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Therefore, we explored mechanisms involved in this  process using 
odor-0.5 mA shock learning as a model of early life maltreatment 
and explored how it affects rat infants and adult fear learning 
and associated neural circuitry. During the infant rat sensitive 
period (until postnatal day 10, PN10), odor-0.5 mA shock pro-
duces an odor preference similar to an odor paired with stimuli 
such as milk, warmth or tactile stimulation (Haroutunian and 
Campbell, 1979; Brake, 1981; Pedersen et al., 1982; Sullivan et al., 
1986a,b, 1990; Camp and Rudy, 1988) using a learning circuit 
that incorporates the olfactory bulb and anterior piriform of 
the olfactory cortex (Moriceau and Sullivan, 2004; Roth and 
Sullivan, 2005; Moriceau et al., 2006). However, infant odor pref-
erence learning with painful stimuli such as shock also requires 
amygdala suppression (Sullivan et al., 2000; Roth and Sullivan, 
2005; Moriceau and Sullivan, 2006; Moriceau et al., 2006), which 
is normally activated by pain and is required for the odor-shock 
fear conditioning seen in adults and older pups (LeDoux, 2000; 
Schettino and Otto, 2001; Fanselow and Gale, 2003; Maren, 2003; 
Sevelinges et al., 2004, 2007; Rattiner et al., 2005; Debiec and 
LeDoux, 2006; Sigurdsson et al., 2007). Indeed, the amygdala’s 
failure to be recruited during odor-shock conditioning in pups 
may ensure that infants maintain a preference for the neonatally 

INTRODUCTION
Early life maltreatment and stress infl uence the normal develop-
ment of neural systems – more particularly the amygdala and the 
hippocampus – and are associated with both infant and adult 
mental health vulnerability (Glaser, 2000; Grossman et al., 2003; 
Teicher et al., 2003; Hammock and Levitt, 2006; Gunnar and 
Quevedo, 2007). Indeed, early life trauma alters the fear system 
causing aberrant fear responses associated with psychiatric disor-
ders, including increased fear expression in posttraumatic stress 
disorder (PTSD) but decreased fear expression in psychopathy 
(Kiehl et al., 2001; Sheline et al., 2001; Drevets, 2003; Bremner 
et al., 2005). Furthermore, the stress system, a critical mediator 
of early life stress on later life compromised mental heath, is also 
altered (Glaser, 2000; Grossman et al., 2003; Teicher et al., 2003; 
Gunnar and Quevedo, 2007). This association between early life 
trauma/stress, limbic system development and disrupted behav-
ioral outcome has been modeled in animals, which suggests a 
causal relationship (Dent et al., 2001; Sanchez et al., 2001; Plotsky 
et al., 2005; Akers et al., 2006; Champagne et al., 2008; Cirulli 
et al., 2009).

How early trauma alters the amygdala or hippocampus 
 programming during development is not completely understood. 
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learned maternal odor despite potentially harsh treatment from 
their mother. This paradoxical infant odor-shock induced odor 
preference has consequences in adulthood, as this learning atten-
uates adult fear conditioning and is associated with changes in 
amygdala processing as revealed by decreased paired-pulse inhi-
bition in adulthood (Sevelinges et al., 2007, 2008). Altricial infant 
animals from other species, such as chicks, rodents,  nonhuman 
primates and humans, have shown a similar predisposition to 
approach the caregiver despite maltreatment (Hess, 1962; Stanley, 
1962; Bowlby, 1965, 1969; Harlow and Harlow, 1965; Hinde and 
Spencer-Booth, 1967; Salzen, 1970; Hinde, 1991; Helfer et al., 
1997; Maestripieri et al., 1999; Sanchez et al., 2001; Roth and 
Sullivan, 2005; Suomi, 2006). Indeed, even within the format 
of learning, infant dogs and chicks learn to approach the car-
egiver (Stanley, 1962; Salzen, 1970; Sullivan et al., 1990; Roth 
and Sullivan, 2005).

Our previous work has highlighted the critical role of low 
corticosterone (CORT) during odor-shock conditioning for pup 
odor preference learning and suppression of amygdala plasticity. 
Specifi cally, manipulation of CORT levels can act as a switch to 
determine whether infants learn an aversion or a preference from 
odor-0.5 mA shock conditioning (Moriceau and Sullivan, 2004; 
Moriceau et al., 2006). For example, increasing CORT (systemic, 
intra-amygdala) during odor-0.5 mA shock conditioning is suf-
fi cient to elicit amygdala-dependent fear learning in the sensitive 
period, while lowering CORT in older animals switches fear learn-
ing to preference learning (Moriceau and Sullivan, 2006; Moriceau 
et al., 2006). This is in sharp contrast to CORT effects in adults 
where CORT modulates fear conditioning and inhibitory condi-
tioning, but does not switch learning from aversion to preference 
(Corodimas et al., 1994; Pugh et al., 1997; Roozendaal, 2002; Hui 
et al., 2004; Thompson et al., 2004).

Here, we use an infant rat odor-0.5 mA shock fear conditioning 
procedure as a model of early life maltreatment and explore poten-
tial consequences on infant and adult fear learning and associated 
neural circuitry.

MATERIALS AND METHODS
EXPERIMENT 1: EXPERIENCE WITH SENSITIVE PERIOD ODOR-SHOCK 
CONDITIONING MAINTAINS THE ODOR PREFERENCE AND BLOCKS 
FEAR LEARNING
Subjects
The subjects were 60 male and female Long Evans rat pups born in 
the University’s vivarium. No more than one male and one female 
were used per litter for a given experimental treatment. Dams were 
housed in rectangular polypropylene cages with abundant wood 
chips in a temperature (23°C) and light (08:00–20:00 hours) con-
trolled room. Ad libitum food and water were always available. 
Births were checked daily with litters culled to 12 pups, 6 males 
and 6 females at PN1. Pups were kept from the mother for approxi-
mately 1 h for conditioning. All procedures were approved by the 
Institutional Animal Care and Use Committee and followed NIH 
guidelines.

