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1999). We use EWA because it is both empirically established and 
a general formulation. It incorporates simple reinforcement learn-
ing (Win/Stay-Lose/Shift), both cumulative reinforcement learn-
ing and average reinforcement learning (or Q-Learning) (Watkins, 
1989; Erev and Roth, 1998), and belief-based models (Fudenberg 
and Levine, 1998), as special cases of its parameterization. In fact, 
it is entirely reasonable for behaviour to lie in some middle ground 
of the above model restrictions of EWA, and empirical evidence 
suggests it does (Camerer and Ho, 1999; Ho et al., 2008).

Evidence that learning models are instantiated by the brain has 
been found from measuring neural signals while humans and animals 
decide. Evaluative signals are encoded, in part, via dopaminergic struc-
tures which represent the difference between realized and expected 
reward following an action (Schultz, 2004; Caplin et al., 2010). In 
addition, neural signals have been found that encode the combination 
of actions and their associated outcomes during adaptive  decision-
making (Barraclough et al., 2004; Lau and Glimcher, 2007; Seo et 
al., 2007; Luk and Wallis, 2009). Finally, some neural signals refl ect 
the value of potential actions. Thus they may play an important role 
in driving the choice process (Platt and Glimcher, 1999; Dorris and 
Glimcher, 2004; Rushworth et al., 2004; Sugrue et al., 2004; Samejima 
et al., 2005; Padoa-Schioppa and Assad, 2006; Kennerley et al., 2006; 
Lau and Glimcher, 2008; Jocham et al., 2009).

We build on this previous work by looking for action value 
signals within a brain region quite close to the motor output, the 
intermediate layers of the superior colliculus (SCi). The SCi has 
a number features that suggest it may encode action value. The 

INTRODUCTION
In reinforcement learning models, an individual’s choice is a proba-
bilistic function of the current values of possible actions, which in 
turn are functions of past choices and past rewards (Sutton and 
Barto, 1998). These learning models are based on the concept of 
choice reinforcement, traced back to the Law of Effect (Thorndike, 
1898; Erev and Roth, 1998).

Empirical studies have supported such learning models in a 
variety of strategic environments with mixed strategy equilibria 
(Mookherjee and Sopher, 1994, 1997; Erev and Roth, 1998; Camerer 
and Ho, 1999; Ho et al., 2007, 2008). However, because learning mod-
els predict serial dependence in sequential choices, they confl ict with 
independent (uncorrelated) choice predicted by repetition of the 
stage game Nash Equilibrium in a repeated game. For example, while 
laboratory studies of the matching pennies game in humans confi rm 
the equilibrium prediction of a 50/50 ratio of choices, sequential 
dependencies in individual choices remain (Mookherjee and Sopher, 
1994; Ochs, 1995). Similar results have been observed against a com-
puter opponent in studies of both humans (Spiliopoulos, 2008) 
and monkeys (Lee et al., 2004; Thevarajah et al., 2009). Studies of 
a broader class of mixed strategy games also exhibit similar choice 
dependencies though not all the authors address learning models 
directly (O’Neill, 1987; Brown and Rosenthal, 1990; Rapoport and 
Boebel, 1992; Rapoport and Budescu, 1992; McCabe et al., 2000).

The goal of this study is to look for evidence of neuronal signals 
that correlate with the action values predicted by the Experience 
Weighted Attraction (EWA) learning model (Camerer and Ho, 
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SCi is topographically organized as a map of potential saccadic 
eye movements (Robinson, 1972; Schiller and Stryker, 1972) and 
determines when and where a saccade will be directed (Glimcher 
and Sparks, 1992; Dorris et al., 1997). The SCi receives input sig-
nals from upstream brain regions involved in choosing saccades in 
both strategic environments (Barraclough et al., 2004; Dorris and 
Glimcher, 2004; Seo et al., 2007; Seo and Lee, 2008) and non-stra-
tegic environments (Schultz, 1998; Sugrue et al., 2004; Samejima 
et al., 2005; Lau and Glimcher, 2007, 2008). The topographic organ-
ization of the SCi ensures that any value-related signals we observe 
are closely associated with specifi c actions. Moreover, strong lateral 
inhibition between distant SCi locations could play an important 
role in selecting between action values associated with compet-
ing saccades (Munoz and Istvan, 1998; Dorris et al., 2007). Finally, 
the SCi sends commands to premotor neurons in the brainstem 
(Moschovakis and Highstein, 1994), as well as providing feedback to 
dopaminergic neurons in the ventral tegmental area and substantia 
nigra (Comoli et al., 2003; Dommett et al., 2005).

We measured preparatory activity in the SCi while a monkey played 
a simultaneous move game of matching pennies against a compu-
ter algorithm designed to exploit serial dependence in the monkey’s 
choices. To control for any serial dependence outside of strategic 
competition, we also measured activity during a sequential move 
game with random payoffs. First, we hypothesize that SCi activity 
displays serial dependence based on both previous saccades and their 
outcomes, and that more recent events will exert a stronger infl uence. 
Second, we hypothesize that SCi activity predicts upcoming strategic 
choices. Finally, we hypothesize that activity in the SCi provides a 
signal that is correlated with the current value of actions in the EWA 
learning model. Collectively, our results support the conclusion that 
action value signals are represented in the motor planning regions of 
the brain in a manner suitable for selecting strategic actions.

MATERIALS AND METHODS
Electrophysiological experiments were conducted on two male 
rhesus monkeys (Macaca mulatta), weighing between 9–13.5 kg 
each, while they performed saccadic eye movement tasks. All pro-
cedures were approved by the Queen’s University Animal Care 
Committee and complied with the guidelines of the Canadian 
Council on Animal Care. Animals were under the close supervision 
of the university veterinarian. Physiological recording techniques 
as well as the surgical procedures have been described previously 
(Munoz and Istvan, 1998; Thevarajah et al., 2009).

GENERAL METHODOLOGY
Behavioral paradigms, visual displays, delivery of liquid reward, 
and storage of both neuronal discharge and eye position data 
were under the control of a PC computer running a real-time data 
acquisition system (Gramalkn, Ryklin Software). Red visual stim-
uli (11 cd/m2) were produced with a digital projector (Duocom 
InFocus SP4805, refresh rate 100 Hz) and back-projected onto a 
translucent screen that spanned 50° horizontal and 40° vertical of 
the visual space. Right eye position was recorded at 500 Hz with 
resolution of 0.1° using an infra-red eye tracker system (Eyelink 
II, SR Research). Trials were aborted online if eye position was 
not maintained within ±3° of the appropriate spatial location or 
if saccades were initiated outside the 70–300 ms temporal win-

dow following target presentation. We have further discussion of 
aborted trials in Section “Results”.

The activity of single neurons was recorded with tungsten 
microelectrodes (Frederick Haer, 1–2 MΩ at 1 kHz) and sampled 
at 1 kHz. Data analysis was performed offl ine using Matlab, ver-
sion 7.6.0 (Mathworks Inc.) on an Intel Core 2 Duo processor. To 
quantify neuronal activity, each spike train was convolved with a 
post-synaptic activation function with a rise time of 1 ms and a 
decay time of 20 ms (Thompson et al., 1996).

