam intensity of 
5 mW to give a 1-msec, 100-pulse light stimulus by Q-switching 
the pulsed UV laser (355 nm wavelength, frequency-tripled Nd: 
YVO4, 100 kHz pulse repetition rate; DPSS Lasers, Inc., Santa Clara, 
CA, USA). Custom software written in MATLAB (MathWorks, Inc., 
Natick, MA, USA) was used to analyze the data, and the acquired 
traces were superimposed on a photomicrograph corresponding 
to the stimulation sites.

RESULTS
In order to examine the properties of the intracortical synapse from 
layer 6 to layer 4, we utilized in vitro slice preparations contain-
ing the mouse somatosensory and auditory cortices, as described 
previously (Lee and Sherman, 2008). Whole-cell, current-clamp 
recordings were obtained from layer 4 neurons in response to elec-
trical stimulation or photostimulation of layer 6 (Figures 1–2). 
A total of 21 neurons (RS: n = 16; FS: n = 5) were recorded, with 

FIGURE 1 | Intracortical projections from layer 6 to layer 4 exhibit a 

modulator property. (A,B) Photostimulation with caged glutamate in the cortex 
(AII) identifi es the location of layer 6 input to layer 4. (A) Whole-cell, voltage 
clamp recordings from layer 4 (L4) in response to photostimulation at 256 
separate cortical loci (colored traces). A concentric bipolar electrode was 
targeted to the region in layer 6 (L6) that elicited the strongest photostimulation 
response. (B) Response map plot illustrating the peak EPSC amplitude within 
100 ms of the stimulus onset. (C) Whole-cell, current clamp recordings in 

layer 4 following high-frequency electrical stimulation in layer 6. A large 
depolarizing response is elicited after blocking iGluRs, GABARs, and group 2 
mGluRs (red trace). Further blocking of the group 1 mGluRs abolishes the 
response (blue trace). The group 1 mGluR response is isolated in a subtracted 
trace (control-block: black trace). Baselines denoted by horizontal dashed lines. 
Amplitudes were measured at the peak time denoted by the vertical dash line. 
(D) The amplitude of the depolarizing response is signifi cantly reduced in the 
presence of group 1 mGluR antagonists (p < 0.05, t-test).
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FIGURE 2 | Photostimulation of the layer 6 input to layer 4. (A,B) 
Photostimulation with caged glutamate in the cortex (AII) identifi es the 
location of layer 6 input to layer 4. (A) Whole-cell, voltage clamp recordings 
from layer 4 (L4) in response to photostimulation at 256 separate cortical loci 
(colored traces). (B) Response map plot illustrating the peak EPSC 
amplitude within 100 ms of the stimulus onset. (C) After pharmacologically 
blocking receptors for GABAA, GABAB, group 2 mGluR, and NMDA and 
photostimulating in layer 6 (red dot in A), a large AMPA response is elicited 

followed by a slow depolarizing response (red trace). Blocking the group 1 
metabotropic glutamate receptors abolishes the slow depolarizing response, 
leaving the AMPA mediated response (blue trace). The group 1 mGluR response 
is observed in a subtracted trace (control-block: black trace). Baselines denoted 
by horizontal dashed lines. Amplitudes were measured at the peak time 
denoted by the vertical dash line. (D) In the presence of group 1 mGluR 
antagonists, the amplitude of the depolarizing response is signifi cantly reduced 
(p < 0.05, t-test).

an average resting potential of −63.1 ± 4.8 mV and input resistance 
of 216.9 ± 81.3 MΩ.

An important synaptic property of modulatory glutamatergic 
synapses is the presence of postsynaptic group 1 mGluRs (Reichova 
and Sherman, 2004). Thus, we physiologically tested whether the 
intracortical pathway from layer 6 to layer 4 (Stratford et al., 1996) 
can activate a group 1 mGluR response. To identify the precise loca-
tion of the layer 6 inputs, photostimulation with caged glutamate 
(Lam and Sherman, 2007; Shepherd et al., 2003) was used to fi rst 
map the intracortical inputs to layer 4 (Figure 1A) in a total of 12 
neurons from somatosensory (SI: n = 3; SII: n = 3) and auditory (AI: 
n = 3; AII: n = 3) cortical areas. Subsequently, a stimulating electrode 
was targeted to the layer 6 hotspot as identifi ed by photostimulation 
in order to electrically activate the mGluR response (Figure 1A), 
and was also used in related experiments to test for paired-pulse 
effects (see Figure 7 in Lee and Sherman, 2008). In order to isolate 
the response of group 1 mGluRs, iGluRs were pharmacologically 
blocked with DNQX (for AMPARs) and MK-801 (for NMDARs), 
GABARs were blocked with SR 95531 (for GABA