Odor-0.5 mA shock conditioning
Pups were conditioned for 2 (PN8–9), 3 (PN8–10), 4 (PN8–11) 
or 5 (PN8–12) consecutive days always beginning at PN8. Each 

conditioning session lasted 45 min, with pups receiving 11 pres-
entations of a 30-s citral odor (conditioned stimulus, CS) and a 
1-s 0.5 mA tail shock (unconditioned stimulus, US; LaFayette), 
with an intertrial interval of 4 min. The odor was delivered by 
a fl ow dilution olfactometer (2 L/min fl ow rate) at concentra-
tion of 1:10 odor vapor. Pups were assigned to one of the two 
following conditioning groups: Paired odor-0.5 mA shock pups 
received a shock overlapping with the last second of the 30 s 
odor presentation and Odor Only pups received only the odor 
presentations. Pups were returned to the nest immediately fol-
lowing conditioning.

Behavioral testing for odor preference or aversion: Two-odor 
choice test
Approximately 24 h after the last conditioning session (PN10, 11, 12 
or 13), learning was assessed with a two-odor choice test comparing 
pups’ responses to the CS odor vs. familiar clean wood shavings 
(same type used in the nest for bedding). Between the three testing 
trials, pups were placed in a holding cage for 5 s while the fl oor was 
wiped clean with water and dried. Individual pups were tested only 
once (e.g., at a single age). A video tracking system (Columbus 
Instruments) was used to monitor pups’ behavior. Testing was done 
blind to the conditioning groups.

The testing apparatus was an opaque Plexiglas box with a wire 
mesh fl oor as previously described (Sullivan et al., 1989). The CS 
odor was placed under one half of the box and the familiar wood 
odor placed under the other half. Pups were given 3 one-min trials, 
which began by placing a pup in a neutral zone between the two 
odors. A response was considered a choice when a pup’s entire body 
moved beyond the neutral zone.

EXPERIMENT 2: NEUROBEHAVIORAL EFFECTS OF EARLY LIFE 
EXPERIENCE WITH ODOR-SHOCK CONDITIONING AND 
CORTICOSTERONE (CORT) MANIPULATION
Subjects
This experiment used 123 male and female Long-Evans rat pups 
with housing similar to that used in experiment 1.

Odor-0.5 mA shock conditioning
The odor-shock conditioning procedure used here was similar 
to that used in experiment 1, with the following differences: (1) 
a different odor was used: peppermint (same delivery proce-
dure as described in the fi rst experiment), (2) for the CS, pups 
were given a 0.5-mA foot shock rather than a 0.5-mA tail shock, 
(3) an additional learning control group was added (Unpaired 
odor-shock presentations where pups received the shock 2 min 
after each odor presentation) and (4) the ages of condition-
ing were limited to PN8–11. From PN8–11, pups received four 
 consecutive days of conditioning (Paired, Unpaired, Odor Only 
and Naïve; Figure 1). At PN12, the Paired group received Paired 
conditioning without (Infant Paired/PN12 Paired) or with CORT 
injection (Infant Paired/PN12 Paired CORT; 3.0 mg/kg, ip), 
the Naïve group received Paired conditioning (Infant Naïve/
PN12 Paired), the Unpaired group received Unpaired condi-
tioning (Infant Unpaired/PN12 Unpaired), and the Odor Only 
group received Odor Only conditioning (Infant Odor Only/PN12 
Odor Only).
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Systemic CORT injections
Some pups received a control (saline) or a CORT injection 
(Corticosterone HBC complex, Sigma; 3.0 mg/kg dissolved in 
saline, ip) 30 min prior to the last day of conditioning at PN12, 
which allowed CORT to be present during the conditioning. Doses 
were chosen following dose-response established previously and 
pilot data (Takahashi, 1994; Moriceau and Sullivan, 2004, 2006; 
Moriceau et al., 2006).

CORT Radioimmunoassay (RIA)
Blood CORT levels were measured at PN8 and PN12, immedi-
ately following conditioning. Duplicate plasma samples were 
analyzed for CORT using the Rat corticosterone Coat-a-Count 
Kit (Radioassay Systems Labs, In., Carson, CA). The sensitivity of 
the assay was  5 ng/ml. The intraassay coeffi cient of variation was 
1–9%. Heart blood samples were taken from pups immediately 
after the conditioning session, centrifuged at 14,000 cpm for 6 min, 
the plasma aliquoted and stored at –70°C for later analysis.

Behavioral testing for odor preference or aversion: Y-maze test
Learning was assessed with a Y-maze on PN13. The Y-maze con-
sisted of a start box (8.5 cm width, 10 cm length, 8 cm height) 
and two arms (8.5 × 24 × 8 cm) separated by two doors. This test 
required pups to choose between two arms of a Plexiglas Y-maze, 
one containing the CS odor and the other containing the familiar 
wood odor (20 ml of clean shaving in a petri dish). To initiate a trial, 
a pup was placed in the start box for 5 s, the doors to each arm were 
opened and the pup was given 60 s to choose an arm. A response 
was considered a choice when a pup’s entire body moved beyond 
the entrance to the alley. Pups received fi ve trials and were removed 
to a holding chamber for 5 s between trials while the Y-maze fl oor 
was wiped clean. No CORT was injected for testing. Testing was 
done blind to the conditioning groups.

Conditioning and 14C 2-deoxyglucose (2-DG) autoradiography
Pups were assessed for activation of brain areas previously shown to 
be involved in infant odor preference learning (olfactory bulb) and 
older pup/adult fear conditioning (amygdala basolateral complex 
and hippocampus) during odor-shock conditioning.

Pups were injected with 14C 2-DG (20 µCi/100 g) 5 min prior 
to training for assessment during the last conditioning session 
(PN12). The brain was removed immediately following condition-
ing and quickly frozen in 2-methylbutane at −45°C. The frozen 
brain was then stored in −70°C freezer and equilibrated to −20°C 

in a cryostat prior to preparation of 20 µm coronal sections that 
were warmed at 60°C for 5–10 min. A set of 14C labeled methyl 
methacrylate standards (American Radiolabeled Chemicals), 
previously calibrated to 14C uptake in 20 µm brain sections, was 
exposed with each sheet of fi lm and developed using standard 
techniques (Sullivan et al., 1989). The autoradiographs were ana-
lyzed using a computer-based digital image processor and NIH 
Image Software that allows pseudocolor imaging and quantitative 
optical densitometry. The olfactory bulb is readily identifi able for 
2-DG uptake assessment. Odors produce an odor-specifi c pattern 
of 2-DG uptake within the glomerular layer of the olfactory bulb, 
which is enhanced with neonatal odor conditioning (Lancet et al., 
1982; Coopersmith and Leon, 1986; Sullivan and Leon, 1986). 
However, the amygdala and the hippocampus required counter-
staining sections with cresyl violet and construction of a template 
of that brain area for use on the autoradiographs to identify specifi c 
nuclei and subareas. To control the potential differences in section 
thickness and autoradiograph exposure, 2-DG uptake was meas-
ured relative to 2-DG uptake in the corpus callosum (amygdala, 
hippocampus) or the olfactory bulb’s periventricular core, areas 
that did not vary with conditioning group (Sullivan and Leon, 
1986; Sullivan et al., 2000).

