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the same time course as behavior. Alternatively, the output of the 
basal ganglia may provide a learning signal which differs from 
the behavioral instruction. This could lead to a dissociation of 
the activity of SNpr neurons from the behavior. To probe this 
issue, we recorded extracellular spiking activity of neurons in the 
SNpr, one of the two output structures of the basal ganglia, while 
assessing modifi cations in a monkey’s oro-facial learning behavior. 
New cues were intermingled with highly familiar stimuli, ena-
bling comparison of behavioral and neural responses to novel 
and familiar events.

MATERIALS AND METHODS
All experimental protocols were performed in accordance with 
the National Institutes of Health Guide for the Care and Use of 
Laboratory Animals and with the Hebrew University guidelines 
for the use and care of laboratory animals in research, supervised 
by the institutional animal care and use committee. All proce-
dures have been described in more detail in our previous reports 
(Joshua et al., 2008, 2009b). Here we present a summary of these 
methods and describe methods not used in the previous manu-
scripts in detail.

BEHAVIORAL TASK
A monkey (Macaca Fascicularis, female, 4 kg) was trained on a 
classical conditioning task with seven different fractal visual cues. 
Three cues (reward cues) predicted a liquid food outcome (0.4 ml, 
100 ms duration) with a delivery probability of 1/3, 2/3 and 1; 
three cues (aversive cues) predicted an airpuff outcome (100 ms 
duration; 50–70 psi; split and directed 2 cm from each eye) with a 
delivery probability of 1/3, 2/3 and 1. The 7th cue (the neutral cue) 
was never followed by a food or an airpuff outcome.

INTRODUCTION
Experimental and modeling studies have emphasized the involve-
ment of the basal ganglia in reinforcement learning (Schultz et al., 
1997; Sutton and Barto, 1998). Dopaminergic neurons respond 
when there is a reward prediction error (Hollerman and Schultz, 
1998; Morris et al., 2004; Bayer and Glimcher, 2005; Joshua et al., 
2008); the dopaminergic signal enables reshaping of cortico-
striatal mapping (Reynolds et al., 2001; Shen et al., 2008) and 
modifi cation of behavior. In fact studies of the activity of striatal 
neurons during learning have shown that both behavior and neu-
ral activity rapidly adapt to new events (Lauwereyns et al., 2002; 
Pasupathy and Miller, 2005; Williams and Eskandar, 2006; Kimchi 
and Laubach, 2009).

Early studies provided evidence that the Substantia Nigra pars 
reticulata (SNpr) neurons have both sensory and motor related 
responses (DeLong et al., 1983; Hikosaka and Wurtz, 1983a,b; 
Nishino et al., 1985; Schultz, 1986). More recent studies have shown 
that the SNpr motor and sensory signals depend on the context of 
the movement (Handel and Glimcher, 2000). One contextual mod-
ulation is the reinforcement associated with a movement (Gulley 
et al., 2002; Sato and Hikosaka, 2002; Wichmann and Kliem, 2004). 
These studies of the SNpr and most studies of the basal ganglia 
during animal conditioning have focused on activity after animals 
had been extensively trained and reward associations established. In 
this manuscript we analyzed the activity of SNpr neurons during 
the learning of new associations.

A number of computational models posit that the basal ganglia 
output encodes future actions and projects behavioral instruc-
tions (e.g., by gating or enabling selected actions) to the cortex 
and brainstem motor centers (Chevalier and Deniau, 1990; Mink, 
1996). This suggests that SNpr activity would be modifi ed along 

Novelty encoding by the output neurons of the basal ganglia

Mati Joshua1,2*, Avital Adler1,2 and Hagai Bergman1,2

1 Department of Medical Neurobiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
2 The Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem, Israel

