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that α-CaMKII heterozygous knockout (α-CaMKII+/−) mice are 
severely impaired in working memory (Yamasaki et al., 2008), a 
trial-specifi c and short-term memory that can be distinguished 
from long-lasting reference memory by its transience (Becker et al., 
1980). A dysfunction in working memory is a proposed functional 
endophenotype of schizophrenia and other psychiatric disorders 
in humans (Goldman-Rakic, 1994). Through our comprehensive 
behavioral test battery, we also revealed that α-CaMKII+/− mice 
show various dysregulated behaviors including increased locomo-
tor activity, decreased anxiety-like behavior, decreased depression-
like behavior, and periodic mood-change-like behavior (Yamasaki 
et al., 2008). Biochemical assays revealed several changes such 
as increased dopamine turnover in the striatum, and increased 
dopamine D1-like receptor binding in the dentate gyrus (DG) 
(Yamasaki et al., 2008). In addition, we observed that the molecular, 
morphological, and electrophysiological features of DG neurons of 
the α-CaMKII+/− mice are strikingly similar to those of immature 
neurons of wild type mice, and proposed that an “immature DG” 
in adulthood might serve as a promising candidate endophenotype 
of schizophrenia and other human psychiatric disorders (Yamasaki 
et al., 2008).

INTRODUCTION
The alpha isoform of calcium/calmodulin-dependent protein 
kinase II (α-CaMKII) is a serine/threonine protein kinase that 
is abundant in the forebrain (Lisman et al., 2002). It is activated 
by Ca2+/calmodulin, and phosphorylates various protein sub-
strates such as AMPA-type glutamate receptors (AMPARs), syn-
apsin I, tyrosine hydroxylase, L-type Ca2+ channels, and MAP-2. 
Importantly, α-CaMKII can function as a switch molecule with 
the ability to be autophosphorylated. The phosphorylation of 
α-CaMKII at Thr286 enables the kinase to remain active even after 
the dissociation of Ca2+/calmodulin (Griffi th, 2004; Irvine et al., 
2006). The role of α-CaMKII has been examined extensively at 
both molecular and behavioral levels. Its activity is essential for 
the induction of long-term potentiation (LTP) in hippocampal 
slices (Malinow et al., 1989). A number of studies of α-CaMKII 
mutant mice have suggested a function of the kinase in spatial 
learning and memory (Silva et al., 1992; Bach et al., 1995; Mayford 
et al., 1996; Giese et al., 1998; Frankland et al., 2001; Elgersma et al., 
2002, 2004; Miller et al., 2002; Wang et al., 2003) and in regulating 
anxiety-like and aggressive behaviors (Chen et al., 1994; Yamasaki 
et al., 2008; Hasegawa et al., 2009). In addition, we demonstrated 
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The expression of immediate-early genes (IEGs) such as c-fos 
and arc have been used widely as a neuronal activity marker since 
they are rapidly and transiently induced by neuronal stimuli in 
the brain (Morgan et al., 1987; Guzowski et al., 2005). Moreover, 
genetic engineering technology has enabled the visualization 
of behaviorally activated neurons using reporter genes in mice 
(Smeyne et al., 1992; Wilson et al., 2002; Barth et al., 2004; Wang 
et al., 2006; Reijmers et al., 2007; Matsuo et al., 2008). In order 
to identify the dysfunctional brain regions in α-CaMKII+/− mice 
performing a working memory task, we conducted IEG expression 
mapping in α-CaMKII+/− mice after performance in a working 
memory version of the eight-arm radial maze test. c-Fos expression 
was abolished almost completely in the DG and was signifi cantly 
reduced in neurons in the CA1 and CA3 areas of the hippocampus, 
central amygdala and medial prefrontal cortex (mPFC) compared 
to the wild-type littermates. Using an arc promoter driven dVenus 
transgenic mice (Eguchi and Yamaguchi, 2009), we observed that 
arc gene activation occurred in mature, but not immature neurons 
in the wild-type DG. These results suggest novel insights for the 
neural circuits underlying spatial mnemonic processing during 
a working memory task, and represent further evidence for the 
involvement of α-CaMKII in the proper maturation and integra-
tion of DG neurons into these circuits.