Since pups used for autoradiography were not tested, we used 
a behavioral rating scale (Johanson and Hall, 1979) to document 
acquisition curves in response to the CS odor compared to activity 
immediately preceding odor onset, which allowed monitoring of 
pups’ acquisition of learned responses: 0 – not active; 1 –  movement 
of 1 body part (i.e., head rearing); 2 – movement of 2 body parts; 
3 – movement of 3 body parts; 4 – movement of 4 body parts; 
5 – movement of 5 body parts (i.e., locomotion).

EXPERIMENT 3: NEUROBEHAVIORAL EFFECTS OF EARLY LIFE 
EXPERIENCE ON ADULT ODOR-SHOCK CONDITIONING 
AND CORT MANIPULATION
Subjects
This experiment used 80 male Long Evans rats from 3- to 4-month 
old.

Adult odor-shock conditioning
Rats were conditioned in infancy as described above (Figure 1) 
and again conditioned in adulthood. The adult conditioning used 
a protocol similar to infant conditioning, although the shock was 
slightly higher (0.8 mA, 1 s foot shock delivered through a grid 
fl oor). The adult rat was placed in the conditioning chamber 

PN12
Reconditioning & CORT

PN13
Testing

Adult
Reconditioning & CORT

Infant Experience (PN8-11)
Odor–0.5mA Shock Conditioning

Sensitive Period
≤PN9

Postsensitive Period
≥PN10

FIGURE 1 | Infant rat pups experienced 4 consecutive days of odor-0.5 mA 

shock conditioning initiated during the sensitive period at PN8 but continued 

during the postsensitive period (≥PN10). Animals were reconditioned at PN12 or 

in adulthood, with or without a systemic injection of CORT. Immediately after 
conditioning, brains were removed for 14C 2-DG assessment or animals returned to 
the home cage for behavioral testing the next day.
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10 min before beginning the conditioning session, and a 30-s 
citral CS was delivered with the shock occurring during the last 
second of the odor with a 4 min ITI (same delivery procedure 
as described in experiment 1). The odor was also delivered by 
a fl ow dilution olfactometer at the same concentration used 
in infancy (1:10 peppermint vapor to air; 1 L/min fl ow rate). 
Conditioning took place in a standard conditioning chamber 
attached to a shock generator (LaFayette) within a ventilated 
attenuating chamber under red light and peppermint used as 
context. Rats were handled three times for 5 min in the week 
preceding conditioning. In general, animals were placed in the 
same conditioning group for infant and adult conditioning: 
(1) Infant Paired/Adult Paired, (2) Infant Paired/Adult Paired 
CORT (5.0 mg/kg, ip only during adult conditioning), (3) Infant 
Naïve/Adult Paired, (4) Infant Unpaired/Adult Unpaired and 
(5) Infant Odor Only/Adult Odor Only.

The infant/adult conditioning groups were chosen based on 
previous work where all confi gurations of infant/adult conditioning 
were used (Sevelinges et al., 2007). We found that infant odor con-
ditioning attenuated adult fear conditioning and amygdala 2-DG 
uptake if the same CS odor was used in infancy and adulthood, or 
the infant odor was present as context during adult conditioning 
with a novel odor CS.

Systemic CORT injections
The Infant Paired/Adult Paired CORT group rats received a CORT 
injection (5.0 mg/kg, ip) immediately before adult conditioning, 
which allowed CORT to be present during conditioning (Sandi 
et al., 1995; Roozendaal et al., 2006).

Cue testing in adulthood
CS conditioned fear was assessed 24 h after the adult odor-shock 
conditioning in a novel test chamber to prevent context fear con-
ditioning infl uences. The cue-testing chamber was a Plexiglas 
aquarium (25.4 × 50.8 × 30.5 cm). Rats were placed in the testing 
chamber and given 10 min to recover from experimenter handling 
before testing began. The 30-s citral odor was then introduced 
three times with an ITI of 4 min. Freezing behavior, characterized 
by a crouching posture and an absence of any visible movement, 
except that due to breathing, was assessed for 30 s before and 30 s 
during each odor presentation. Testing was done blind to the con-
ditioning groups.

Behavioral testing for odor preference or aversion: Y-maze test
Retention of infant learning was also assessed with a Y-maze test in 
adulthood (these rats were not used for adult conditioning experi-
ments). The Y-maze consisted of a start box (13 cm width, 18 cm 
length, 18 cm height) and two arms (13 × 65 × 18 cm) separated 
by two doors. This test required rats to choose between two arms 
of a Plexiglas Y-maze, one containing the CS odor and the other 
containing the familiar wood odor (20 ml of clean shaving in a 
petri dish). To initiate a trial, the adult rat was placed in the start 
box for 5 s, the doors to each arm were opened and the animal 
was given 60 s to choose an arm. Rats received three trials and 
were removed to a holding chamber for 5 s between trials while 
the Y-maze fl oor was wiped clean. Testing was done blind to the 
conditioning groups.

Conditioning for 14C 2-deoxyglucose (2-DG) autoradiography
Adult rats were injected with 14C 2-deoxyglucose (2-DG; 40 µCi 
ip/rat) 5 min prior to the 45-min adult odor-shock condition-
ing. Immediately following conditioning, adult rats were decapi-
tated and their brains quickly removed, frozen in 2-methylbutane 
(−45°C) and stored in a −70°C freezer. The analysis was similar to 
that used in Experiment 2.

Statistical analysis
All experiments were analyzed by ANOVA followed by posthoc 
Fisher tests. Posthoc tests indicated that the experimental groups 
were different from each of the control groups at the 0.05 level or 
below. Signifi cance between groups is noted by asterisks in the 
fi gures.