NEURONAL CLASSIFICATION
We recorded the activity from saccade-related neurons located 
between 1.0 and 3.0 mm below the surface of the SC. The center 
of each neuron’s response fi eld was defi ned as the location, rela-
tive to central fi xation, associated with the most vigorous activ-
ity during target-directed saccades. One target was always placed 
at this location (referred to hereafter as in) and the other at the 
mirror-image location in the opposite hemi-fi eld (out) except ten 
experiments where two neurons located in opposite colliculi were 
recorded simultaneously. For these dual neuron experiments, the 
two targets were located in opposite hemifi elds corresponding to 
the response fi elds of the two neurons under study. To be included 
in our analysis, neurons had to meet two requirements: (1) motor 
burst, a transient burst of activity that was time-locked to onset 
of the saccade into the response fi eld that surpassed 100 spikes/s 
and (2) preparatory activity, neural activity during the 50 ms that 
followed presentation of the mixed-strategy targets that exceeded 
30 spikes/s and was signifi cantly greater than the mean activity 
100 ms before fi xation point offset (paired t-test, p < 0.01). Note 
that in the modelling Section “Value, SCi Activity and Actions”, this 
preparatory activity will be designated SCit

s .

BEHAVIORAL TASKS
Monkeys performed two behavioral tasks. In the strategic task, mon-
keys were free to choose between two saccade targets while they com-
peted against an adaptive computer opponent playing the matching 
pennies game. In the instructed task, monkeys were instructed which 
saccade to make with the presentation of a single saccade target on 
each trial. The purpose of the instructed task is to characterize how 
SCi activity is shaped by previous choices and outcomes. The strategic 
task is used to emphasize this relationship between SCi activity and 
the history of the game, and determine whether SCi activity is predic-
tive of choice in a strategic decision making environment.

Strategic task
Monkeys competed in a saccadic version of the repeated mixed-
strategy game matching-pennies against an adaptive computer 
opponent (Figure 1). Each trial, both the subject and computer 
reveal a strategy in or out. The monkey, pre-designated the “matcher”, 
wins if their strategies match, and the computer, pre-designated the 
“non-matcher”, wins if their strategies differ. The unique Minimax/
Nash Equilibrium in mixed strategies is for each player to play in and 
out with equal probability (von Neumann and Morgenstern, 1947; 
Nash, 1951), though our analysis does not require that equilibrium 
play is achieved. Because our experimental setup limits the ability 
for the monkey to suffer a loss we replaced a loss with a withholding 
of reward, though the equilibrium remains unchanged. The payoff 
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matrix is given in Figure 2 and has been previously studied experi-
mentally in humans (Mookherjee and Sopher, 1994) and monkeys 
(Lee et al., 2004; Thevarajah et al., 2009).

Subjects were required to maintain central gaze fi xation 
throughout the 800 ms presentation of the fi xation point, and after 
its removal during a fi xed 600 ms warning period. Subjects were 
free to saccade towards either of two simultaneously presented 
targets, i.e. in and out of the response fi eld. The fi xed warning 
period and known target locations facilitated advanced selection 
and preparation of saccades (Thevarajah et al., 2009). After fi xating 
on the target stimulus for 300 ms, a red square, which indicated the 
computer opponent’s choice, appeared around one of the targets 
for 500 ms. The monkey received a 0.3 mL liquid reward if both 
players chose the same target and nothing otherwise. The computer 
opponent performed statistical analyses on the subject’s history 
of previous choices and payoffs and exploited systematic biases 
in their choice strategy (see algorithm 2 from Lee et al., 2004 for 
specifi c details).

Instructed task
The instructed task was identical to the strategic task with two 
exceptions. First, only a single saccade target was presented on 
each trial. This target was equally likely to be presented in or out. 
Second, reward was equally likely to be received or withheld for 
successful completion of each trial. Therefore, the expected value 

of the instructed task is equal to the equilibrium payoff of the 
strategic task, but saccadic choice was under  sensory instruction 
in the former and under voluntary control in the latter.

DEPENDENCE ON PREVIOUS CHOICES AND REWARDS
To examine any biases exerted by previous saccades and rewards, 
we segregated SCi activity and saccadic responses on the current 
trial t based on past (t − n, where 1 ≤ n ≤ 7) and future (t + n, 
where 1 ≤ n ≤ 3) events (Maljkovic and Nakayama, 1994). Future 
events were examined for control purposes as these should not 
exert any infl uence on the current trial. This sequential analysis 
is illustrated in Figures 5 and 6 which shows neuronal activity 
on the current trial segregated into four categories based on four 
possible events that occurred on the previous trial. (1) a rewarded 
saccade into the response fi eld (in/R), (2) an unrewarded sac-
cade into the response fi eld (in/U), (3) a rewarded saccade out of 
the response fi eld (out/R), and (4) an unrewarded saccade out of 
the response fi eld (out/U).

We estimated preparatory activity from the postsynaptic spike 
activation function during the 50 ms following target presenta-
tion (Figure 5, grey bar). This represented the neuronal fi ring 
rate just before saccadic responses were made yet still uncon-
taminated by visual inputs related to target presentation (Dorris 
et al., 2000).

The same sequential analysis was performed on choice selec-
tion during the strategic task. Response biases were quantifi ed by 
determining the probability of the monkey selecting the in target 
on the current trial based on past or future events.

Comparatively, for the instructed task, sequential analysis was 
performed on SRTs rather than saccade choice since saccade loca-
tion was instructed. SRTs were defi ned as the time to initiate a sac-
cade following target presentation. Computer software determined 
the beginning and end of each saccade using a velocity and accel-
eration threshold. These events were verifi ed by an experimenter 
to ensure accuracy. Response biases were quantifi ed by examining 
the infl uence of an event n trials in the past or future on trials only 
where saccades were instructed to in.

Sequences of trials were constructed from the raw data based 
on the following criteria. First only sequences of 5 or more con-
secutive non-aborted trials in length were analyzed. Second, sin-
gle aborted trials were removed and the sequence was treated as 
 continuous. Third, sequences were started anew if two or more 
aborted  trials occurred in succession. We felt these criteria struck 

Monkey Choice

600 ms warning 
period

Computer Choice

Neuron’s Response
Field (”In” Direction)

A

?

Fixation Point

Eye Position

Out Target
In Target

B

FIGURE 1 | Strategic Task. (A) Each panel represents successive visual 
displays presented to the monkey. Red circles represent the central fi xation 
point and choice targets respectively. In the third panel, arrows indicate the 
monkeys possible saccadic choices. One of the saccade targets was always 
placed in the center of the neuron’s response fi eld (i.e., in target) as indicted 
with the dashed circle. The out target was placed in the opposite hemifi eld. 
The red square indicates the choice of the computer opponent. (B) Time-line 
of strategic task. Grey shaded region indicates the 50 ms epoch during which 
SCi preparetory activity was sampled for neuronal analyses. The stimuli setup 
and time-line were identical for the instructed task (not shown) except that 
only one target was presented per trial and the red square surrounded the 
target only on rewarded trials.

Monkey

Computer

In Out

In

Out

0
1

1
01

0

1
0

FIGURE 2 | Payoff matrix for strategic task.
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a balance between providing suffi cient sequential data for the 
analysis in this section while removing those sequences with 
poor continuity.

EWA LEARNING
The behavior of the subject in trial t of experiment i is coded as

s
in t

i t, =
saccade into response field in trial  of experimentt .

otherwise.

i

out

⎧
⎨
⎩

(1)

Let si t′,  denote the computer opponent’s choice. Whether reward 
is received depends on both choices and the experiment being con-
ducted. Let πi t, = 1 indicate that a reward was received in trial t of 
experiment i and 0 otherwise.