MATERIALS AND METHODS
ANIMALS
α-CaMKII+/− mice were obtained from Jackson Laboratories (Bar 
Harbor, Maine). They were bred for more than 20 generations 
on the C57BL/6J background and kept being backcrossed on the 
strain continuously thereafter. Mice were housed one per cage after 
weaning, since the mutants tend to kill their cagemates if group-
housed, in a room with a 12-h light/dark cycle (lights on at 7:00 
a.m.) with access to food and water ad libitum. Behavioral testing 
was performed between 9:00 a.m. and 6:00 p.m. The generation of 
the Arc-dVenus transgenic mice is detailed in elsewhere (Eguchi and 
Yamaguchi, 2009). The transgenic mice were obtained by pronu-
clear microinjection of the transgene into fertilized eggs of BDF1 
(C57BL/6CrSlc × DBA/2CrSlc). Founder mice were bred for three 
generations on the BDF1 genetic background and crossed with α-
CaMKII+/− mice. Behavioral testing procedures were approved by 
the Animal Care and Use Committee of Kyoto University Graduate 
School of Medicine.

EIGHT-ARM RADIAL MAZE TEST
Fully-automated eight-arm radial maze apparatuses (O’Hara & Co., 
Tokyo, Japan) were used. The fl oor of the maze was made of white 
plastic, and the wall (25 cm high) consisted of transparent plastic. 
Each arm (9 × 40 cm) radiated from an octagonal central starting 
platform (perimeter 12 × 8 cm) like the spokes of a wheel. Identical 
food wells (1.4 cm deep and 1.4 cm in diameter) with pellet sensors 
were placed at the distal end of each arm. The pellet sensors were 
able to automatically record pellet intake by the mice. The maze 
was elevated 75 cm above the fl oor and placed in a dimly-lit room 
with several extra-maze cues. During the experiment, the maze was 
maintained in a constant orientation. One week before pretraining, 
animals were deprived of food until their body weight was reduced 
to 80–85% of the initial level. Pretraining started on the 8th day. 

Each mouse was placed in the central starting platform and allowed 
to explore and consume food pellets scattered on the whole maze 
for a 30-min period (one session per mouse). After completion of 
the initial pretraining, mice received further pretraining to take a 
food pellet from each food well after being placed at the distal end of 
each arm. A trial was fi nished after the mouse consumed the pellet. 
This was repeated eight times, using eight different arms, for each 
mouse. After these pretraining trials, actual maze acquisition trials 
were performed. In the spatial working memory task of the eight-
arm radial maze, all eight arms were baited with food pellets. Mice 
were placed on the central platform and allowed to obtain all eight 
pellets within 25 min. A trial was terminated immediately after all 
eight pellets were consumed or 25 min had elapsed. An “arm visit” 
was defi ned as traveling more than 5 cm from the central platform. 
After each arm choice, all the doors except for the chosen arm were 
closed. The chosen arm was also closed after the mice returned to 
the center platform and the mouse was confi ned in the platform. 
After 5-s confi nement, all the doors are opened. This process was 
repeated automatically until the termination of a trial. The animals 
went through one trial per day. For each trial, arm choice, latency 
to obtain all pellets, distance traveled, number of different arms 
chosen within the fi rst eight choices, the number of arm revisited, 
and omission errors were automatically recorded. After the tests, the 
apparatus were cleaned with diluted sodium hypochlorite solution 
to prevent a bias due to olfactory cues. Data acquisition, control of 
guillotine doors, and data analysis were performed by Image RM 
software. The Image RM was based on the public domain NIH 
Image program (developed at the U.S. National Institutes of Health 
and available on the Internet at http://rsb.info.nih.gov/nih-image/), 
which were modifi ed for each test by Tsuyoshi Miyakawa (available 
through O’Hara & Co., Tokyo, Japan).