RESULTS
EXPERIMENT 1: EXPERIENCE WITH SENSITIVE PERIOD ODOR-SHOCK 
MAINTAINS THE ODOR PREFERENCE AND BLOCKS FEAR 
LEARNING IN PUPS
This experiment assessed whether extended, daily conditioning ini-
tiated during the sensitive period (PN9 is the last day of odor-shock 
preference learning) could switch the preference learning to odor 
aversion learning if the conditioning was continued in postsensi-
tive period pups (PN10 and older). That is, would the continued 
conditioning in older pups over-write the original learned prefer-
ence with a learned aversion?

Beginning at PN8, pups were odor-0.5 mA shock conditioned 
for 2 (PN8–9), 3 (PN8–10), 4 (PN8–11), or 5 (PN8–12) days and 
tested the day following the last conditioning session (PN10, 11, 
12 or 13; pups were eliminated from the experiment after testing). 
As illustrated in Figure 2, pups retain and express a learned odor 
preference despite considerable conditioning during a developmen-
tal stage when pups could learn an aversion (see Experiment 2 and 
Figure 3; ANOVA main effect of group, F

(1,52)
 = 17.74, p < 0.001; 

posthoc Fisher tests revealed a signifi cant difference between Paired 
and Odor Only pups at the p < 0.01 level at all ages). Thus, once the 

FIGURE 2 | Pups were odor-0.5 mA shock conditioned for 2 (PN8–9), 

3 (PN8–10), 4 (PN8–11) or 5 (PN8–12) consecutive days and tested during 

the postsensitive period on either PN10, PN11, PN12 or PN13, which are 

ages when amygdala-dependent fear conditioning can occur (n = 7–8/

group). The result is expressed as cumulative data from the three testing 
trials. All experimental Paired odor-shock pups continued to exhibit a relative 
preference to the conditioned odor despite continued odor-shock conditioning 
following the termination of the sensitive period. Each pup was tested only 
once. Asterisk represents a signifi cant difference from each of the other 
groups (p < 0.05).
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association between odor and shock is made early in development, 
subsequent associations in infancy reinforce the original learned 
behavior – i.e. conditioned approach response – rather than over-
writing with an age appropriate memory.

EXPERIMENT 2: NEUROBEHAVIORAL EFFECTS OF EARLY LIFE 
EXPERIENCE WITH ODOR-SHOCK CONDITIONING 
AND CORT MANIPULATION IN PUPS
We hypothesized that prolonged odor-shock conditioning sup-
pressed shock-induced CORT release in amygdala-dependent 
fear conditioning in pups. This was done by assessing: (1) whether 
early life experience with odor-shock attenuates shock-induced 
CORT release (blood RIA) and (2) whether we could systematically 
inject CORT to override CORT suppression and permit amygdala-
dependent fear conditioning. This design is illustrated in Figure 1. 
CORT injected during conditioning is no longer present during 
testing (Goodman and Gilman, 1985).

Behavioral analysis
The data illustrated in Figure 3A replicates the 5 days of odor-shock 
conditioning shown in Figure 2 but has additional control groups 
and illustrates that Infant Naïve/PN12 Paired pups (receiving Paired 
odor-shock conditioning for the fi rst time at PN12) learn an odor 
aversion as indicated by the Y-maze test at PN13, while the Infant 
Paired/PN12 Paired pups learn an odor preference (Sullivan et al., 
2000; Moriceau et al., 2006). Furthermore, as seen in Figures 3A,B, 
Infant Paired/PN12 Paired CORT pups, which received a CORT 
injection for the last conditioning session (PN12), permitted odor 
aversion learning as indicated by the Y-maze test at PN13 while the 

Infant Paired/PN12 Paired saline still learned an odor preference. 
Furthermore, control injection with saline did not affect learning, 
while CORT injection only affected the learning of paired groups. 
Figure 3A ANOVA analysis revealed a signifi cant main effect of 
conditioning groups [F

(5,28)
 = 18.599, p < 0.0001] and Figure 3B 

ANOVA analysis revealed a signifi cant main effect of group drugs 
[F

(1,24)
 = 11.655, p < 0.0001] and a signifi cant interaction between 

conditioning groups and drugs [F
(2,24)

 = 14.552, p < 0.0001]; post-
hoc Fisher tests indicated that Infant Paired/PN12 Paired pups 
were statistically different from both the Infant Naïve/PN12 Paired 
and Infant Paired/PN12 Paired CORT pups at the p < 0.05 level. 
Additionally, Infant Paired/PN12 Paired, Infant Naïve/PN12 Paired 
and Infant Paired/PN12 Paired CORT groups were each statistically 
different from the non-associative control groups at the p < 0.05 
level. Furthermore, posthoc Fisher tests indicated that Infant 
Paired/PN12 Paired CORT pups and Infant Paired/PN12 Paired 
Saline pups were statistically different from the non-associative 
control groups and from each other at the p < 0.05 level.

As illustrated in Figure 4, CORT levels immediately following 
PN12 conditioning showed that Infant Naïve/PN12 Paired pups 
mounted a robust CORT response to shock that was absent in 
the Infant Paired/PN12 Paired pups. For comparison, we also 
included sensitive period pups (PN8 Paired) because it is an age 
when shock does not produce a CORT increase (Levine, 2001). 
ANOVA analysis revealed a signifi cant main effect of conditioning 
groups [F

(4,20)
 = 3.141, p < 0.05]; posthoc Fisher tests showed that 

Infant Naïve/PN12 Paired pups at PN12 had signifi cantly more 
plasma shock-induced CORT than each of the other groups at the 
p < 0.05 level.

FIGURE 3 | Pups were conditioned daily from PN8 to PN12 (replicates 

PN13 test data in Figure 2) or conditioned only on PN12 (Infant Naïve/

PN12 Paired), which previous results have shown are capable of 

amygdala-dependent fear and aversion learning (Sullivan et al., 2000). All 
pups were tested on PN13 in a Y-maze to assess odor preference/aversion 
learning. (A) Infant Naïve/PN12 Paired odor-0.5 mA pups demonstrated an 
aversion, while Infant Paired/PN12 Paired odor-0.5 mA pups showed a 
preference for the conditioned odor compared to controls (n = 5/group). 
However, systemically injecting Infant Paired/PN12 Paired pups with 3 mg/kg 

CORT during the last day of odor-0.5 mA shock conditioning (PN12) permitted 
odor aversion learning. These behavioral groups are littermates of the 2-DG 
pups presented in Figure 5. (B) Additional control injection groups are 
presented here. Systemically injecting Infant Paired/PN12 Paired pups with 
saline during the last day of odor-0.5 mA shock conditioning (PN12) still 
permitted odor preference learning while injecting Infant Paired/PN12 Paired 
pups with 3 mg/kg CORT permitted odor aversion learning compare to control 
groups (n = 6/group). Asterisk represents a signifi cant difference from each of 
the other groups (p < 0.05).
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Neural analysis
As illustrated in Figure 5, Infant Paired/PN12 Paired pups main-
tained elevated 2-DG uptake in the infant attachment learning 
circuit (olfactory bulb) but prevented an increase in 2-DG uptake 
in the fear circuit (amygdala basolateral complex). On the other 
hand, Infant Naïve/PN12 Paired and Infant Paired/PN12 Paired 
CORT pups prevented 2-DG uptake in the attachment circuit and 
instead showed elevated 2-DG uptake in the fear circuit (amygdala 
basolateral complex).