πi t
i t i tR s s

,
, ,=

= ′⎧
⎨
⎩

if 

otherwise.0
 

(2)

In both tasks, a reward is only received when the choices match, 
s si t i t, , .= ′  During the strategic task the computer opponent makes 
its choice simultaneously, and if the choices match the subject is 
rewarded with R = 1. During the instructed task, ′si t,  is chosen before 
s

i,t
, but even if the choices agree the monkey is only rewarded half 

the time:

R =
⎧
⎨
⎩

1

0

with probability 

otherwise.

1
2

 

(3)

Therefore the expected payoff during the instructed task equals 
the equilibrium expected payoff in the strategic task.

An EWA learning model posits an action value Ai t
s
,  for each 

strategy s in trial t in experiment i, and includes free parameters 
which control how action value evolves. On a given trial, it yields a 
continuous propensity to choose each action, s

i,t+1
, as a monotonic 

function of current action values A A Ai t i t
in

i t
out

, , ,= ,[ ].
At the start of the experiment A Ai

in
i
out

0 = 0  for each strategy so that 
values are equal in the fi rst trial. In general, after trial t the current 
value of strategy s is updated according to a formula that depends 
on whether s was chosen or not. If strategy s was chosen then its 
updated value can be written as a combination of past value (with 
weight φ) and current reward:

if then s s A
A s

i t i t
s

t

= , =
+

., ,

φΝ π( ′− −t i,t
s

i,t i,ts

N
1 1 , )

 

(4)

Alternatively, if strategy s was not chosen then its updated value 
depends on past value (with weight φ) and foregone payoffs:

if s s A
A s

i t i t
s

t

≠ , =
+

., ,

φΝ π( ′− −t i, t
s

i,ts

N
1 1 δ , )

 

(5)

The weight δ is the foregone payoff the subject would have 
received had it counterfactually chosen s. In both equations, N

t 
is 

a trial weight which evolves according to

N Nt t= +−ρ 1 1.  (6)

On a given trial, the probability of choosing s
i,t 

= in is defi ned as 

P s in
e

e e
i t

A

A A

t
in

t
in

t
out( ) ,, = =

+

λ

λ λ

−1

−1 −1
 (7)

and the parameters λ,φ,δ,ρ, and Ν0 are estimated via maximum 
likelihood. The estimated parameters (except λ) are then used to 
generate a sequence of fi tted action values which we use in our analy-
sis. Importantly, A

i,t 
is computed using only choices and rewards 

(both actual and fi ctitious) through trial t, which implies that it 
can directly enter a model of choice for the next trial, t +1. For a 
complete defi nition of the EWA model and estimation procedure, 
see the APPENDIX.

WIN-STAY/LOSE-SWITCH LEARNING
Since EWA is based on a reinforcement premise, it includes a Win-
Stay, Lose-Switch choice dependency as a special case. Relative to 
trial t + 1, a Win-Stay outcome for strategy s is coded with an indi-
cator for s = s

i,t
 and π

i,t
 = 1. A Lose-Switch outcome is s ≠ s

i,t
 and 

π
i,t

 = 0. This behavior can be captured by a different value, i t
s
,WSLS  

with its own updating formula,

WSLS
otherwise.i t

s i t it

i t

s s
,

,

,

=
=

−
⎧
⎨
⎩

π
1 π

 

(8)

As in the EWA model, current reward affects the evolution of 
action value (here represented by i t

s
,WSLS ). Similarly, the strength 

of the connection between WSLS
i,t

 and s
i,t+1

 can be modulated with 
additional parameters (see Eq. 7). But unlike Eqs. 4 and 5, the WSLS 
model of value in Eq. 8 does not account for past events before 
period t nor does it account for a fi ctitious assessment of actions 
not chosen (foregone payoffs).

Both Win-Stay/Lose-Switch and the more general EWA models 
of value predict dependence in the sequence of actions s

i,t
 across 

adjacent trials. One method for exploring this dependence is to use 
the updating equations to generate predictors for actions in the fol-
lowing trial. First, we can rewrite Eq. 8 as the sum of two terms,

i t
in

i t
in

i t
in

s in i t s out i ti t i t
, , , = , = ,= + = + −

, ,
WSLS WS LS 1 1 1[ ] [ ]π π(( ).

 
(9)

This formulation motivates a probit model for choice of the 
form:

P s ini t i s in i t
in

i t
in

i t, = − , −=( ) = + + +( ),
, −

Φ ν α α α1 2 1 3 11
1[ ] ,WS LS

 
(10)

for t = 1,…,T
i
 and Φ() denotes the standard normal distribution 

function (see Wooldridge, 2001 for a discussion of the probit and 
tobit model introduced below). The term ν

i
 is a fi xed effect for 

experiment i. 1[ ]s ini t, =  is the indicator function which yields 1 if s
i,t
 = in 

and 0 otherwise. A simple Win-Stay/Lose-Switch hypothesis would 
predict α

1
 = 0 since the WS and LS variables would capture all 

the dependence in the sequence of decisions. Further, it would 
predict that α

2
 = α

3
, since the effects of winning and losing are 

symmetric.

VALUE, SCi ACTIVITY AND ACTIONS
To address how value is encoded in neural signals, we introduce 
our measurement of SCi t

s
, , defi ned as the SCi activity associated 

with saccade target s in trial t of experiment i. In 10 experi-
ments we observe SCi t

s
,  for both choices; for the other 58 we 
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observe it only for one choice, s = in. To test whether SCi activity 
encodes the value of actions, in the form of a choice, we estimate 
the probit

P s in SCi t i t
in

i, ,=( ) = + +( ),Φ γ γ1 2 ν  (11)

for t = 1,…,T
i
. Associating SCi t

in
,  with the value of s = in is the 

hypothesis that γ
2
 > 0. Rejecting the hypothesis γ

2 
= 0 in favour of 

γ
2 
> 0 is a necessary condition for SC_{i,t} to encode value, but is 

not suffi cient proof that it does.
For the 10 experiments in which we measure SCi activity associ-

ated with both choices, we can also estimate a probit of the form

Prob s in SCi t i t i, ,=( ) = + +( ),Φ μ μ Δ1 2 ν
 

(12)

where Δ i t i t
in

i
in

i t
out

i
out

SC SC SC SC SC, , ,= − − −( ) ( ) is the difference in SCi 
activity across actions relative to their within-experiment means, 

i
s

SC . A positive value for Δ i tSC , indicates the de-meaned activ-
ity associated with the in target was larger than for out. If choice 
depends on the comparative value of actions, and value is encoded 
in SCi activity, then choice probabilities should depend on differ-
ences in SCi activity. Thus we hypothesize that µ

2
 > 0.

Our fi nal hypothesis is that SCi activity refl ects the action valu-
ation in the EWA model. To test it, we consider a random-effects 
regression of the form:

SC D A D A A

D A

i t
in

i i t
in

i i t
in

i t
out

i i

, , − , − , −= + + + +

+

β β β β β

β
1 2 3 1 4 1 5 1

6 ,, − ,+ + .t
out

i i t1 ν ε  
(13)

For experiments involving the strategic task, we defi ne D
i
 = 1, 

with D
i
 = 0 for the instructed task. The constant term, β

1
, records 

the conditional mean activity for the sample of neurons examined, 
while β

2
 measures the effect of the strategic task on this baseline 

activity. The coeffi cient β
3
 captures the relationship between SCi 

activity (in the response fi eld) and the EWA action value of choosing 
in. The strength of association between SCi activity and action value 
in the strategic task is determined by the value of the interaction 
parameter β

4
. To capture any relationship between SCi activity (for 

in) and the valuations of alternative actions we include Ai t
out
, −1 as a 

regressor with parameter β
5
. Again, this relationship in the strategic 

task is refl ected by the interaction parameter β
6
. Our hypothesis is 

that only EWA action value for in positively infl uences SC activity: 
β

3
 > 0, β

3
 + β

4
 > 0, β

5
 ≤ 0, β

5
 + β

6
 ≤ 0.