ANALYSIS OF c-FOS EXPRESSION AFTER THE EIGHT-ARM 
RADIAL MAZE TEST
Ten- to thirteen-week-old wild-type mice (n = 14) and α-
CaMKII+/− mice (n = 14) were subjected to the working memory 
version of the eight-arm radial maze test. After the mice were trained 
for 25 trials, the half of these mice were perfusion-fi xed with 4% 
PFA and 0.5% picric acid in 0.1 M PBS 90 min after the end of this 
task, and the rest group were fi xed without any trials in the same 
day. The brains were removed and further immersion-fi xed in the 
same fi xative at 4°C overnight and 35-µm-thick coronal sections 
were prepared on a cryostat (Leica). The immunostaining was per-
formed by incubating free-fl oating sections with rabbit anti-c-Fos 
polyclonal antibody (1:20,000 dilution; CALBIOCHEM) at room 
temperature overnight. Incubation with a biotinylated anti-rabbit 
IgG made in goat (Vector Laboratories) was followed by incubation 
with the VECTASTAIN ABC kit (PK-4001, Vector Laboratories) for 
1 h and 0.02% DAB/0.02% H

2
O

2
. Sections at each level of +2.10, 

−1.34, −2.30, and −2.92 mm from the bregma were selected for 
the counting of c-Fos positive cells (see Figure 2Q). Structures 
of ROI were anatomically defi ned according to The Mouse Brain 
in Stereotaxic Coordinates (Franklin and Paxinos, 2008). Images 
of specifi ed regions or subdivisions were acquired using a light 
microscope (Zeiss Axioplan2) outfi tted with a CCD camera bilat-
erally by an experimenter blind to the genotypes and behavioral 
 condition. Thresholded images of c-Fos  immunopositive nuclei 

http://rsb.info.nih.gov/nih-image/
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were automatically counted using ImageJ. (http://rsb.info.nih.
gov/ij/).

ANALYSIS OF Arc EXPRESSION AFTER THE EIGHT-ARM 
RADIAL MAZE TEST
To generate experimental mice, α-CaMKII+/− mice were crossed 
with Arc-dVenus transgenic mice (Eguchi and Yamaguchi, 2009), 
and Arc-dVenus positive and α-CaMKII+/− mice were compared 
with Arc-dVenus positive and α-CaMKII+/+ mice. The working 
memory version of the eight-arm radial maze test was performed 
with 10-week-old male mice. After the mice were trained for 37 
trials, these mice were perfusion-fi xed with 4% PFA and 0.5 % 
picric acid in 0.1 M PBS 5 h after the end of this task. The brains 
were removed and 35-µm-thick coronal sections were prepared 
on a cryostat (Leica). Sections were immunostained for calbindin 
and calretinin as described above, and observed using a confocal 
laser-scanning microscope (LSM5, Zeiss).

STATISTICAL ANALYSIS
Statistical analysis was conducted using StatView (SAS Institute, 
Cary, NC). Data were analyzed by ANOVA unless noted otherwise. 
Values in tables and graphs were expressed as mean ± SEM.

RESULTS
REDUCED c-FOS EXPRESSION AFTER THE WORKING MEMORY VERSION 
OF THE RADIAL MAZE TASK IN α-CAMKII+/− MICE
In a previous study, we reported that α-CaMKII+/− mice show 
a profound defi cit in spatial working memory. In the working 
memory version of the eight-arm radial maze task, wild-type mice 
improved their performance by training in the number of different 
arm choices in the fi rst eight entries and made signifi cantly fewer 
revisiting errors than the mutant mice (Yamasaki et al., 2008). 
To gain insight into the brain regions impaired in the mutant 
mice, we performed c-Fos mapping in wild-type littermates and 
α-CaMKII+/− mice. The expression of immediate-early genes 
(IEGs) such as c-fos and arc have been used widely as neuronal 
activity markers since they are rapidly and transiently induced 
by neuronal stimuli in the brain (Morgan et al., 1987; Guzowski 
et al., 2005). Mice were subjected to a working memory version 
of the eight-arm radial maze test (Figure 1). At 90 min after the 
mice were trained for 25 trials, we performed immunohistochem-
istry for c-Fos (Figure 2). In wild-type mice, the density of c-Fos-
 positive cells was increased in most regions examined, including 
the CA1, CA3, and DG regions of the hippocampus, entorhinal 
cortex, visual cortex, central and medial amygdaloid nucleus, and 

FIGURE 1 | Working memory version of the eight-arm radial maze test. 