Specifi cally, as shown in Figure 5A, Infant Paired/PN12 Paired 
pups have an increased 2-DG uptake in the odor-specifi c loci of 
the olfactory bulb [ANOVA, F

(4,24)
 = 3.754, p < 0.05] compared to 

Infant Naïve/PN12 Paired and Infant Paired/PN12 Paired CORT 
pups. The periventricular core of the olfactory bulb did not show 
any difference between conditions. Posthoc Fisher tests indicated 
that the Infant Paired/PN12 Paired group differed signifi cantly from 
each of the other groups at the p < 0.05 level.

As shown in Figure 5B, Infant Naïve/PN12 Paired and Infant 
Paired/PN12 Paired CORT pups show a signifi cant increase in 2-DG 
uptake in the amygdala basolateral complex [ANOVA, F

(4,26)
 = 31.814, 

p < 0.0001] compared to Infant Paired/PN12 Paired and control pups. 
Posthoc Fisher tests indicated that the Infant Naïve/PN12 Paired and 
Infant Paired/PN12 Paired CORT groups signifi cantly differed from 
each of the other conditioning groups at the p < 0.05 level.

No statistical differences in 2-DG uptake were detected in any 
hippocampus subareas (CA1, CA3 and DG).

EXPERIMENT 3: NEUROBEHAVIORAL EFFECTS OF EARLY LIFE 
EXPERIENCE ON ODOR-SHOCK CONDITIONING IN ADULTS
We hypothesized that prolonged infant odor-shock conditioning 
suppressed shock-induced CORT release in amygdala-dependent 
fear conditioning in adult. Our previous work had shown that 
early life experience with odor-shock attenuates adult conditioning 
(Sevelinges et al., 2007, 2008). Here we assessed whether (1) early 
life experience with odor-shock attenuates shock-induced CORT 
release (blood RIA) in adults and (2) whether we could system-
atically inject CORT to override CORT suppression and permit 
amygdala-dependent fear conditioning in adults. This design is 
illustrated in Figure 1. CORT injected during conditioning is no 
longer present during testing (Goodman and Gilman, 1985).

Behavioral analysis
As shown in Figure 6, for cue testing, Infant Paired/Adult Paired 
animals demonstrated low levels of freezing, although a CORT 
injection during adult conditioning (Infant Paired/Adult Paired 
CORT) increased freezing during the cue test to levels exhib-
ited by adults conditioned for the fi rst time (Infant Naïve/Adult 
Paired). ANOVA analysis revealed a main effect of condition 
[F

(4,23)
 = 77.658, p < 0.0001]; posthoc Fisher tests revealed that 

the Infant Naïve/Adult Paired and Infant Paired/Adult Paired 
CORT, which were not statistically different from one another, 
both differed signifi cantly from all the control groups and Infant 
Paired/Adult Paired at the p < 0.05 level. The Infant Paired/Adult 
Paired group was signifi cantly different from all other groups 
at the p < 0.05 level.

As shown in Figure 7, adult rats retained the odor preference 
from infant odor-shock conditioning as indicated by the Y-Maze 
test. Specifi cally, adult rats with infant odor-shock conditioning 
were signifi cantly different from animals with infant unpaired 
odor-shock conditioning [t

(1,14)
 = 11.118, p < 0.005].

Furthermore, as illustrated in Figure 8, CORT levels immediately 
following adult conditioning showed that odor-shock conditioning 
for the fi rst time (Infant Naïve/Adult Paired) produced a robust 
shock-induced CORT release. A similar level of CORT was mounted 
by animals that had received both infant and adult unpaired shock 
(Infant Unpaired/Adult Unpaired), while the Infant Paired/Adult 
Paired group showed attenuated shock-induced CORT release. 
ANOVA analysis revealed a signifi cant main effect of conditioning 
groups [F

(3,11)
 = 38.745, p < 0.001]; posthoc Fisher tests showed that 

Infant Naïve/Adult Paired and Infant Unpaired/Adult Unpaired 
rats had signifi cantly more plasma CORT than all other groups at 
the p < 0.05 level.

Neural analysis of the attachment circuit
As shown in Figure 9A, only animals that experienced both infant 
and adult paired odor-shock (Infant Paired/Adult Paired) exhibited 
increased 2-DG uptake in the odor-specifi c loci of the olfactory bulb 
[ANOVA, F

(4,13)
 = 7.897, p < 0.005]. Posthoc Fisher tests indicated 

that the Infant Paired/Adult Paired group signifi cantly differed 
from each of the other conditioning groups at the p < 0.05 level. 
That is, adult experience with paired odor-shock did not alter the 
infant learning-induced changes within the olfactory bulb. Thus, 
Infant Paired/Adult Paired, which exhibited freezing during testing, 
albeit attenuated, showed activation of the attachment circuit and 

FIGURE 4 | RIA measurement from pups immediately following 

odor-shock conditioning indicates that CORT levels increased only in 

Infant Naïve/PN12 Paired pups receiving odor-shock conditioning for the 

fi rst time during the postsensitive period (PN12) (n = 5–7/group). All other 
groups, including the Infant Odor Only/PN12 Odor Only group that did not 
receive shocks, show levels of CORT similar to PN8 Paired pups (still in the 
Stress Hyporesponsive Period; SHRP). Asterisk represents a signifi cant 
difference from each of the other groups (p < 0.05).
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not the fear circuit. This replicates our previous work (Sevelinges 
et al., 2007, 2008).