Since SCi activity varies continuously, we can estimate equation 
13 as a regression. However, on some trials there is no SCi activ-
ity measured during our 50 ms preparatory epoch, thus there is 
left- censoring at zero of the endogenous variable SCi t

s
,  for a small 

but sizeable portion of trials. We account for this censoring by 
 estimating equation 13 as a tobit model.

We should emphasize the timing of our regression equations 12 
and 13, presented graphically in Figure 3. The EWA valuation At

s
−1 is 

a function of all observed choices and rewards through trial t − 1 (see 
Appendix). SCi activity in trial t, SCt

s , is a function of At
s
−1, therefore 

is a function of all choices and rewards through trial t − 1. Finally, the 
chosen action s

t
 is a function of the SCi activity in trial t. Importantly, 

At
s
−1 does not include any information from the trial t choice. Thus 

the maintained hypothesis is that past action predicts current SCi 
activity which predicts upcoming choice in the current trial.

ALGORITHM FOR COMPUTER OPPONENT
The computer algorithm which the monkey competes against is pri-
marily designed to elicit equilibrium behavior from the monkey, that 
is, a 50/50 randomization of choices. In doing so, the algorithm does 
not play the Nash strategy itself. This somewhat paradoxical setup 
is a result of the unstable nature of mixed  strategies  highlighted by 

FIGURE 3 | Schematic illustrating the recursive EWA computation and 

its hypothesized infl uence on SCi activity. In our experiments, we record 
and analyze current neural activity (SCi,t, gray box). SCi,t lies at the nexus 
between action value, calculated from past events, and choice on a trial t. 
Action value (Ai,t−1) is recursively updated based on an EWA learning model 
whose main inputs are past choices (si,t−1) and their realized or forgone 

outcomes (πi,t−1). Action value also includes an error term to highlight that the 
calculated Ai,t−1 only approximates and does not fully capture underlying 
valuation, in addition to any error arising from noisy neural signals. As such, 
the relationship between hypothesized Ai,t–1 and neural activity is likely weaker 
(thin arrows) than between neural activity and the observable si,t 
(thick arrows).
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Harsanyi (1973). When the computer is not adaptive, but simply ran-
domizes its choices, the monkey is indifferent between his strategies 
(any strategy the monkey chooses will be rewarded on half of the tri-
als) and the monkey’s choices become strongly biased in one direction 
(Lee et al., 2004). For this reason, the algorithm was designed to exploit 
the monkey’s choice biases, perhaps more in line with what constitutes 
(approximate) equilibrium in such games. Refer to algorithm 2 from 
Lee et al. (2004) for additional details on the computer opponent.

RESULTS
We begin by characterizing the effects of current and previous trials 
on both behavior and SCi activity in Sections “Analysis of Current 
Trial”, “Dependence of Choice on Previous Trial” and “Sequential 
Dependence of Choice”. In section “Dependence of Choice on 
Previous Trial”, we formally test for a Win-Stay/Lose-Switch strat-
egy. The ability of SCi neurons to predict choice is examined in 
section “Neuronal Choice Prediction”. In section “Behavioural 
EWA Estimates”, we fi t the EWA model to choice data and gener-
ate sequences of action values for each monkey. Finally, having 
established that choice is dependent on previous trials, and SCi 
activity predicts choice on a given trial, in Section “Encoding EWA 
Action Value” we test our hypothesis that SCi neurons represent 
the action-specifi c valuations posited by EWA.

We have data from 68 experiments where neurons satisfi ed our 
criteria for inclusion (See Section “Materials and Methods”). In 10 
of these experiments, we were able to measure SCi activity associ-
ated with both saccades simultaneously, 20 neurons total. In the 
remaining 58 experiments, we were able to measure SCi activity 
associated with only one of the potential saccades.

The data consists of a choice, preparatory SCi activity, and a sac-
cadic response time (SRT) for a set of i = 1…78 neurons respectively 
with T

i
 ordered trials. In 38 of these experiments, data were col-

lected for both the strategic task and the instructed task control. This 
sub-sample of 38 neurons is used in Sections “Analysis of Current 
Trial”,  and “Dependence of choice on previous trial”, and “Sequential 
dependence of choice”. In this sub-sample, a mean of 246 ± 11 SEM 
trials per neuron were analyzed during the strategic task and a mean 
of 146 ± 8 SEM trials per neuron were analyzed during the instructed 
task. The full sample is used in Section “Neuronal Choice Prediction”, 
while Sections “Behavioural EWA Estimates” and “Encoding EWA 
Action Value” drop experiments in which greater than 30% of the 
trials were aborted. These experiments were dropped since many 
aborted trials within an experiment may interrupt the sequence 
of valuation posited by EWA learning. The cut-off 30% was set to 
balance choice sequence consistency and sample size.

ANALYSIS OF CURRENT TRIAL
We will briefl y characterize saccade behaviors and SCi preparatory 
activity on the current trial before examining the effects of events on 
previous trials. A more detailed current trial analysis can be found in 
Thevarajah et al. (2009). All reported statistics are (mean ± se).

The allocation of saccade choices did not differ between the two 
targets during the strategic task [p(in) = 49.8 ± 0.6%; paired t-test 
p > 0.05]. Moreover, SRTs did not differ between the two targets 
during the instructed task (in: 192.9 ± 4.2 ms, out: 186.1 ± 3.7 ms, 
p > 0.05). These behavioral measures suggest that, on average, saccade 
preparation processes were not biased towards any one  particular 

target location during either task. However, in the strategic task the 
monkey was rewarded on only 42.2% of the trials, whereas in the 
instructed task the monkey was rewarded half the time (Table 1).

In both tasks, neuronal activity steadily increased during the warn-
ing period in advance of choosing either target (Figure 4). Overall 
preparatory activity was greater regardless of saccade direction dur-
ing the strategic task compared to the instructed task (in: p < 0.05, 
out: p < 0.05). Moreover, in the strategic task activity was segregated 
for saccades in (99.9 ± 8.8 spikes/s) and out (80.2 ± 7.2 spikes/s, 
paired t-test, p < 0.001), whereas activity was not segregated between 
in (63.5 ± 6.5 spikes/s) and out (64.5 ± 6.5 spikes/s) saccades during 
the instructed task (paired t-test, p > 0.05). This greater overall acti-
vation and neuronal selectivity during the strategic task may occur 
because saccades are under voluntary control and can be planned 
in advance. In the instructed task the monkey must wait for the 
presentation of the target.

DEPENDENCE OF CHOICE ON PREVIOUS TRIAL
We examine sequential choice dependencies by segregating behav-
ior and neuronal activity on the events of the previous trial (i.e., 
previous choice and its reward outcome). Particularly, we test for 
the prevalence of a WS/LS strategy.