A
Rs) and CGP 

46381 (GABA
B
Rs), and group 2 mGluRs were blocked with MCCG 

(Lee and Sherman, 2009). To evoke the mGluR response, HFS was 
then applied (125 Hz for 800 ms) (McCormick and Von Krosigk, 
1992; Reichova and Sherman, 2004). In all of the tested neurons, 
HFS elicited a large and long lasting depolarizing response (peak 
amplitude: 3.8 ± 0.8 mV; Figure 1C, red trace). Following the addi-
tion of group 1 mGluR antagonists (LY367385 for mGluR1 and 
MPEP for mGluR5; Figure 1C, blue trace), the amplitude of the 
depolarization, measured at the same peak time from the control 

condition, was signifi cantly decreased (1.6 ± 0.5 mV; p < 0.05, t-test; 
Figure 1D). The group 1 response alone could be observed in a sub-
tracted trace (Figure 1C, black trace). Thus, electrical stimulation 
of the layer 6 to layer 4 pathway is capable of eliciting a modulator 
response mediated by group 1 mGluRs.

Since electrical stimulation may activate fi bers of passage, we 
sought to test if this physiological property could be elicited solely 
with photostimulation, which only activates neurons at the cell 
body or proximal dendrites (Lam and Sherman, 2007; Shepherd 
et al., 2003). In a total of nine neurons (SI: n = 2; SII: n = 3; AI: 
n = 2; AII: n = 2), the layer 6 region projecting to layer 4 was iden-
tifi ed via photostimulation (Figures 2A,B). Receptor antagonists 
for GABA

A
, GABA

B
, group 2 mGluRs, and NMDA were then 

added to the recirculating bath, and subsequent photostimula-
tion of the layer 6 inputs to layer 4 elicited a fast AMPA response 
followed by a large, slow depolarizing response (peak amplitude: 
4.6 ± 1.1 mV; Figure 2C, red trace). The amplitude of this slow 
depolarizing response, measured at the same peak time from the 
control condition, was signifi cantly reduced (1.8 ± 0.8 mV; p < 0.05, 
t-test; Figure 2D) in the presence of group 1 mGluR antagonists 
(Figure 2C, blue trace). A subtracted trace demonstrated the iso-
lated group 1 response (Figure 2C, black trace). Thus, photostimu-
lation of the layer 6 to layer 4 pathway is also capable of eliciting 
the modulator response mediated by group 1 mGluRs.

DISCUSSION
Cortical neurons in layer 4 have previously been shown to express 
group 1 mGluRs (López-Bendito et al., 2002; Ryo et al., 1993; 
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Stinehelfer et al., 2000). However, it was largely unclear which fore-
brain pathways activated these receptors. Our results extend these 
previous anatomical fi ndings by demonstrating that the intracorti-
cal projections from layer 6 are capable of postsynaptically eliciting 
the group 1 mGluR response in layer 4 neurons of the sensory 
neocortex. Such mGluRs have also been found to be distributed 
in many other regions of the brain (Cartmell and Schoepp, 2000), 
notably in the thalamus (Reichova and Sherman, 2004), and in the 
hippocampus, where it may function in memory related processes 
(Riedel et al., 1996). Such mGluRs have been implicated in functions 
ranging from the control of burst/tonic fi ring modes of thalamic 
relay cells (Godwin et al., 1996a,b; Reichova and Sherman, 2004) 
to the gating of spike transmission in the hippocampus (Hölscher, 
2002) to development of the synapse in the cerebellum (Kano et al., 
2008), but it is as yet unknown if any of these functions are also 
subserved by the layer 4 cortical mGluRs.

Previous work has demonstrated that the layer 6 to layer 4 path-
way also exhibits small, graded EPSPs and a facilitating response 
to paired-pulse stimulation (Stratford et al., 1996; Tarczy Hornoch 
et al., 1999), and was also observed for 12 cells of this study (not 
shown here but see Lee and Sherman, 2008). This contrasts with 
the synaptic properties of other inputs to layer 4, in particular those 
from thalamic sources, which instead exhibit large EPSPs, a depress-
ing response to paired-pulse stimulation, and no mGluR response 
(Gil et al., 1999; Lee and Sherman, 2008; MacLean et al., 2006; Rose 
and Metherate, 2001). Interestingly, these synaptic properties have 
also been found in the thalamus (Bartlett and Smith, 2002; Li et al., 
2003; Reichova and Sherman, 2004), associated with two distinct 
classes on inputs termed “drivers” and “modulators” (Figure 3).