(A) Experimental design. Wild-type (n = 14) and α-CaMKII+/− mice (n = 14) were 
subjected to the working memory version of the eight-arm radial maze test for 25 
trials. Ninety minutes after the last trial, half of the mice were sacrifi ced for c-Fos 
immunostaining (RM), and the rest group were sacrifi ced directly from their 
home cage without any trials in the same day (HC). (B,C) Both wild-type and the 
mutant mice improved their performance by training in the number of different 

arm choices in the fi rst eight entries [WT: F(12, 156) = 14.069, P < 0.0001, 
α-CaMKII+/−: F(12, 156) = 1.830, P = 0.0477, repeated measures ANOVA]. 
However, the α-CaMKII+/− mice performed signifi cantly worse than control wild 
type littermates with respect to the number of different arm choices in the fi rst 
eight entries [F(1,26) = 29.825, P < 0.0001, repeated measures ANOVA] and 
made signifi cantly more revisiting errors [F(1,26) = 38.896, P < 0.0001, repeated 
measures ANOVA] than control mice. Error bars indicate SEM.

http://rsb.info.nih.gov/ij/
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medial and lateral prefrontal cortex compared with home cage 
control animals (Figure 3A). Although elevated c-Fos expression 
was observed in the entorhinal cortex, visual cortex, basolateral 
amygdaloid nucleus, and medial and ventral prefrontal cortex in the 
α-CaMKII+/− mice after the working memory task (Figure 3B), 
a signifi cant increase was not observed in CA1 (genotype effect, 
F(1,12) = 10.941, P = 0.0062), CA3 (genotype × task interaction, 
F(1,24) = 7.304, P = 0.0124, genotype effect, F(3,24) = 12.103, 
P < 0.0001), DG (genotype × task interaction, F(1,24) = 17.332, 
P = 0.0003, genotype effect, F(3,24) = 37.812, P < 0.0001), central 

amygdala (genotype × task interaction, F(1,24) = 6.370, P = 0.0186, 
genotype effect, F(3,24) = 7.230, P = 0.0068), and medial prefron-
tal cortex (genotype effect, F(1,12) = 7.601, P = 0.0174) compared 
to wild-type mice (Figure 3C). These results suggest that the neural 
activation in these regions activated by spatial working memory 
task is impaired in the mutant mice. The absence of a pronounced 
increase in c-Fos expression in some brain regions in the mutant 
mice is likely due to the silenced activities of neuronal circuits 
rather than a disrupted molecular machinery of c-Fos expression 
in the α-CaMKII+/− mice, because the expression levels of c-Fos in 

FIGURE 2 | Photomicrographs of c-Fos expression after the eight-arm 

radial maze test. Representative photomicrographs of c-Fos expression after 
the working memory task in the hippocampus (A), dentate gyrus (B), CA1 
area (C), CA3 area (D), frontal cortex (I), and mPFC (J), entorhinal cortex (K), 
and basolateral amygdala (L) in the wild-type mice. Photomicrographs of c-Fos 
expression after the working memory task in the hippocampus (E), dentate 
gyrus (F), CA1 area (G), CA3 area (H), frontal cortex (M), and mPFC (N), 
entorhinal cortex (O), and basolateral amygdala (P) in the α-CaMKII+/− mice. 
(Q) Schematic drawings of mouse brain coronal sections adapted from 