The infl uence of previous trials on subsequent saccadic responses
We begin by summarizing the frequencies of WS/LS choice patterns in 
the strategic task over all experiments (Table 1). Choices were repeated 
in a WS/LS pattern in 55.5% of the trials. A WS was observed in 62.1% 
of post-win trials vs. LS observed in 50.6% of post-loss trials, which 
suggests a WS/LS strategy is solely due to a Win-Stay rather than Lose-
Shift bias. The larger percentage of losing trials suggests the computer 
opponent was able to exploit this tendency in choice patterns.

To further assess the infl uence of previous trial events, we esti-
mate Eq. 10 which models choice as a function of lagged choice 
and the Win-Stay and Lose-Switch variables. Estimates of the fi xed-
effects probit are presented in Table 2. The explicit prediction of the 
simple WS/LS strategy is rejected because the estimated coeffi cients 
α

2
 and α

3
 are signifi cantly different from each other: the tendency 

to repeat rewarded actions is greater than the tendency to switch 
from unrewarded actions. We can also note that the tendency to 
repeat choices is largely due to the Win-Stay bias since α

1
 is not 

signifi cantly different from zero.
To measure any biases in the instructed task, saccadic reaction 

times (SRTs) were examined in Table 3. Considering that target 
location and outcome were stochastic, therefore unpredictable, 
these previous events had a surprisingly large infl uence on SRTs. 
Repeating an action resulted in faster SRTs than switching actions 
(Stay vs. Switch, binomial test p < 10−11). SRTs were particularly 
biased if a saccade direction was previously rewarded (Win-Stay 
vs. Lose-Stay, binomial test p < 10−5; Win-Switch vs. Lose-Switch, 
binomial test p < 10−3). This suggests preparation biases were a 
function of both previous choices and their outcomes.

The infl uence of previous trials on SCi preparatory activity
Figure 5 illustrates how SCi activity was also infl uenced by the 
previous trial. The black dashed line shows mean activity over all 
experiments. Each of the coloured lines depicts how current trial 
activity was infl uenced by choices and outcomes on the previous 
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FIGURE 4 | SCi activity during the current trial. (A, B) Activity of a 
representative SCi neuron during the strategic (A) and instructed (B) tasks. 
Rasters (top panels) and post-synaptic activation functions (bottom panel) 
are sorted based on saccades directed in (black) and out (gray) of the 

neuron’s response fi eld. The shaded gray bar denotes the epoch during 
which preparatory activity was analyzed. (C, D) Mean activity of neuron 
sample in which both strategic (C) and instructed (D) tasks were recorded 
(38 neurons).

Table 2 | Probit estimates of s
i,t+1

 on lagged choice and Win-Stay/Lose-

Switch outcomes.

Variable Coeffi cient Estimate Standard error p-Value

I(si t
in
, −1) α1 0.1415 0.1095 0.20

WSi t
in
,  α2 0.5478 0.1118 0.00

LSi t
in
,  α3 0.252 0.0986 0.01

Estimates of Eq. 10 on sample of 33 experiments. (5 redundant paired experiments 
dropped). Sample size = 8809. Estimates of the 33 experimental effects νi not 
reported. Reported standard errors are clustered within experiments.

Table 3 | Reaction time dependencies in instructed task.

Previous trial dependency Reaction time (ms) Standard error

Win-Stay 170.8 4.0

Stay 177.2 3.2

Lose-Stay 183.6 5.0

Lose-Switch 194.5 5.0

Switch 200.1 4.0

Win-Switch 205.7 6.4

trial. This infl uence is most prevalent at the end of the warning 
period (gray-shaded area). Therefore we will use SCi activity in this 
epoch for the sequential analysis that follows.

SEQUENTIAL DEPENDENCE OF CHOICE
Having observed a dependency in choices and outcomes in the 
previous trial, we will now characterize this dependency over 
multiple trials. Two sequential patterns were evident in both tasks 
(Figure 6). First, more recent events had the greatest infl uence. 
Second, actions that were rewarded generally had a more pro-
nounced effect, both in terms of magnitude and duration, than 

Table 1 | Frequencies of choice dependencies in strategic game.

Previous trial dependency Proportion (%)

Win 42.2

Loss 57.8

Win-Stay/Lose-Switch 55.5

Win-Stay 62.1

Lose-Switch 50.6
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category. Line widths represent the SEM. The shaded gray bar denotes the 
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FIGURE 6 | Saccade behavior and SCi activity segregated on previous and 

future trials. The data for each trial sequence is presented as the percentage 
change from the mean data for all trials at trial t (black dots). Note that each data 
point in the trial sequence represents the infl uence of an earlier or later trial on the 
current trial. Therefore, the four colored data points at each time sequence always 
sum to the mean data point at time t when weighted by the proportion of trials in 

each category. (A) Changes in in target choices during the strategic task. 
(B) Changes in in target SRTs during the instructed task. Note that the the ordinate 
axis has been fl ipped because SRTs are negatively correlated with SCi activity. (C) 
Changes in SCi activity during the strategic task. (D) Changes in SCi activity during 
the instructed task. Filled squares indicate signifi cant differences from the mean 
activity. Representative standard errors are shown for in/R data points.
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unrewarded actions (Figure 6, dark colored lines vs. light colored 
lines). Whether a previous trial was rewarded or not, did not, by 
itself, affect SC activity or saccade behaviors. Instead, the effects of 
reward infl uenced a particular saccade location rather than pro-
viding a general motivating or alerting effect for both actions.

The strategic and instructed tasks also differed in two ways 
during this sequential analysis. First, future events were correlated 
with choice selection in the strategic but not the instructed task 
(Figure 6A). This seemingly paradoxical fi nding is a consequence 
of the computer exploiting the monkey’s Win-Stay bias. That is, 
monkeys were more likely to lose following a rewarded trial as they 
tended to repeat actions. This phenomena is evident in the Lose-
Stay bias observed in future choices in Figure 6A. Second, modu-
lation of SCi activity by past events was greater for the instructed 
task than for the strategic task. For example, the change in activity 
imposed by the previous trial was approximately three times as large 
during the instructed task compared to the strategic task (compare 
the spread in data along the vertical axis in Figures 6C vs. D).

NEURONAL CHOICE PREDICTION
Having characterized serial dependency in choices, the second step 
in determining whether neurons in the SCi encode action value is to 
determine if activity predicts choice. The ten experiments where we 
measured two neurons simultaneously, one for each target, allows us 
to specify how opposing SCi activity is compared in Eq. 12. Results 
for the fi xed-effects probit estimation are given in Table 4.

The parameter µ
2
 measures the impact of SCi activity on the 

probability of an in saccade and is both positive and highly signifi -
cant. To interpret the magnitude of the coeffi cient µ

2
, we take the 

predicted probabilities from the regression and compare them to 
the observed choices by two methods. The fi rst rounds the prob-
abilities to the nearest integer and compares them to the choices, 
resulting in a prediction rate of 65%. The second simulates choices 
from the binomial distribution using the predicted probabilities, 
and compares the simulated choices to the actual choices, resulting 
in a prediction rate of 56% for 1000 simulations. Comparatively, 
1000 independent draws from a 50/50 binomial distribution would 
predict 56% of the trials (560 matches of the monkey’s choice) with 
probability 6.3 × 10−5. Results did not change signifi cantly when we 
estimated on half the sample and predicted out of sample.

For the entire 78 neuron sample, we can also assess how well 
single neurons predict choice from Eq. 11. Results are reported in 
Table 5. Again, we observe that the estimate of SCi activity, γ

2
, is 

both positive and highly signifi cant. As before, our assessment of 
the magnitude of the parameter γ

2
 relies on in-sample prediction. 