Reinforcement learning models of the basal ganglia have focused on the resemblance of the 
dopamine signal to the temporal difference error. However the role of the network as a whole 
is still elusive, in particular whether the output of the basal ganglia encodes only the behavior 
(actions) or it is part of the valuation process. We trained a monkey extensively on a probabilistic 
conditional task with seven fractal cues predicting rewarding or aversive outcomes (familiar 
cues). Then in each recording session we added a cue that the monkey had never seen before 
(new cue) and recorded from single units in the Substantia Nigra pars reticulata (SNpr) while 
the monkey was engaged in a task with new cues intermingled within the familiar ones. The 
monkey learned the association between the new cue and outcome and modifi ed its licking 
and blinking behavior which became similar to responses to the familiar cues with the same 
outcome. However, the responses of many SNpr neurons to the new cue exceeded their 
response to familiar cues even after behavioral learning was completed. This dissociation 
between behavior and neural activity suggests that the BG output code goes beyond instruction 
or gating of behavior to encoding of novel cues. Thus, BG output can enable learning at the 
levels of its target neural networks.

Keywords: reinforcement learning, substantia nigra pars reticulata, primate, spikes

Edited by:

Ann M. Graybiel, Massachusetts 
Institute of Technology, USA

Reviewed by:

Ranulfo Romo, Universidad Nacional 
Autónoma de México, Mexico
Richard Courtemanche, 
Concordia University, Canada

*Correspondence:

Mati Joshua, Department of Medical 
Neurobiology, The Hebrew University – 
Hadassah Medical School, POB 12272, 
Jerusalem 91120, Israel. 
e-mail: mati@alice.nc.huji.ac.il



Frontiers in Systems Neuroscience www.frontiersin.org January 2010 | Volume 3 | Article 20 | 2

Joshua et al. Novelty encoding by basal ganglia output

After 6 months of training on the seven cue task, we implanted a 
recording chamber and recorded neural activity from the basal gan-
glia (Joshua et al., 2008, 2009b). In every recording session (usually 
two sessions per day) we added a fractal visual cue that had never been 
introduced to the monkey before (new cue). The cue could predict an 
aversive or reward outcome with a probability of 1/3 or 2/3. Figure 1A 
shows an example of the fl ow of the task. All cues (new and familiar) 
occupied the full screen of 17” LCD monitor located 50 cm from the 
monkey’s eyes and were presented for 2 s. The cues were followed by 
an outcome/no outcomes (indicated also by different sounds) and 
then by a variable inter- trial interval (4–8 s).

Due to the probabilistic structure of the behavioral task and in 
order to equalize the average occurrence of each outcome, the famil-
iar and new cues (that had an uncertain outcome; i.e. p not equal 1) 
were introduced three time more than the familiar cues with p = 1. 
All trials (familiar and new cues) were randomly interleaved with 
the occurrence ratio noted above. The analysis of the responses of 
the same group of cells to the familiar events is reported elsewhere 
(Joshua et al., 2009b).

RECORDING AND DATA ACQUISITION
During recording sessions, the monkey’s head was immobilized 
and eight glass-coated tungsten microelectrodes (impedance 
0.2–0.8 MΩ at 1,000 Hz), confi ned within a cylindrical guide 
(1.65-mm inner diameter), were advanced separately (EPS, Alpha-
Omega Engineering, Nazareth, Israel) into the target. The electrical 
activity was amplifi ed with a gain of 5 K and band-pass fi ltered 
with a 1–6,000 Hz four-pole Butterworth fi lter and continuously 
sampled at 25 KHz by 12 bits ± 5 V A/D (AlphaLab, Alpha-Omega 
Engineering). Spike activity was sorted and classifi ed online using 
a template-matching algorithm (ASD, Alpha-Omega Engineering). 
Spike-detection pulses and behavioral events were sampled at 
25 kHz (AlphaLab, Alpha-Omega Engineering).