In the thalamus, the driver pathways, such as the retinogenicu-
late or layer 5 corticothalamic input (Sherman and Guillery, 2005), 
are the principal conduits for information fl ow, while the modula-
tor pathways, such as the layer 6 corticothalamic input (Reichova 
and Sherman, 2004), act instead to modify information transfer 
through thalamus. The fi nding of a mGluR response in the layer 6 
to layer 4 pathway, in addition to previously reported modulator 
properties such as paired-pulse facilitation (Stratford et al., 1996; 

Tarczy Hornoch et al., 1999), suggests that this pathway also acts as a 
modulator (Raizada and Grossberg, 2003) (Figure 3). In this regard, 
the layer 6 corticothalamic neurons represent an intriguing source of 
divergent modulation, with separate branches potentially modulat-
ing both the thalamocortical relay cells and their layer 4 targets.

Functionally, these results suggest that the layer 6 inputs are not 
principally involved in the construction of receptive fi eld prop-
erties in layer 4 of the neocortex, which instead inhere from the 
ascending thalamic input (Figure 3). In this respect, anatomical 
projection size appears to be inversely correlated with functional 
weight, since thalamic inputs comprise roughly 5% of cortical syn-
apses (Binzegger et al., 2004; Latawiec et al., 2000; Lee et al., 2004), 
while the intracortical inputs from layer 6 contribute about 45% 
(Ahmed et al., 1994; Binzegger et al., 2004). Such an inverse func-
tional relationship may represent a general principle of forebrain 
organization, since inputs to the thalamus exhibit a similar pattern, 
e.g. in the visual thalamus, retinogeniculate driver inputs comprise 
5% of thalamic synapses, while layer 6 corticothalamic modulator 
inputs contribute about 30% (Sherman and Guillery, 2002).

Finally, these results suggest that many of the “driver” and “modu-
lator” criteria extend to cortical synapses and may thus serve as a use-
ful physiological metric to trace the fl ow of information throughout 
the forebrain, although it is possible that not all pathways will be 
as distinctly parsed as those described thus far. Several anatomical 
criteria have also been shown to correlate with these physiological 
properties in the thalamus, such as the dense terminal arbors and 
proximal synapses of driver synapses (Figure 3), which also appear 
to be present in neocortical synapses (Ahmed et al., 1994; Huang 
and Winer, 2000; Latawiec et al., 2000), and it will be of interest to 
determine their role in further characterizing driver and modulator 
synapses in the neocortex (Binzegger et al., 2004).
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FIGURE 3 | Summary of driver and modulator inputs to layer 4 neurons in 

sensory neocortex. Driver inputs (red lines) to layer 4 neurons (blue circles) 
originate primarily from thalamic sources, while modulator inputs (green lines) 

originate from the intracortical layer 6 projection. Among the many distinctions, 
modulator inputs activate both iGluRs and mGluRs, while driver inputs only 
activate iGluRs.



Frontiers in Systems Neuroscience www.frontiersin.org February 2009 | Volume 3 | Article 3 | 5

Lee and Sherman Intrinsic cortical modulators

REFERENCES
Ahmed, B., Anderson, J. C., Douglas, R. J., 

Martin, K. A., and Nelson J. C. (1994). 
Polyneuronal innervation of spiny 
stellate neurons in cat visual cortex. 
J. Comp. Neurol. 341, 39–49.

Bartlett, E. L., and Smith, P. H. (2002). 
Effects of paired-pulse and repeti-
tive stimulation on neurons in the rat 
medial geniculate body. Neuroscience 
113, 957–974.

Binzegger, T., Douglas, R. J., and 
Martin, K. A. (2004). A quantita-
tive map of the circuit of cat pri-
mary visual cortex. J. Neurosci. 24, 
8441–8453.

Cartmell, J., and Schoepp, D. D. (2000). 
Regulation of neurotransmitter release 
by metabotropic glutamate receptors. 
J. Neurochem. 75, 889–907.

Ferster, D., Chung, S., and Wheat, H. 
(1996). Orientation selectivity of tha-
lamic input to simple cells of cat visual 
cortex. Nature 380, 249–252.

Gil, Z., Connors, B. W., and Amitai, Y. 
(1999). Efficacy of thalamocortical 
synaptic connections: quanta, inner-
vation, and reliability. Neuron 23, 
385–397.

Godwin, D. W., Van Horn, S. C., 
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