(Franklin and Paxinos, 2008) showing the regions of interest selected for 
measurement of c-Fos positive cells. mPFC, medial prefrontal cortex 
(cingulate cortex, prelimbic cortex, medial orbital cortex); vPFC, ventral 
prefrontal cortex (ventral orbital cortex); lPFC, lateral prefrontal cortex (lateral 
orbital cortex, frontal cortex area3, agranular insular cortex dorsal and ventral 
part); CeA, central amygdaloid nucleus; MeA, medial amygdaloid nucleus; 
BLA, basolateral amygdaloid nucleus; VCx, visual cortex (primary and 
secondary visual cortex); Ent, entorhinal cortex (dorsolateral and dorsintermed 
entorhinal cortex).
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the home cage control animals was comparable between the wild-
type and the mutant mice in the brain except for the DG, where 
c-Fos expression was almost completely abolished (Figure 3D). In 
addition, previous reports showed no signifi cant difference in the 
density of c-Fos positive neurons after acquisition of contextual 
fear conditioning in the CA1, CA3, cortex, and amygdala between 
wild-type and α-CaMKII+/− mice (Frankland et al., 2004).

Arc-VENUS EXPRESSION WAS DETECTED IN MATURE NEURONS, BUT 
NOT IMMATURE NEURONS IN THE DG AFTER WORKING MEMORY TASK
Recent genetic engineering technology has enabled the visualiza-
tion of behaviorally activated neurons using reporter genes in mice 
(Smeyne et al., 1992; Wilson et al., 2002; Barth et al., 2004; Wang 
et al., 2006; Reijmers et al., 2007; Matsuo et al., 2008). Here, we 
used Arc-dVenus transgenic mice that expressed destabilized Venus 
fl uorescent protein driven by the arc promoter to detect in vivo neu-
ronal responsiveness to behavioral tasks (Eguchi and Yamaguchi, 
2009). We investigated dVenus expression in the Arc-dVenus+/

α-CaMKII+/− mice, obtained by crossing the α-CaMKII+/− mice 
with the Arc-dVenus transgenic mice, after performing the working 
memory task. In this experiment, we focused on the DG since the 
c-Fos mapping studies demonstrated the most striking changes 
in the DG. Similar to the c-Fos immunohistochemistry results, 
Arc-dVenus-positive cells were abolished completely in the DG of 
Arc-dVenus+/α-CaMKII+/− home cage control mice and after the 
working memory task (Figures 4 and 5A,B). In the DG of the Arc-
dVenus+/α-CaMKII+/+ mice, the density of dVenus-positive cells 
was signifi cantly increased after the working memory task com-
pared to that of mice that remained in their home cage (Figure 4: 
task effect, F(1,6) = 7.086, P = 0.0374). These results indicate that 
dVenus is induced in the DG in response to behavioral activity in 
the Arc-dVenus transgenic mice.

In the DG of Arc-dVenus+/α-CaMKII+/+ mice, dVenus- positive 
cells were observed in the granule cell layer (GCL), but not in the 
subgranular zone (SGZ) (Figures 5C–L). In the adult DG, new 
neurons are continuously generated in the SGZ and migrate into 

FIGURE 3 | Densities of c-Fos stained cells after the eight-arm radial maze 

test. (A) Densities of c-Fos immunoreacive cells in wild-type mice. (B) 
Densities of c-Fos immunoreactive cells in the α-CaMKII+/− mice. (C) Densities 
of c-Fos immunoreacive cells after the working memory task. (D) Densities of 
c-Fos immunoreacive cells in the home cage control animals. DG, dentate 

gyrus; Ent, entorhinal cortex; VCx, visual cortex (primary and secondary visual 
cortex); LH, lateral hypothalamus; BLA, basolateral amygdaloid nucleus; CeA, 
central amygdaloid nucleus; MeA, medial amygdaloid nucleus; PFC, prefrontal 
cortex. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Error bars 
indicate SEM.
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the GCL during maturation (Ming and Song, 2005). To further 
characterize the stage of differentiation of the dVenus positive cells 
in the DG after the working memory task, we performed immuno-
histochemistry using antibodies against calretinin and calbindin, 
which are molecular markers for immature and mature neurons, 
respectively (Kuhn et al., 1996; Brandt et al., 2003; Kempermann 
et al., 2004). The co-labeling study revealed that the dVenus 
positive cells were localized separately from calretinin-positive 
cells (Figures 5C,E,G–I), but were colocalized with calbindin 
(Figures 5D,F,J–L). These results indicate that the working memory 
task-induced dVenus expression occurs in mature, but not imma-
ture neurons in the DG.