Rounding the fi tted probabilities results in a 60% prediction rate 

for the 78 individual neurons, while simulating the choices results 
in a 53% prediction rate. As expected, the single neuron is a worse 
predictor compared to the the paired neuron analysis, presumably 
because choice is based on a comparison of valuation between the 
two targets. Again, 1000 independent 50/50 draws would still only 
predict 53% with probability 0.03.

BEHAVIOURAL EWA ESTIMATES
To generate a sequence of action values which refl ect each monkey’s 
valuation on a given trial, we estimated the EWA model on choice 
data (see Section “EWA Learning” and APPENDIX). Estimates are 
reported in Tables 6 and 7. We observe signifi cant heterogeneity in 
the fi tted EWA parameters, similar to Ho et al. (2008). Estimates 
suggest Monkey H (54/78 experiments) is a cumulative reinforce-
ment learner (δ = 0, ρ = 0), while Monkey B (24/78 experiments) 
has a fi ctive learning component and averages rewards as in Q-
Learning (δ > 0, ρ = φ). For each monkey, the estimates for φ, δ, 
ρ, and N

0
 are used to generate the sequence Ai,t

s  which we use in 
section “Encoding EWA Action Value”.

Table 4 | Probit estimates of s
i,t
 based on difference in activity from 

neuronal pairs.

Variable Coeffi cient Estimate Standard error p-Value

Constant µ1 0.0435 0.0015 0.00

Δ i tSC ,  µ2 0.0054 0.0005 0.00

Estimates of Eq. 12 using ten experiments with paired neuronal measures. 
Fixed effect estimates are not reported. Standard errors were clustered at the 
experiment level.

Table 5 | Probit estimates of s
i,t
 based on activity from individual 

neurons.

Variable Coeffi cient Estimate Standard error p-Value

Constant γ1 0.0045 0.0008 0.00

SC SCi t i, −  γ2 0.0053 0.0005 0.00

Estimates of Eq. 11 using 78 experiments. Fixed effect estimates are not 
reported. Standard errors were clustered at the experiment level.

Table 6 | EWA Estimates for Monkey B.

Parameter Estimate Standard Error

 λ 3.68 3.54

 φ 0.78 0.08

 δ 0.12 0.07

 ρ 0.91 0.08

 N0 3.73 8.46

Sample of 19 experiments for monkey B (4/24 experiments dropped due to 
>30% aborted trials; 1/54 redundant paired experiments additionally dropped).

Table 7 | EWA Estimates for Monkey H.

Parameter Estimate Standard Error

 λ 0.45 0.29

 φ 0.52 0.04

 δ 0.00 0.05

 ρ 0.00 0.64

 N0 1 0

Sample of 27 experiments for monkey H (20/54 experiments dropped due 
to >30% aborted trials; 7/54 redundant paired experiments additionally 
dropped). The restriction N0 = 1 was imposed to ensure identifi cation of ρ (see 
Appendix).
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As expected from our sequential analysis, the relationship 
between SC activity and action value is attenuated in the strategic 
task ( )β4 0<  though it is still positive and signifi cant (H

0
: β

3
 + β

4 

= 0, p = 0.00). The estimates yield a 36% increase in SC activ-
ity relative to baseline (β

1
 + β2 = 84.5 spikes/s) over the range of 

Ai t
in
, . However the out EWA action value now has no impact (H

0
: 

β
5
 + β

6
 = 0, p = 0.82) suggesting no inhibition from out target neu-

rons during this measurement epoch of the strategic task.
Estimation results for monkey B have considerably more vari-

ance (Table 9). In the instructed task, we still observe a positive coef-
fi cient for Ai t

in
,   ( . )β3 28 06=  but with a larger p-value (p = 0.18) and 

a smaller magnitude relative to baseline (33%) over the observed 
range of action values (0.00 < A

i,t
 < 0.58). While the estimate for 

attenuation in the strategic sample is of the correct sign (β
4
 < 0), 

it is not signifi cantly different from zero (p = 0.86). The estimates 
for the out action value are also highly variable and not signifi -
cantly different from zero in either task. We should note that the 
sub-sample for monkey B contains half as many observations and 
neurons as the sub-sample for monkey H, though this effi ciency 
loss likely does not account for all of the increased variability of 
the estimates.

DISCUSSION
SUMMARY OF FINDINGS
This study examined whether a valuation of future actions, con-
structed as a function of previous choices and rewards, is repre-
sented by the superior colliculus in a strategic environment. Our 
results show that SCi preparatory activity was shaped by both 
previous saccades and their outcomes, particularly a Win-Stay 
bias, and more recent events had a more pronounced effect. These 
sequential biases were refl ected in upcoming choices during the 
strategic task and upcoming saccadic reaction times during the 
instructed task.

SCi activity was also predictive of upcoming strategic saccades 
on a trial-by-trial basis (Tables 4 and 5); at a rate of 60% for sin-
gle neurons and 65% for opposing neuron pairs. Although our 
pool of neuron pairs was small (10 pairs), this improvement in 
prediction suggests that it is not the absolute level of activity, but 
the relative level of activity between potential actions, that is best 
correlated to choice.

The fact that SCi activity was both shaped by previous choices 
and rewards and predicted future choices suggest it as a candi-
date neural correlated of action values posited by behavioural 
learning model. Our analysis demonstrated that SCi activity was 
correlated on a trial-by-trial basis with the EWA learning valua-
tion. Specifi cally, SCi activity was positively correlated with the 
action value for its response fi eld, with some evidence that it is 
negatively correlated with the action value of the alternative tar-
get. Collectively, our empirical and modelling results suggest that 
hypothesized action value signals are represented in the motor 
planning regions of the brain in a manner that could be used to 
select strategic actions.

EFFECTS OF PREVIOUS ACTIONS AND REWARDS
Serial dependence of choices has previously been observed in 
strategic and non-strategic environments. Consistent with previ-
ous studies, more recent events had a greater infl uence on both 

ENCODING EWA ACTION VALUE
The EWA action value is a function of the observed choices and 
reward structure of the game. Our fi nal hypothesis is that SCi activ-
ity refl ects the fi tted action values from Section “Behavioural EWA 
Estimates”. To test this hypothesis, we estimate Eq. 13 separately 
for each monkey and its appropriate action value As

i t, . Results are 
reported in Tables 8 and 9.

For monkey H (Table 8), the instructed task relationship between 
EWA action value and SCi activity for target in is positive, signifi cant 

and large in magnitude β3 24 46=( ). . Over the observed range of 

the EWA action value (0.00 < A
i,t

 < 1.96), this represents an 81% 
change in SCi activity relative to baseline activity of 59.86 spikes/s. 
Notably, this relationship is partially offset by the out EWA action 
value (H

0
: β

3
 + β

5
 = 0, p = 0.36). If the action values of the two 

targets were equal ( ),A Ai t
in

i t
out

, ,=  the estimates predict there would 
still be an increase in SCi activity for the in target. This suggests 
that a given SC neuron encodes the action value for the target it is 
associated with on the topographic map, but other neurons (valu-
able targets) can partially inhibit this valuation.

Table 8 | Estimates of SCi t

in

,  on EWA action values and task type for 

monkey H.