Neural analysis of the fear circuit
As shown in Figure 9B, Infant Naïve/Adult Paired and Infant 
Paired/Adult Paired CORT, (CORT during adult conditioning only) 
showed a signifi cant increase in 2-DG uptake of the basolateral 
complex of the amygdala [ANOVA, F

(4,14)
 = 36.042, p < 0.0001] 

compared to Infant Paired/Adult Paired group and control pups. 
Posthoc Fisher tests indicate that the Infant Naïve/Adult Paired and 
Infant Paired/Adult Paired CORT groups signifi cantly differed from 
each of the other conditioning groups at the p < 0.05 level. Thus, the 

injection of CORT for the Infant Paired/Adult Paired CORT group 
brought freezing to normal levels, as well as switched the olfactory 
bulb enhanced 2-DG to enhanced amygdala 2-DG.

Our hippocampus analysis indicates that Infant Naïve/Adult 
Paired, Infant Paired/Adult Paired CORT and Infant Unpaired/
Adult Unpaired expressed increased 2-DG uptake in hippocampus 
subareas CA1 (Figure 9C), CA3 (Figure 9D) and DG (Figure 9E). 
Indeed, Infant Naïve/Adult Paired, Infant Paired/Adult Paired 
CORT and Infant Unpaired/Adult Unpaired showed a signifi -
cant 2-DG uptake increase in the CA1 [ANOVA, F

(4,13)
 = 5.534, 

p < 0.01], CA3 [ANOVA, F
(4,13)

 = 7.669, p < 0.01] and DG [ANOVA, 
F

(4,13)
 = 16.0602, p < 0.0001]. Posthoc Fisher tests indicated that the 

FIGURE 5 | 14C 2-DG autoradiography was used to assess brain areas 

previously shown to be important for either early life attachment/

preference learning (olfactory bulb) or avoidance/fear learning 

(amygdala). These data compliment behavioral data in Figure 3. Pups were 
trained daily from PN8–12 or conditioned only on PN12 (Infant Naïve/PN12 
Paired) (n = 5–7/group). 2-DG autoradiography during the last odor-shock 
conditioning session on PN12 showed that (A) Infant Paired/PN12 Paired 
odor-shock pups exhibit activation in the odor-specifi c loci of the olfactory bulb 

(OB) compared to Infant Naïve/PN12 Paired pups that we conditioned only on 
PN12, (B) Pups receiving odor-shock conditioning for the fi rst time (Infant 
Naïve/PN12 Paired) or after fi ve sessions but given a PN12 CORT injections 
(Infant Paired/PN12 Paired CORT) showed increase 2-DG uptake of the 
amygdala’s basolateral complex (BLA), and no statistical differences in 2-DG 
uptake were found for hippocampal subareas: CA1 (C), CA3 (D) and DG (E). 
Asterisk represents a signifi cant difference from each of the other groups 
(p < 0.05).
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Infant Naïve/Adult Paired, Infant Paired/Adult Paired CORT and 
Infant Unpaired/Adult Unpaired groups signifi cantly differed from 
each of the other conditioning groups at the p < 0.05 level. Thus, 
Infant Paired/Adult Paired, which exhibited freezing during test-
ing, albeit attenuated, showed atypical activation of the attachment 
circuit (olfactory bulb) but not the amygdala and hippocampus of 
the fear circuit. Furthermore, the injection of CORT for the Infant 
Paired/Adult Paired CORT group was able to bring freezing to 
normal levels, as well as switch the atypical olfactory bulb enhanced 
2-DG to the typical enhanced amygdala and hippocampal 2-DG.

DISCUSSION
These data suggest that early life Paired odor-shock condition-
ing modifi es learning and the associated neural circuit and these 
changes are mediated through CORT suppression. Specifi cally, 
prolonged odor-shock conditioning initiated during the sensitive 
period (Infant Paired/PN12 Paired) continues to activate the odor 
preference learning circuit in PN13 pups, attenuates the shock-
induced CORT increase and blocks amygdala-dependent fear learn-
ing, which normally occurs at this age (Infant Naïve/PN12 Paired; 
Figures 3–5). Conversely, this infant Paired odor-shock condition-
ing did not prevent adult fear conditioning, although fear learning, 
amygdala and hippocampal 2-DG uptake and CORT levels were 
attenuated (Infant Paired/Adult Paired) compared to adult con-
ditioning without infant experience (Infant Naïve/Adult Paired; 
Figures 6, 8 and 9). This is consistent with our previous work, 
which showed that when conditioned for the fi rst time, postsensi-
tive period pups (≥PN10) appear similar to adults, with both groups 
showing robust amygdala-dependent fear  conditioning (LeDoux, 

FIGURE 6 | Adult rats were reconditioned after the infant conditioning, 

generally using the same conditioning group in infancy and adulthood. 

All rats were tested the next day to measure freezing following exposure to 
the citral CS used in adult conditioning. Infant Paired/Adult Paired 
demonstrated lower levels of freezing than Infant Naïve/Adult Paired and 
Infant Paired/Adult Paired receiving a CORT injection (n = 4–5/group). Asterisk 
represents a signifi cant difference from each of the other groups (p < 0.05).

FIGURE 7 | Adult rats were tested in a Y-maze following infant odor-shock 

conditioning to assess whether the odor preference was retained into 

adulthood. The Infant Paired/Adult Naïve rats demonstrated a preference 
compared to the Infant Unpaired/Adult Naïve control group (n = 7–8/group). 
Asterisk represents a signifi cant difference from each of the other groups 
(p < 0.05).

FIGURE 8 | RIA measurement from adult rats immediately following 

odor-shock conditioning indicates that CORT levels increased in Infant 

Naïve/Adult Paired groups (n = 4–5/group) and control. The Infant Odor 
Only/Adult Odor Only group that did not receive shocks, show low levels of 
CORT. Asterisk represents a signifi cant difference from each of the other 
groups (p < 0.05).
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2000; Sullivan et al., 2000; Fanselow and Gale, 2003; Moriceau 
and Sullivan, 2004, 2006; Roth and Sullivan, 2005; Moriceau et al., 
2006; Sevelinges et al., 2007; Sigurdsson et al., 2007; Raineki et al., 
2009b).