Recorded units were subjected to offl ine quality analysis that 
included tests for rate stability, refractory period (less than 2% of 
the inter spike intervals were less than 2 ms), waveform isolation 
(Isolation score > 0.8 Joshua et al., 2007) and recording time (more 
than 20 min continuously).

SNpr neurons were identifi ed during recording according to the 
electrophysiological characteristics (narrow spike shape and high fi r-
ing rate) of the cells (DeLong et al., 1983) and the fi ring characteristics 
of neighboring neurons and fi bers (e.g., fi bers of the internal capsule, 
SN pars compacta dopaminergic neurons, and fi bers of the oculomo-
tor nerve). To validate classifi cation we carried out offl ine analyses of 
the neurons’ extracellular waveform shape and fi ring rate. Waveform 
shape was quantifi ed as the duration from the fi rst negative peak to 
the next positive peak; rate was defi ned as the average rate during the 
whole recording session. The results of this analysis were reported in 
previous manuscript (see Figure 4 in Joshua et al., 2008).

While the monkey was engaged in this same task with the famil-
iar and new cues we also recorded the activity of cells from the 
external and internal segment of the globus pallidus (GPe and GPi 
respectively) and from the tonic active neurons of the striatum 
(TANs) and the midbrain dopaminergic neurons. The analysis of 
these populations did not reveal the difference between behavior 
and neural activity that we found for SNpr neurons and therefore 
was not included in this report.

STATISTICAL ANALYSIS
Analysis of behavior
A computerized digital video camera recorded the monkey’s 
face at 50 Hz. Video analysis was carried out on custom software 
to identify periods when the monkey closed its eyes (Mitelman 
et al., 2009). The mouth was monitored by an infrared refl ec-
tion detector. Based on these recordings we detected times in 
which the monkey moved its mouth by implementing a threshold 
based method. We compared mouth movement detection with 
the video movies over several recording days and found that they 
were consistent.

For each trial we defi ned two variables:
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=

eerwise 
 

⎧
⎨
⎩

⎫
⎬
⎭

Blink

1 if  monkey closed its eyes in the last 500  ms  of  

cu= ee epoch

0 otherwise 

 

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Note that the outcome (airpuff, food or their omission) immedi-
ately followed the cue epoch, and therefore the behavior of the mon-
key at the end of the cue epoch refl ected outcome anticipation.

Behavior on trial t was defi ned as the difference between the 
licking and blinking response:

Behaviour(t) = Lick(t)−Blink(t)
This defi nition may appear ambiguous since behavior was 

scored zero in trials when the monkey did not lick or blink, and 
in trials where it both licked and blinked. However we found 
coincident licking and blinking (in the last 500 ms of a trial) to 
be rare in our data set (less than 5% of the trials). Analysis of 
behavior that excluded these trials yielded similar results (data 
not shown).

The reduction of the continuous behavior to a single value 
for each trial enabled an ordered comparison of the different 
responses. It should be noted, separating the behavior into lick 
and blink responses would have required two different tests to 
determine behavioral changes; leading to multi comparison 
diffi culties which would also limit direct comparison with the 
neural data.