Variable Coeffi cient Estimate Standard error p-Value

Constant β1 59.86 12.94 0.00

Di β2 24.69 9.46 0.01

Ai t
in
,  β3 24.46 3.72 0.00

D Ai i t
in
,  β4 −9.07 4.58 0.05

Ai t
out
,  β5 −17.95 5.74 0.01

D Ai i t
out
,  β6 17.25 5.91 0.00

Var(νi) σν
2 59.69 9.86 0.00

Var(εi,t) σε
2 62.99 5.43 0.00

Random-effects tobit estimates of Eq. 13 on 36 neurons for monkey H (18/54 
experiments were dropped due to > 30% aborted trials). Sample size=10704, 998 
observations censored at 0. σν

2 is the variance of the random effect νi; σε
2  is the 

variance of εi,t. Ai t
s
,  is generated using behavioural EWA estimates for monkey H (see 

Section “Behavioural EWA Estimates”). Standard errors are calculated by means of 
clustered bootstrap with 1000 bootstrap samples, re-sampling within experiment i.

Table 9 | Estimates of SC
i,t
 on EWA action values and task type for 

monkey B.

Variable Coeffi cient Estimate Standard Error p-value

Constant β1 48.72 10.39 0.00

Di β2 20.51 9.30 0.03

Ai t
in
,  β3 28.06 21.10 0.18

D Ai i t
in
,  β4 −5.45 31.28 0.86

Ai t
out
,  β5 8.71 12.62 0.49

D Ai i t
out
,  β6 −10.93 19.14 0.57

Var(νi) σν
2  35.29 7.28 0.00

Var(εi,t) σε
2 39.78 4.59 0.00

Random-effects tobit estimates of Eq. 13 on 19 neurons for monkey B (5/24 
experiments were dropped due to >30% aborted trials). Sample size = 5907, 258 
observations censored at 0. σε

2  is the variance of the random effect νi; σε
2  is the 

variance of εi,t. Ai t
s
,  is generated using behavioural EWA estimates for monkey B (see 

Section “Behavioural EWA Estimates”). Standard errors are calculated by means of 
clustered bootstrap with 1000 bootstrap samples, re-sampling within experiment i.
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choices (Juttner and Wolf, 1992; Maljkovic and Nakayama, 1994; 
Dorris et al., 2000; Barraclough et al., 2004; Lee et al., 2004; Lau 
and Glimcher, 2005) and neuronal activity (Dorris et al., 2000; 
Bayer and Glimcher, 2005; Seo and Lee, 2007), and these infl u-
ences decayed with time (Figure 6). Unlike the computer opponent 
which weighed all past events equally, monkeys gave more weight to 
recent events when selecting actions. This policy may be an effi cient 
solution for using past events to predict future rewarded actions 
given organisms have a limited memory store (Anderson et al., 
1996; Callicott et al., 1999), and it allows organisms to more readily 
adapt to a changing environment.

Sequential effects have been characterized previously in the SCi 
during a task similar to our instructed task (Dorris et al., 2000). 
Although target location was unpredictable in this previous study, 
all saccades were rewarded; therefore the contribution from repeat-
ing a motor action, or repeating a rewarded location, remained 
unclear. By allocating rewards unpredictably, we were able to isolate 
the contribution of these factors. Previously unrewarded actions 
had a biasing effect, but to a lesser extent than previously rewarded 
actions. We found no effect of previously rewarded trials when 
analyzed independently of actions, which suggested that reward, 
at least our task, did not have a generalized alerting or motivating 
effect. Instead, SCi activity was found to be infl uenced by a combi-
nation of both previous actions and rewards. These biases, in turn, 
were refl ected in saccade behaviors (Figure 6).

Finally, we observed differences in how SC activity was infl u-
enced by previous events during the two tasks. First, the overall 
level of SC activity was greater preceding strategic than instructed 
saccades (i.e., compare black dashed lines in Figures 5A vs. B). 
Strategic saccades may have been more fully prepared because the 
locations of the two targets were known in advance whereas the 
location of the single target had to be identifi ed before the saccade 
preparation processes could be completed in the instructed task. 
Second, previous events exerted less infl uence on SCi activity 
during the strategic task (i.e., compare Figures 6C vs. D). This 
was observed in the magnitude of the sequential dependencies 
and the number of previous trials which exerted an infl uence. 
Although having sequential biases was seemingly unneces-
sary in the instructed task, as the monkey could neither con-
trol nor predict saccade direction or reward, having such biases 
were relatively inconsequential. In the strategic task however, 
sequential biases led to exploitation by the computer opponent 
as evidenced by a reduced reward rate (Table 1 and Barraclough 
et al., 2004). Our results suggest the infl uence of previous events, 
borne out in sequential dependencies, can be attenuated in 
strategic situations.

WIN-STAY BIAS
Though the analysis in Sections “Dependence of Choice on Previous 
Trial” and “Sequential Dependence of Choice” revealed notable 
choice tendencies in the strategic sample, many of which are incor-
porated in the EWA learning model, there is one in particular we 
wish to highlight. Although both effects were signifi cant, subjects 
repeated winning choices more often than switching from losing 
choices controlling for repeated choices (α

2
 > α

3
), or a Win-Stay 

bias. This observation is a rejection of a strict Win-Stay/Lose-Switch 
model of choice in repeated games.

However, a stronger Win-Stay bias is compatible with our 
 candidate model of action value (EWA). If unchosen winning 
actions are updated by a fraction δ < 1 relative to chosen winning 
actions, the difference in the action value after a rewarded trial is 
larger than after an unrewarded trial:
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This result holds generally for all models nested by EWA, as long 
as δ < 1. A Win-Stay bias may be exacerbated in our experiment 
because our payoff matrix is not zero-sum (Figure 2); not  matching 
the opponent constituted a withholding of reward rather than a 
loss of reward. This asymmetry in payoffs may bias the subject’s 
responses in favour of rewarded trials.

PREDICTING CHOICE
Our results indicate that the activity of individual SCi neurons can 
predict upcoming choices with 60% reliability. Although signifi -
cantly better than chance, the SCi may not appear to be a particu-
larly impressive predictor. However, a number of issues must be 
taken under consideration to make this judgment.

The predictive capability of SCi neurons depends on the number 
of neurons in the population, the correlation in their fi ring patterns, 
and the manner in which downstream structures read-out these 
predictive signals. Although we only had a sample of 10 neuronal 
pairs, our results demonstrate that simply comparing the relative 
fi ring of two opposing neurons increases prediction from 60% to 
65%. Moreover, while the predictive capability of any one (or two) 
neuron(s) may be weak, this is a very consistent prediction across 
the neuronal population (see Figure 5D from Thevarajah et al., 
2009). Therefore, these small individual biases can be amplifi ed to 
provide a strong signal for selecting strategic actions.

Although the SCi is required for generating saccades (Hanes and 
Wurtz, 2001) and manipulating SCi activity alters saccadic choices 
(Carello and Krauzlis, 2004; McPeek and Keller, 2004; Dorris et al., 
2007; Thevarajah et al., 2009), the robust activity for out direction 
saccades (Figure 4) demonstrates that the reverse is not true; exe-
cuting a saccade is not a pre-requisite for preparatory SCi activity. 
This evidence strongly suggests that a causal arrow passes from SCi 
to choice uni-directionally (Figure 3). Similarly, if action value is 
indeed a function of past choices, then it must be action value that 
infl uences SCi activity. If these arrows were not uni-directional then 
current activity or choices would paradoxically cause past choices.