DISCUSSION
Consistent with previous reports (Vann et al., 2000; Touzani 
et al., 2003), our results show that c-Fos expression is increased 
in the visual cortex, entorhinal cortex, hippocampus, central 
amygdala, and mPFC after the working memory task in wild-
type mice. However, in α-CaMKII+/− mice, increases of c-Fos 
expression were not observed in the DG, CA1, and CA3 regions 
of the hippocampus, mPFC, and central amygdala. These results 
suggest that these brain regions in the mutant mice have func-
tional activation defi cits in response to the working memory 
task, and that these regions are good candidates for the brain 
regions responsible for the working memory defi cits in the 
mutant mice.

SUPPRESSED c-FOS INDUCTION IN THE HIPPOCAMPUS OF 
α CAMKII+/− MICE
The hippocampus is a critical structure involved in spatial  working/
episodic-like memory in both rodents and primates (Becker et al., 
1980; Olton et al., 1982; Goldman-Rakic, 1995). The hippocam-
pus contains parallel excitatory pathways referred to as trisynaptic 
pathway and the monosynaptic pathway. In the trisynaptic path-
way, information fl ows from the superfi cial layer of the entorhinal 
cortex to the DG then to CA3, and fi nally to CA1. In the mono-
synaptic pathway, CA1 neurons receive inputs directly from the 
entorhinal cortex layer III. In the hippocampus of α-CaMKII+/− 
mice, increased c-Fos expression was compromised in the DG, 
as well as CA1 and CA3 neurons after the working memory task. 
However, in the entorhinal cortex of α-CaMKII+/− mice, c-Fos 
expression was induced signifi cantly to the same extent as that 
observed in the wild-type mice after the working memory task. 
These results indicate at least two possibilities for the suppressed 
c-Fos induction in the mutant hippocampus. First, the DG may 
be impaired, while the CA1 and CA3 regions are intact. The sec-
ond possibility is that neuronal functions in the whole hippoc-
ampus including the CA1, CA3 areas, and the DG are disturbed. 
We consider the fi rst possibility to be more likely because c-Fos 
expression is induced in CA1 and CA3 in α-CaMKII+/− mice 
after acquisition of contextual fear conditioning or electric foot 
shock to the same extent as that in the wild-type mice (Frankland 
et al., 2004; Yamasaki et al., 2008). These results suggest that the 
CA1 and CA3 neurons of the mutant mice have an intact ability 
to express c-Fos in response to behavioral stimuli. In agreement 
with our c-Fos expression data, electrophysiological studies have 
shown that Schaffer collateral stimulation (CA3 to CA1 pathway) 
produced stable LTP in the CA1 region of the α-CaMKII+/− mice 
(Silva et al., 1996; Frankland et al., 2001), whereas DG granule 
cell excitability and mossy fi ber (MF) synaptic transmission was 
abnormal in the mutant mice (Yamasaki et al., 2008). In addi-
tion, the expression of c-Fos and the arc promoter driven dVenus 
transgene were abolished almost completely in the mutant DG, 
even in the home cage control mice. Taken together, these results 
suggest that dysfunction of the DG is the primary cause for the 
suppressed c-Fos induction within the mutant hippocampus after 
the working memory task.