To reduce the trial by trial fl uctuations in the behavioral 
responses we smoothed the behavior vector by a moving average 
of 20 new trials. To compare the responses to the new events to the 
responses in the familiar trials we grouped the familiar trials that 
were introduced between the fi rst and last trials of the group of 20 
new trials (the same grouping was applied to the neural data – see 
below). Finally, to enable comparison between different sessions, 
which occasionally differed in the baseline of the behavior, we nor-
malized all smoothed behavioral responses between 0 and 1; i.e., 
in each session the behavior response [X(t)] was transformed to 
a behavior-index by (X(t)-min)/(max-min), where min and max 
are the minimal and maximal values of the smoothed behavioral 
responses to all events in that session. We repeated the behavio-
ral analysis with different time windows and threshold detections 
for licking, and found similar results to those reported here (data 
not shown).
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Comparing responses to the new cue with responses to familiar cues 
in the same category
Our main goal was to compare behavior and neural activity. To mini-
mize the confounding effects that could arise from differences in the 
analysis methods we ran the same statistical analysis on both cell 
activity and behavior. We used the familiar trials that were recorded 
between the fi rst and last of the group of 20 new trials to test whether 
responses (fi ring rate for cells or the behavioral response) to the new 
cue resembled the response to any of the familiar cues with the same 
outcome (t-test, p < 0.05). A response to a new cue was considered to 
be signifi cantly different from the responses to the familiar cues of 
the same category if it was signifi cantly different from all responses 
to the familiar events and if the response to the new event did not 
fall between the responses to the familiar events. We repeated this 
test without the latter condition and obtained similar results. In 
addition, we only ran the test on the new and familiar cues with 
the same outcome  probability; this analysis yielded similar results 
(i.e. dissociation of cells from behavior) to those reported below. 
We therefore decided to report the results of our most conservative 
test; i.e., the response to the new cue was considered to be signifi -
cantly different from the responses to the familiar cue only if it was 
signifi cantly different from all responses to the familiar events of 
the same category and if the response to the new event did not fall 
between the responses to the familiar events.

In the analysis of the neural data we did not try to characterize 
the learning curve of each cell separately since only a small frac-
tion of our cells reached the quality criteria for the whole session. 
Some cells reached the quality criteria from the fi rst trial but not 
in later parts of the session while others were isolated only in the 
middle of the session.

To test for the temporal structure of the modulations we repeated 
the test for differences between familiar and new events in bins of 
200 ms after cue presentation during the cue presentation epoch 
(2 s). In this analysis we were interested in quantifying the time 
course of modulation after behavior reached saturation and hence 
we performed this analysis only on trials that were recorded after 
more than 50 presentations of the new cue.

For all the above analyses we did not use non-probabilistic 
(p = 1.0) cue events for several reasons. First, previous studies 
have shown that basal ganglia cells may encode the uncertainty of 
probabilistic events (Fiorillo et al., 2003; Tan and Bullock, 2008). We 
therefore used only familiar cues with the same certainty (note that 
for p = 1/3 and 2/3 the outcome uncertainty, which may be defi ned 
as the outcome variability or entropy, is equal). Second, since the 
new cues were always probabilistic (p = 1/3 or 2/3) the monkey 
could have learned this meta-rule. Finally, the non-probabilistic 
cues were presented much less often than the probabilistic events (to 
enable an equal number of outcome delivery and omission trials) 
and hence tests involving these cues had lower statistical power.

RESULTS
We trained a monkey extensively on a classical conditioning task 
(5 days/week for 6 months, Joshua et al., 2008, 2009b). During the 
training period the monkey learned to reliably associate the seven 
visual cues with the probability of food (reward cues) or airpuff 
(aversive cue) outcomes. Then, after implantation of the recording 
chamber and a recovery period we resumed the behavioral session 

in parallel with the neural recordings. In every recording session 
we introduced one new cue that had never been introduced before. 
The monkey learned to associate the new cue with a probabilistic 
rewarding or aversive outcome (Figure 1A). Data were collected 
from101 SNpr cells, of which 66 passed the study inclusion criteria, 
while the monkey was engaged in the behavioral task. Of the 66 cells, 
14 were recorded for two recording sessions (but on the same day) 
and were used twice in the analysis, yielding n = 80 in the analysis 
database. We repeated the analysis including only one recording 
session per cell and obtained similar results (data not shown). The 
average analysis time was 54 min per neuron, which included on 
average 57 new trials intermingled within 289 familiar trials.