NEURONAL CORRELATES OF EXPERIENCE WEIGHTED ATTRACTION
Our preliminary analysis has shown that both behaviour and SCi 
activity are correlated with previous choices and rewards, particu-
larly through a reinforcement of rewarded choices (Win-Stay). To 
formalize this result, we found a neural correlate of a general learning 
model based upon this reinforcement premise. This model calculates 
an action value on each trial as a function of the history of observed 
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choices and payoff structure of the game. Therefore, our results 
in Section “Encoding EWA Action Value” are consistent with the 
hypothesis that neurons in the SCi encode the history of the two 
tasks in the form of learned action values for each potential action. 
A given neuron in the SCi is correlated with the action value of its 
target in both tasks, though the magnitude of this relationship is 
attenuated in the strategic task. Further, SCi activity is negatively cor-
related with the action values of competing targets in the instructed 
task, but not in the strategic task during the period we measure. This 
suggests that both the attenuation of the value/SCi relationship, and 
the lack of inhibition from competing neurons within the prepara-
tory period we measure, may serve a strategic purpose.

The EWA model we use in this study (Camerer and Ho, 1999) is a 
general learning model that has proven successful in predicting play 
both in and out of sample in a wide variety of games. The role EWA 
plays in our analysis is akin to an objective valuation. It is a func-
tion of past choices and rewards which refl ects a component of the 
relative value of each strategy. As such, there remain unaddressed 
components of value. Learning models do not assess the forward-
looking value of an action. That is, there is no consideration of 
repeated game strategies such as “leading” an opponent in order to 
exploit him in later periods (though we should emphasize the only 
unique repeated game equilibrium in matching pennies is the stage 
game equilibrium). Our analysis also does not address satiation in 
the experiment nor learning between experiments. However, the 
relative success of EWA in predicting choice in a strategic environ-
ment suggests that its historical, objective component is important 
in the ultimate valuation of an action.

As a theoretical construct of valuation, both the simplifying 
assumptions mentioned above and additional neural and/or behav-
ioural factors will combine to limit the explanatory power of EWA 
(referred to in Figure 3). But even if the SC is not coding action 
value as specifi ed by EWA, the fact that EWA action value signifi -
cantly predicts SC activity suggests that the correct model will share 
many features of the EWA formulation. Whether a complete model 
actually nests EWA as a special case remains an open question that 
is beyond the scope of this paper.

There has been some progress in identifying the neural cor-
relates of the functional elements of EWA. It has been previously 
observed that the striatum encodes the difference between realized 
and expected reward, suggesting the striatum may form part of a 
learning system in the brain (Schultz, 1998; Caplin et al., 2010). 
Rewriting Eq. 18 for only the chosen strategy s

it
 highlights the role 

the striatum may play in a general EWA formulation:
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and Δ
it
 is the dopaminergenic response system analyzed in Caplin et al. 

(2010). Left unspecifi ed here is the means by which all action values 
for unchosen actions, s ≠ s

it
, are updated (see Lohrenz et al., 2007).

Other important components associated with reinforcement 
learning models are also encoded in a network of cortical structures 
that send projections to the SCi. In contrast to the SCi, the signals 

carried by these cortical structures are much more heterogeneous 
across individual neurons. A proportion of neurons in the dorso-
lateral prefrontal cortex (Barraclough et al., 2004), dorsal anterior 
cingulated cortex (Seo and Lee, 2008) and lateral intraparietal 
cortex (Platt and Glimcher, 1999; Dorris and Glimcher, 2004; Seo 
et al., 2009) encode relevant information necessary to construct 
action value such as past choices, opponent’s choices, the animal’s 
reward history, as well as functions of action value. Like the SCi, 
some cortical signals display serial dependencies over trials (Seo 
and Lee, 2007).

ROLE OF THE SCi WITHIN THE SACCADE DECISION CIRCUIT
We propose that the SCi is involved in three important aspects of 
selecting strategic saccades:

1. integrating value related inputs and tagging action values to 
particular saccade vectors;

2. selecting a saccade in a process where action value representa-
tions are compared;

3. providing feedback of choices to dopaminergic centres.

First, as outlined in Section “Neuronal Correlates of Experience 
Weighted Attraction”, the SCi receives inputs from regions that encode 
functional elements of action value learning models. Because the SCi 
integrates many inputs, and outputs to pre-motor neurons, its rep-
resentations of action value may be particularly suited for choosing 
fi nal actions. Moreover, the topographic organization of the SCi allows 
value representations to be tagged to particular saccade vectors.

Second, the SCi provides a platform where multiple action value 
representations can compete and ultimately be resolved to choose a 
particular action. The topographic map within the SCi is organized 
based on the principle of local excitation and distant inhibition 
(Munoz and Istvan, 1998; Trappenberg et al., 2001; Dorris et al., 
2007). Once activity reaches a certain threshold level on this map, 
a saccade command is sent to pre-motor neurons in the brainstem 
(see Moschovakis and Highstein, 1994 for review). Therefore, the 
SCi is perhaps the last site within the visuosaccadic circuit where 
action value can be represented to infl uence saccade selection with-
out directly triggering (or necessarily resulting in) saccades.

Third, the SCi sends direct mono-synaptic projections to dopamin-
ergic neurons in the substantia nigra and ventral tegmental area 
(Comoli et al., 2003; Dommett et al., 2005). Therefore, the SCi may 
provide feedback on selected actions, thus providing a critical com-
ponent for the reinforcement learning circuitry of the striatum.

CONCLUSION
Our results suggest that the evolutionarily old SCi does not simply 
execute sensory-driven refl exive saccades but also encodes action 
value signals that can be used to select voluntary, strategic saccades. 
As would be expected from a brain region involved in the decision 
process, SCi activity simultaneously refl ects past choices and their 
outcomes, and predicts future choice. Similarly, learning models, 
such as EWA, recursively compute action values from past events to 
probabilistically choose future actions. We demonstrate that these 
small trial-to-trial fl uctuations in SCi activity are not entirely ran-
dom but have serial dependencies which can be captured, in part, 
by the EWA learning model.
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APPENDIX
The goal of EWA learning is to construct a model that predicts 
play across a wide variety of games yet retains a framework that is 
psychologically sound. In an EWA learning model, each strategy has 
an attraction (which we re-labelled action value) that is updated 
based on observed choices and the payoff structure.
We introduce EWA in the context of a player who faces a single 
opponent. Each period the player chooses s from one of two alter-
natives, s ∈ {in, out}. For each trial t, the subject makes a choice 
s

t
, the opponent chooses s in outt

′ ∈{ , },  and the subject receives a 
payoff πt t ts s( , )′  as defi ned in Section “EWA Learning”. We drop 
the experiment subscript i here for illustration.

Once a choice is made and payoff received in trial t, the attrac-
tion of strategy s in trial t is defi ned as a recursive function of past 
attractions, choices, and rewards by means of
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Finally, after a choice is made and a reward is determined in trial t, 
At

s is updated to refl ect the valuation of every candidate choice in trial t. 
On a given trial, the probability of choosing s
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 = in is defi ned as
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which yields a likelihood function for our observed choices
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which is estimated via maximum likelihood using the log- likelihood 
function
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In addition to the identifi cation restrictions detailed in Ho et 
al. (2008), we had to make an additional identifi cation assumption 

for monkey H. We found that the restriction N0
1

1
= − ρ was always 

binding, so we restricted N
0
 = 1 for this monkey to ensure identifi -

cation of ρ, although the estimates are robust to N
0
 ≤ 1.
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