The Infant Unpaired/PN12 Unpaired group did not show 
learning in infancy. However, the Infant Unpaired/Adult Unpaired 
showed some increases in freezing, hippocampal 2-DG uptake and 
shock-induced CORT release, although levels of amygdala 2-DG 
uptake were similar to those seen in other controls. While the Infant 
Unpaired/Adult Unpaired showed an increase in freezing, suggest-
ing increased emotionality, our previous work suggests otherwise. 
Specifi cally, in Sevelinges et al. (2007), Infant Naïve/Adult Unpaired 
and Infant Unpaired/Adult Unpaired show similar increase in cue 

freezing, suggesting that the infant unpaired treatment did not 
infl uence the adult outcome. Furthermore, the increase in shock-
induced CORT release and hippocampus 2-DG uptake in Infant 
Unpaired/Adult Unpaired group could refl ect the expected context 
fear learning seen in unpaired animals; however, specifi c testing of 
context learning would be required (Phillips and LeDoux, 1994; 
Anagnostaras et al., 1999; Fanselow, 2000; Brasser and Spear, 2004). 
It should be noted that other measures of emotionality have found 
enhanced emotionality from unpredictable infant shock as indi-
cated by the open fi eld test (Levine et al., 1956; Bell and Debenberg, 
1962; Henderson, 1965; Weiss, 1970), the light-dark emergence test 
(Tyler et al., 2007) and enhanced hippocampal activity (Alfarez 
et al., 2008; Mandyam et al., 2008).

FIGURE 9 | Adult rats were reconditioned after the infant conditioning, 

generally using the same conditioning group in infancy and adulthood. 
14C 2-DG autoradiography during the adult odor-shock conditioning session 
showed that (A) Infant Paired/Adult Paired animals exhibit activation in the odor-
specifi c loci of the olfactory bulb (OB) compared to Infant Paired/Adult Paired 
CORT injection and Infant Naïve/Adult Paired, (B) Infant Naïve/Adult Paired and 

Infant Paired/Adult Paired CORT injection both show increased 2-DG uptake in 
the basolateral complex of the amygdala (BLA), and Infant Naïve/Adult Paired, 
Infant Paired/Adult Paired CORT injection and Infant Unpaired/Adult Unpaired 
groups show increase 2-DG uptake in the CA1 (C), CA3 (D) and DG (E). 
Asterisk represents a signifi cant difference from each of the other groups 
(p < 0.05).



Frontiers in Behavioral Neuroscience www.frontiersin.org September 2009 | Volume 3 | Article 22 | 10

Moriceau et al. Enduring neurobehavioral effects of early trauma

Our data confi rm previous research showing that, once acquired 
during the sensitive period, a learned odor approach response con-
tinues to be expressed as an approach, even in older pups (Sullivan 
et al., 2000). However, we extend this previous research to show that 
this occurs despite extensive continued odor-shock conditioning 
in postsensitive period pups old enough to learn the amygdala-
dependent fear conditioning. These data suggest that once the 
infant attachment learning is acquired, the original memory is 
strengthened using the neonatal attachment learning circuit rather 
than “rewriting” the memory using the newly available amygdala 
fear circuit. Furthermore, these data complement previous data 
showing that infant odor learning produces a robust odor memory 
that is retained into adulthood to enhance sexual behavior (odor-
stroking; Fillion and Blass, 1986 or odor-0.5 mA shock; Raineki 
et al., in prep). Our current work extends these data to show that 
the infant odor’s value can be changed with additional odor-shock 
conditioning in adulthood, although both the learned fear and 
the involvement of the amygdala (Sevelinges et al., 2007) and hip-
pocampus are attenuated compared to Naïve animals odor-shock 
conditioned for the fi rst time. Therefore, the ability of odor-shock 
fear conditioning to activate the attachment learning circuit appears 
to be limited to early life, at least under the present experimental 
conditions.

ADULT FEAR CONDITIONING
Here we showed that animals with combined infant and adult 
paired odor-shock conditioning (Infant Paired/Adult Paired) 
exhibited attenuated amygdala-dependent fear conditioning that 
could be brought to normal levels with a systemic CORT injection 
during adult conditioning (Figures 6 and 9). This attenuation of 
fear is specifi c to the infant odor, which was present as context dur-
ing the adult fear conditioning and replicates our previous work 
(Sevelinges et al., 2007, 2008, 2009). The present data extend these 
results and indicate that the attenuated shock-induced CORT 
release seen in infancy is maintained into adulthood and suggest 
that the attenuated CORT is critical for the attenuated adult fear 
(Figure 8). This relationship between CORT and learning found 
in the present study converges with previous work on adult learn-
ing and CORT (De Quervain et al., 2009; Rodrigues et al., 2009). 
However, since CORT has been shown to infl uence both acquisi-
tion, consolidation and reconsolidation of learned fear, our results 
could be due to modifi cation of any or all of these processes.

Our results, showing increased adult hippocampal 2-DG uptake 
during adult conditioning (Infant Naïve/Adult Paired; Figure 9), 
confi rm several studies demonstrating that the hippocampus is a 
fundamental structure supporting fear conditioning and contex-
tual learning (O’Keefe and Nadel, 1978; Fanselow, 2000; LeDoux, 
2000; Otto et al., 2000; Otto and Giardino, 2001; Rudy et al., 2002; 
Sanders et al., 2003). However, with combined infant and adult 
odor-shock conditioning (Infant Paired/Adult Paired), hippocam-
pal 2-DG uptake was attenuated during adult fear conditioning. 
These data indicate that the hippocampus is processing information 
differently following paired infant odor-shock experience. Early 
life experiences have previously been shown to produce enduring 
effects on hippocampus neural function and plasticity and produce 
defi cits in behavioral tasks generally considered to require an intact 
hippocampus (Caldji et al., 1998; Gutman and Nemeroff, 2002; 

Brunson et al., 2003; Fenoglio et al., 2006; Kim et al., 2006; Kosten 
et al., 2006, 2007; Bagot et al., 2009).

INFANT FEAR CONDITIONING
We found that Infant Paired/PN12 Paired pups maintain the attach-
ment circuit inducing preference learning, and not the age typical 
amygdala-dependent fear learning (Infant Naïve/PN12 Paired) 
with continued odor-shock conditioning (Figures 3 and 5). These 
results complement previous results showing that sensitive period 
(≤PN9) infant rats learn an odor preference from odor-pain con-
ditioning (Camp and Rudy, 1988; Sullivan et al., 2000; Roth and 
Sullivan, 2005; Moriceau et al., 2006) but by PN10, this conditioning 
supports amygdala-dependent fear learning (Sullivan et al., 2000; 
Moriceau et al., 2006). Our previous work showed that a shock-
induced CORT increase is critical for pups’ amygdala-dependent 
fear learning (Moriceau and Sullivan, 2004; Moriceau et al., 2006), 
which suggested that the blunted shock-induced CORT release of 
the Infant Paired/PN12 Paired might be responsible for the age 
atypical retention of the sensitive period attachment learning 
(Figure 4). For this reason, we overrode Infant Paired/PN12 Paired 
pups’ blunted shock-induced CORT release with a systemic CORT 
injection (3 mg/kg), which permitted the amygdala-dependent fear 
conditioning.