Figure 1A shows the fl ow of the behavioral task; new cues were 
randomly interleaved with familiar cues. Figure 1B shows average 
behavioral response to new and familiar cues. We found that behav-
ior adapted very rapidly to the rewarding events and more slowly to 
the aversive events. In both cases, after 50 new trials the behavioral 
responses to the new event resembled the oro-facial responses to 
the corresponding familiar event. Note that in Figure 1 each data 
point is an average of 20 trials; thus the difference between reward 
and aversive responses in the fi rst bin refl ects the different time 
scale of learning and not the ability of the monkey to predict the 
fi rst trial outcome.

Figure 2 shows examples of the neural responses of two SNpr 
cells and the associated licking and blinking behavior. The changes 
in activity in the fi rst cell (Figures 2B,C) matched the modifi ca-
tion in the monkey’s behavior (Figure 2A). At fi rst, both neural 
activity and the behavioral response to the new aversive stimulus 
were between the responses to the familiar rewarding and aver-
sive cues. After ∼15 new trials both resembled the response to the 
familiar aversive predicting cues. However, a signifi cant fraction 
of SNpr cells did not show the same time course for behavior and 
neural learning. In Figures 2D–F we show an example of a SNpr 
cell that did not follow the behavioral learning. Even though the 
monkey’s behavioral response after several new trials was similar to 
its response to the familiar aversive cue (Figure 2D), the response of 
this SNpr cell (Figures 2E–F) to a new aversive cue differed from the 
responses to all familiar cues during the entire recording session.

We found that these two different profi les of responses were 
observed in other SNpr neurons. Figure 3 shows an analysis of the 
fraction of cells and the fraction of behavior sessions in which the 
responses to the new cue were different from the responses to the 
familiar cue of the same category. One possible problem in com-
paring behavioral and neural data is the difference in the statistical 
methods. In Figure 3 we tried to minimize this confounding factor 
by performing the same tests on both the behavioral and neural 
data. Figure 3 shows that after 50 new trials the behavioral responses 
to the new aversive event resembled the oro-facial responses to the 
corresponding familiar event (black line). This conclusion was valid 
not only for the average response (Figure 1B) but also for individual 
sessions (Figure 3A). By contrast to the behavioral response, many 
SNpr neurons (Figure 3A, red curve) responded differentially to 
the new and familiar aversive cues even after behavioral learning 
had reached its ceiling. Similarly, a large fraction of SNpr neurons 
maintained different responses to the new rewarding cue even after 
50 new trials, despite an almost immediate behavioral adaption to 
the new rewarding trials (Figure 3B).
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To facilitate comparison of behavior and neuron activity, in 
Figure 3 we disregarded the temporal profi le of the responses of 
SNpr neurons and used a single number (total spike count dur-
ing cue presentation) to quantify the neural response. To further 
quantify the response of SNpr neurons to new events we inves-
tigated the temporal pattern of the neural responses to the new 
cues after behavioral learning had saturated (i.e. after more than 
50 presentation of the new cue, see examples at Figures 2C,F). 
Figure 4 shows the analysis of the temporal pattern of the aver-
age responses to the new events. As found previously for average 

responses to familiar events (Joshua et al., 2009a,b) the responses 
to the new cues were diverse. They include both transient and sus-
tained responses (Figures 4A,D) and both increases and decreases 
in discharge rate (Figures 4B,E). To test for the specifi c contribution 
of the new events to the cell response we compared the response to 
the new cue and the response to familiar cues of the same category 
at different times after cue presentation (in a 200-ms bin). This 
analysis used the response to familiar events as a dynamic baseline; 
thus any modulation of the activity beyond these responses can be 
attributed to the novelty of the new cue. We found that most of the 
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FIGURE 1 | Task and monkey behavior. (A) A schematic example of the fl ow of 
the behavioral task. Cues were followed by an outcome in a probabilistic 
manner. In each recording session a new cue was randomly interleaved 
between familiar cues. In this example the right fractal image is a new cue that 
follows familiar cues (the two left cues). (B) Behavior index (average ± SEM, 
across behavioral sessions) as a function of the number of new aversive trials. In 
each session the behavioral response (Lick – Blink) was calculated in a moving 