Increased c-Fos expression in the entorhinal cortex and sup-
pressed expression in the CA1 region of the α-CaMKII+/− mice 
after the working memory task suggest that activation of the 
monosynaptic pathway is not suffi cient to activate CA1 neurons 
during the working memory task, and that activation of the tri-
synaptic pathway is required. Considering a severe impairment of 
α-CaMKII+/− mice in working memory, these results suggest that 
the trisynaptic pathway plays a more important role in perform-
ing the working memory task than the monosynaptic pathway. 
This idea is consistent with previous studies. The size of the hip-
pocampal intra- and infrapyramidal MF terminal fi elds correlates 
with performance in the spatial working memory task of the radial 
maze (Crusio et al., 1987; Schwegler et al., 1990). A lesion of the 
DG results in defi cits in working memory using the radial maze 
test (Walsh et al., 1986; McLamb et al., 1988; Emerich and Walsh, 
1989). Mice with an NMDAR deletion restricted to CA3 pyramidal 
cells are impaired in rapid memory acquisition and storage of a 

FIGURE 4 | Densities of Arc-dVenus positive cells in the DG after the 

eight-arm radial maze test. Few cells in the DG of α-CaMKII+/− mice 
showed Arc-dVenus fl uorescence either in the home cage control animals or 
after the working memory task. Error bars indicate SEM.
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FIGURE 5 | Confocal images of Arc-dVenus and neuronal differentiation 

marker expression after the eight-arm radial maze test. Expression of 
Arc-dVenus (green) and calretinin (A) or calbindin (B) in the hippocampus of 

α-CaMKII+/− mice. Expression of Arc-dVenus (green) and calretinin (C) or 
calbindin (D) in the hippocampus of wild-type mice. Expression of Arc-dVenus 
(green) and calretinin (E,G–I) or calbindin (F,J–L) in the DG of wild-type mice.



Frontiers in Behavioral Neuroscience www.frontiersin.org September 2009 | Volume 3 | Article 20 | 8

Matsuo et al. Neural activity mapping in α-CaMKII+/− mice

one-time experience in a delayed matching-to-place version of the 
Morris water maze task (Nakazawa et al., 2003).

MATURITY OF DG NEURONS AND WORKING MEMORY PERFORMANCE
In the mutant hippocampus, MF-CA3 synapses were poorly 
developed at the ultrastructural level, and abnormal transmission 
including an increased basal transmission and a greatly reduced 
MF facilitation was observed at MF-CA3 synapses (Yamasaki et al., 
2008). At the molecular level, we demonstrated that immuno-
positive cells for polysialic acid-NCAM (PSA-NCAM), a marker 
for late-stage progenitors and immature neurons, and calretinin, 
a marker for immature neurons, were signifi cantly increased in 
the mutant DG, while the density of calbindin-positive cells, a 
marker for mature neurons in the DG, was dramatically reduced 
(Yamasaki et al., 2008). In wild-type mice, using co-labeling of arc 
promoter-induced dVenus and neuronal differentiation markers, 
our results showed that DG granule cells that were active during 
the working memory task were immunoreactive for calbindin, but 
not for calretinin whose expression is barely detected (only 6%) in 
4-week-old neurons (Brandt et al., 2003). This fi nding is consistent 
with previous reports showing that adult-born neurons are func-
tionally integrated into the neuronal circuits after a maturation 
period of approximately 4 weeks (Carlen et al., 2002; Jessberger 
and Kempermann, 2003; Kee et al., 2007). These fi ndings indicate 
that young immature neurons do not participate in hippocampus-
dependent cognitive behaviors. Thus, the dysfunction of the DG in 
α-CaMKII+/− mice is likely to result from immaturity of the DG 
neurons. In support of this hypothesis, a recent study has proposed 
an association between the aging-related working memory impair-
ment and the retarded maturation of newly born DG neurons in 
aged rats (Nyffeler et al., 2008).