While the mechanism for the strong role of CORT in the infant 
amygdala plasticity has not been clarifi ed, recent results from our 
lab suggests that CORT increases GABAergic function, which 
becomes more adult-like at the same age the amygdala-dependent 
fear conditioning emerges and can be prematurely induced with 
CORT (Thompson et al., 2008). The role of CORT modulation of 
GABA function in adult amygdala has previously been demon-
strated (Duvarci and Pare, 2007; Lehner et al., 2008; Skorzewska 
et al., 2008). Furthermore, CORT increase triggers the release of 
endogenous CRH in central nucleus of the amygdala in both infant 
and adult rats, while early life stress only alters CRH in infancy 
(Plotsky and Meaney, 1993; Makino et al., 1994; Hatalski et al., 
1998; Avishai-Eliner et al., 2001; Fenoglio et al., 2004; Korosi and 
Baram, 2008; Pitts et al., 2009). These data begin to describe unique 
neural functioning following early stress in infancy that results in 
unique learning constraints and capabilities that modify the infant 
and adult’s response.

Infant odor-shock conditioning was not associated with activa-
tion of the hippocampus (CA1, CA3 and DG), even when CORT 
was injected (Figure 5). This is likely due to the late development of 
the hippocampus (Bayer and Altman, 1974; Bayer, 1980a,b,c; Ribak 
et al., 1985). Additionally, the hippocampus does not appear to be 
functional in fear conditioning until closer to weaning (Rudy, 1993, 
1994; Brasser and Spear, 1998; Esmoris-Arranz et al., 2008; Raineki 
et al., 2009a), when the context or place of conditioning begins to be 
learned (O’Keefe and Nadel, 1978; Fanselow, 2000; LeDoux, 2000; 
Otto et al., 2000; Otto and Giardino, 2001; Debiec et al., 2002; Rudy 
et al., 2002; Sanders et al., 2003; Wiltgen et al., 2006).

Early life stress is generally characterized by a CORT increase in 
both infancy and adulthood. Indeed, maternal separation (depriv-
ing pup of the mother for prolonged time) leads to an elevation in 
baseline CORT, which is potentiated by presentation of a stressor 
in infancy and adulthood (Suchecki and Tufi k, 1997; Dent et al., 
2000; Rees et al., 2006). However, our early life stress paradigm using 
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Morphogenesis during embryonic and 
early postnatal life. J. Comp. Neurol. 
190, 115–134.

Bayer, S. A. (1980c). Quantitative 
3H-thymidine radiographic analyses 
of neurogenesis in the rat amygdala. 
J. Comp. Neurol. 194, 845–875.

Bayer, S. A., and Altman, J. (1974). 
Hippocampal development in the rat: 
cytogenesis and morphogenesis exam-
ined with autoradiography and low-
level X-irradiation. J. Comp. Neurol. 
158, 55–79.

Beane, M. L., Cole, M. A., Spencer, R. L., 
and Rudy, J. W. (2002). Neonatal han-
dling enhances contextual fear condi-
tioning and alters corticosterone stress 
responses in young rats. Horm. Behav. 
41, 33–40.

Bell, R. W., and Debenberg, V. H. (1962). 
The interrelationships of shcok and 
critical periods in infancy as they affect 
adult learning and activity. Anim. 
Behav. 11, 21–27.

Bhatnagar, S., and Meaney, M. J. (1995). 
Hypothalamic-pituitary-adrenal 
function in chronic intermittently 
cold-stressed neonatally handled and 
non handled rats. J. Neuroendocrinol. 
7, 97–108.

Bowlby, J. (1965). Attachment. New York, 
Basic Books.

Bowlby, J. (1969). Attachment and Loss. 
New York, Basic Books.

Brake, S. C. (1981). Suckling infant rats 
learn a preference for a novel olfactory 
stimulus paired with milk delivery. 
Science 211, 506–508.

Brasser, S. M., and Spear, N. E. (1998). 
A sensory-enhanced context facilitates 
learning and multiple measures of 
unconditioned stimulus processing in 
the preweanling rat. Behav. Neurosci. 
112, 126–140.

prolonged odor-shock conditioning is in sharp contrast with these 
 studies because we showed a CORT decrease. Surprisingly, these 
results are similar to those of early life handling. Infant-handled rats 
show reduced fear as expressed by the increased exploratory activity 
and a decrease in both stress-induced CORT release and contextual 
fear learning (Bhatnagar and Meaney, 1995; Avishai-Eliner et al., 
2001; Beane et al., 2002). While results have been interpreted as ben-
efi cial, other measures of handling, such as decreased reproduction 
and fearfulness to novel and aversive environments, suggest this may 
need to be reinterpretated (Nunez et al., 1996; Gomes et al., 1999, 
2005; Meerlo et al., 1999; Padoin et al., 2001; Raineki et al., 2008).

CONCLUSION
Together, these results suggest that the effect of early life experiences 
differ during development and are specifi c to the age of assessment. 
In infancy, prolonged odor-shock conditioning, starting during 
the sensitive period, led to an age-atypical odor preference during 
the postsensitive period, instead of the age appropriate odor aver-
sion. Continued conditioning was unable to switch the preference 

learning to aversion learning. Alternatively, the effects of the same 
prolonged infant odor-shock conditioning when assessed in adults 
indicates that additional fear conditioning was able to switch the 
preference learning to aversion learning, although at attenuated 
levels compared to naïve adult fear conditioning. However, con-
sistency between infant and adults was found in the mediation of 
infant effects through learning and CORT suppression.

Importantly, here we show that an olfactory stimulus associated 
with infant trauma through classical conditioning gains control 
over fear learning and its underlying neural circuit. This suggests 
enduring effects of infant trauma are under CS control and are 
therefore more amenable to clinical intervention.
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