average of 20 new trials (and corresponding familiar events). Bin 1 is therefore 
the average of the fi rst 20 trials, and so on. The responses were normalized 
between 0 and 1 for each session and then averaged across sessions. Top – new 
cue is p = 2/3 aversive cue. Bottom- new cue is the p = 1/3 aversive cue, The N 
in the top-right corner of each plot is the number of recording sessions. (C) 
Same as (B) for the sessions with new reward cues (Top, p = 2/3; bottom, 
p = 1/3 new reward cues).
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FIGURE 2 | Examples of the activity of two SNpr neurons during 

presentation of new and familiar cues. (A) The behavior-index during the 
learning of a new aversive cue as a function of the new and total (new + familiar) 
number of trials in a single behavioral session. The new cue predicted the 
aversive outcome with a probability of 2/3. Responses were smoothed by a 
moving average of 20 new trials (black line) or a moving average of 20 
corresponding familiar trials (blue and red lines for the rewarding and aversive 
events, respectively). Dots on the blue and red lines mark times in which the 
responses to the new cue were signifi cantly different from the response to the 
familiar cue (t-test, p < 0.05). (B) Response of a SNpr neuron to familiar and new 
cues. Spike rate (±SEM shaded) as a function of the new and total number of 

trials. The cell was recorded at the same time as the behavior shown in (A); the 
time scales of neural and behavioral changes of this neuron are equal. (C) The 
peri-stimulus time histogram (PSTH) of the SNpr neuron from (B) during the fi rst 
twenty trials of recording (top) and the last 20 trials of recording (bottom). PSTHs 
were constructed by summing activity across trials in a 1 ms resolution aligned 
at cue presentation (time = 0) and then smoothed with a Gaussian window (SD 
of 40 ms). (D–F) Same as (A–C) for a different SNpr cell and a different recording 
session. To enable visualization of the sharp response to some of the events, the 
PSTH of this cell was smoothed with SD = 20 ms. Unlike the fi rst neuron (A–C), 
the neural responses of this cell to the familiar cues and new cue are different 
even after saturation of the behavior.

cells that responded differently to new and familiar events encoded 
the difference at the fi rst second of the cue presentation epoch 
(Figures 4C,F). Furthermore the majority of the cells increased 

their fi ring rate beyond the responses to the familiar cues and only 
very few showed a discriminative (between the new and the familiar 
cue) decrease in discharge rate (Figures 4C,F).
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the new cues predicting aversive outcome superimposed for all cells. For this 
analysis we used only responses after the 50th presentation of the new cue 
and excluded cells with fewer than 20 new trials. PSTH were smoothed with 
a Gaussian window with SD = 20 ms and the rate baseline was subtracted to 
enable comparison between responses. (B) The fraction of SNpr neural 
responses that showed a signifi cant (2σ rule) increase (blue) or decrease (red) 

in their discharge rate in response to the new cue after saturation of 
behavioral learning. (C) The temporal pattern of SNpr encoding of new cues. 
The fraction of cells in which the response to the new aversive cue was 
signifi cantly different than the response to familiar aversive events as a 
function of the time after cue presentation in bins of 200 ms. Black – all 
responses, blue/red – responses with increase/decrease of discharge rate. 
(D–F) Same as (A–C) for the familiar and new cues predicting 
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DISCUSSION
Reinforcement learning depends on reliable valuation of behavioral 
states and actions. Previous studies have shown that input and 
internal basal ganglia activity are related to valuation or action 
selection (e.g., Arkadir et al., 2004; O’Doherty et al., 2004; Lau and 
Glimcher, 2008). However it is not known whether activity in the 
output structures of the basal ganglia represents the behavioral 
instruction or is part of the valuation process. The connection 
between SNpr neurons to brainstem motor areas (Hikosaka and 
Wurtz, 1983c; Redgrave et al., 1992) suggests that modulations in 
the SNpr activity should be tightly related to motor performance. 
Previous work has shown that the relation between actual move-
ment and the activity of SNpr neurons depends on the context of 
the movement, which includes the association of a movement with 
rewards (Handel and Glimcher, 2000; Sato and Hikosaka, 2002). In 
this manuscript, we have shown that the activity of a large fraction 
of SNpr neurons is even further dissociated from behavior. We 
found that although the behavior does not distinguish between new 
and familiar events, the SNpr neural activity does dissociate these 
events. Extensive presentation of the new cue would probably lead 
to similarity in the responses to the new and familiar cues; hence, 
we have shown that SNpr neural activity continues to change even 
after behavior saturates. This dissociation indicates that the basal 
ganglia can play a role in modulating the activity of their targets 
beyond instruction or gating of behavior.