SUPPRESSED c-FOS INDUCTION IN THE mPFC OF α-CAMKII+/− MICE
Outside the hippocampus, working memory task-induced c-Fos 
expression was compromised in the mPFC and central amygdala in 
the mutant mice. The mPFC has been suggested to play a key role 
in working memory (Goldman-Rakic, 1995), whereas the amygdala 
has not been shown to participate (Becker et al., 1980; Friedman 
and Goldman-Rakic, 1988; Bianchin et al., 1999). Anatomically, 
there is a monosynaptic pathway exists between the hippocam-
pus and the mPFC that originates from the hippocampal CA1/
subiculum fi elds and innervates the prelimbic/medial orbital areas 
of the PFC (Thierry et al., 2000). In addition, evidence suggests 
critical functional interactions between these regions in working 
memory. For example, disruption of the hippocampal-prefrontal 
pathway impairs performance on a spatial working memory task 
in rats (Floresco et al., 1997). Additionally, simultaneous tetrode 
recordings from the rat hippocampus and mPFC revealed that 
the activity in these different regions may be synchronized dur-
ing a spatial working memory task (Jones and Wilson, 2005). In 
a previous study, c-Fos and Zif268 induction in the mPFC of α-
CaMKII+/− mice after acquisition of contextual fear conditioning 
was normal (Frankland et al., 2004). This suggests that neurons 
in the mutant mPFC are functional though we need to be careful 
about the difference of genetic background between our mice (more 
than 20 generations on the C57BL/6J background) and those of 
Frankland’s group (50% C57Bl/6NTacfBr and 50% 129Sv/J). In the 

fear conditioning training, it is possible that the mPFC  neurons 
were activated through the thalamus-PFC pathway (Oyoshi et al., 
1996). The reduced c-Fos expression in the mPFC after the work-
ing memory task in the α-CaMKII+/− mice is likely to be due to 
defi cits in hippocampal networks resulting from the DG functional 
impairment. Alternatively, DG dysfunction during development 
may have caused secondary functional alterations in other intercon-
nected areas including the mPFC (Lipska and Weinberger, 1993). 
Dysfunction of these functional neuronal networks among the hip-
pocampus, mPFC, and other regions could have resulted in the 
working memory defi cits in the α-CaMKII+/− mice.

IMPLICATIONS FOR NEUROPSYCHIATRIC DISORDERS
Working memory has been suggested to be compromised in multi-
ple psychiatric disorders and may contribute to the behavioral and 
cognitive defi cits associated with the disorders (Goldman-Rakic, 
1994). Abnormalities in the hippocampus, mPFC, and amygdala, 
where c-Fos induction was suppressed in the α-CaMKII+/− mice 
during working memory performance, has been demonstrated in 
patients with psychiatric disorders (Torrey and Peterson, 1974; 
Weinberger, 1988). Schizophrenia, bipolar disorder, and other 
related psychiatric disorders are considered to be biologically 
heterogeneous populations, due to the limitation of the current 
methods of psychiatric diagnostic methods. Thus, an endopheno-
type-based analysis would be preferable for establishing biological 
characteristics for the classifi cation of psychiatric disorders, rather 
than an analysis based on current diagnostic methods (Gottesman 
and Gould, 2003). Establishing animal models of psychiatric disor-
ders would be very useful to identify endophenotypes and mecha-
nisms associated with the disorders. The α-CaMKII+/− mice may 
provide an animal model of schizophrenia with face and construct 
validity. These mice fulfi ll many of the criteria for face validity, 
such as multiple abnormal behaviors including a severe working 
memory defi cits and hyperactivity. In terms of the construct valid-
ity, an increased dopamine turnover and increased dopamine D1-
like receptor binding in the α-CaMKII+/− mice are consistent with 
the dopamine hypothesis (Carlsson et al., 2001). A critical role of 
α-CaMKII in glutamate receptor signaling pathways and synap-
tic plasticity (Lisman et al., 2002) is consistent with the glutamate 
hypothesis (Goff and Coyle, 2001). Moreover, the DG immaturity 
agrees with the neurodevelopmental hypothesis (Weinberger, 1996). 
Our fi ndings that neuronal activities in the hippocampus, mPFC, 
and central amygdala in α-CaMKII+/− mice were suppressed dur-
ing the working memory task increases the face validity of the mice 
as an animal model for schizophrenia.
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