Accurate valuation may not be obligatory to achieve the optimal 
policy (Sutton and Barto, 1998). In this study, as in many cases of 
behavioral learning, the learning process is not complete even after 
the establishment of the behavior for the new stimuli. For example 
learning might still be needed to better estimate the outcome prob-
ability (Bach et al., 2009). The SNpr may signal the noisier (ambigu-
ous) estimate of the outcome probability of the novel stimuli, which 
would lead to downstream updating of the outcome probability. 
Thus, the basal ganglia output may adjust the ongoing learning 
process of other neural structures (thalamo-cortical or brainstem 
motor centers) by signaling new events. In the current experiment 
we did not identify the SNpr neurons according to their target 
neurons. Thus the differences between cells response properties 
found here could be refl ected in their targets; e.g. cells that are dis-
sociated from behavior project to the cortex via the thalamus and 
those cells that resemble behavior project to the brain stem motor 

areas. Finally, our results concur with other studies  showing novelty 
encoding in the basal ganglia (Ljungberg et al., 1992; Redgrave and 
Gurney, 2006; Wittmann et al., 2008). These studies focused on the 
initial learning period. Since we only had one or two new cues per 
day, our task design is more suitable for exposing the long term 
effects of the new cue.

How does the basal ganglia network generate the patterns of 
activity we have observed? One hint might come from comparing 
the SNpr to other populations in the basal ganglia. During the same 
task we also recorded the activity from the GPe, GPi, TANs and the 
midbrain dopaminergic neurons. The analysis of these populations 
did not reveal the difference between behavior and activity that we 
found for SNpr neurons. The lack of encoding in GPe neurons raises 
the possibility that novelty encoding in the SNpr is due to the direct 
projection from the striatum to the SNpr. However axonal tracing 
studies have shown that neurons that project from the striatum to 
the SNpr have collaterals that terminate in the GPe (Levesque and 
Parent, 2005; Kita, 2007). This suggests that striatal novelty encoding 
should also be found in the GPe. Nevertheless novelty encoding in 
the GPe could be much weaker (and hence not detected by our meth-
ods) and the convergence of many GPe cells on SNpr might lead to 
amplifi cation of the novelty signal. Similarly, we do not reject the 
possibility that the dopaminergic neurons are involved in generating 
the SNpr unique signal. Previous studies have shown that novelty is 
encoded in the dopaminergic neurons in the fi rst few trials of a new 
task (Ljungberg et al., 1992). In the current manuscript we focused 
on the effects of a new cue after more than 50 trials. Although we 
did not fi nd effects for the dopaminergic neurons, these cells have a 
very low fi ring rate and slight changes in their discharge rate may not 
be detected by our methods. Finally, the difference between GPi and 
SNpr is consistent with the larger modulations of the SNpr for the 
familiar events (Joshua et al., 2009b). Further studies are therefore 
needed to shed light on the sources of the responses of the SNpr 
neurons. In any case, the current study shows that activity in the 
output structures of the basal ganglia represents part of the valuation 
process and does not only encode the behavioral instruction.
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