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region on the inferior temporal sulcus (ITS) that may correspond 
to the extrastriate body area (EBA), which is often characterized as 
“ventral” despite being situated anatomically dorsal to the hMT+ 
(Vaina et al., 2001b; Grossman and Blake, 2002; Taylor et al., 2009). 
Each of these brain areas has neural signals that dissociate action 
kinematics from non-biological motion, however, the EBA and FBA 
both also support recognition of stationary body postures (Taylor 
et al., 2007; Peelen et al., 2009), while the ITS also has neural signals 
that support recognition of dynamic and articulated novel objects 
“Creatures” (Pyles et al., 2007).

Anatomically situated at the center of this large cortical system 
is the superior temporal sulcus (STS), which has been proposed 
as the integration site of the two visual processing streams and the 
hub of this larger network. The STS is the brain area that has most 
critically been implicated in action recognition (STS, e.g., Blake and 
Shiffrar, 2007; Adolphs, 2009), and appears to have subregions that 
support action observation (Bonda et al., 1996; Grossman et al., 
2000), action imagery (Kourtzi and Kanwisher, 2000; Grossman 
and Blake, 2001), and recognition of action verbs (Bedny et al., 
2008). Patients with lesions on the STS have diffi culty recognizing 
actions (Battelli et al., 2003; Pavlova et al., 2003), an effect that is 
reproduced by creating reversible “lesions” over the STS through 
repetitive TMS (Grossman et al., 2005).

To date, our best understanding of the neuronal specialization 
on the STS comes from single-unit investigations of the macaque 
superior temporal polysensory area (STPa, sometimes referred to as 
STSa), the likely homologue to human STS (Puce and Perrett, 2003). 

INTRODUCTION
We live in a dynamic social environment in which the swift and 
accurate assessment of people’s actions facilitates our social inter-
actions and enriches our daily experiences. To make sense of these 
complex social situations, one must engage a variety of cognitive 
tasks that include recognizing the actions and intentions of others. 
Although humans make these assessments quickly and seemingly 
effortlessly, there is an abundance of evidence that this is a cog-
nitively demanding task requiring the coordination of multiple 
brain systems.

Neuroimaging and computational studies have implicated both 
dorsal and ventral visual brain areas in action recognition, and 
the premotor cortex (PMC) as a part of a larger putative “mirror” 
system (Saygin et al., 2004; Wheaton et al., 2004). In visual analysis, 
dorsal brain areas are proposed to support the encoding of action 
kinematics, and ventral brain areas are proposed to analyze the 
underlying body postures (Grossman and Blake, 2002; Beauchamp 
et al., 2003; Giese and Poggio, 2003; Michels et al., 2005; Thompson 
et al., 2005). Most of these brain areas are not believed to be spe-
cialized for action recognition. For example, the motion-sensitive 
human MT complex (hMT+) has cortical activity strongly linked 
to motion perception (e.g., Huk et al., 2001), and is likely involved 
in analysis of body kinematics (Peuskens et al., 2005), but does not 
appear to be specialized in any way for biological motion perception 
(Grossman et al., 2000; Peelen et al., 2006). Ventral stream brain 
areas implicated in biological motion include a region on the fusi-
form sometimes referred to as the fusiform body area (FBA), and a 

fMR-adaptation reveals invariant coding of biological motion 
on the human STS

Emily D. Grossman1*, Nicole L. Jardine2 and John A. Pyles3

1 Department of Cognitive Sciences, Center for Cognitive Neuroscience, University of California-Irvine, Irvine, CA, USA
2 Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, USA
3 Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA

Neuroimaging studies of biological motion perception have found a network of coordinated 
brain areas, the hub of which appears to be the human posterior superior temporal sulcus 
(STSp). Understanding the functional role of the STSp requires characterizing the response 
tuning of neuronal populations underlying the BOLD response. Thus far our understanding of 
these response properties comes from single-unit studies of the monkey anterior STS, which 
has individual neurons tuned to body actions, with a small population invariant to changes in 
viewpoint, position and size of the action being viewed. To measure for homologous functional 
properties on the human STS, we used fMR-adaptation to investigate action, position and size 
invariance. Observers viewed pairs of point-light animations depicting human actions that were 
either identical, differed in the action depicted, locally scrambled, or differed in the viewing 
perspective, the position or the size. While extrastriate hMT+ had neural signals indicative of 
viewpoint specifi city, the human STS adapted for all of these changes, as compared to viewing 
two different actions. Similar fi ndings were observed in more posterior brain areas also implicated 
in action recognition. Our fi ndings are evidence for viewpoint invariance in the human STS 
and related brain areas, with the implication that actions are abstracted into object-centered 
representations during visual analysis.

Keywords: biological motion, superior temporal sulcus, visual recognition, fMRI, vision

Edited by:

Patrik Vuilleumier, University Medical 
Center and University Hospital Geneva, 
Switzerland

Reviewed by:

Michael S. Beauchamp, University of 
Texas, USA
Marius Peelen, University of Trento, Italy

*Correspondence:

Emily D. Grossman, Department of 
Cognitive Sciences, Center for 
Cognitive Neuroscience, University of 
California Irvine, Irvine, 
CA 92697-5100, USA. 
e-mail: grossman@uci.edu



Frontiers in Human Neuroscience www.frontiersin.org March 2010 | Volume 4 | Article 15 | 2

Grossman et al. Biological motion invariance on STS

Investigations of the macaque STSa have identifi ed a population 
of neurons that fi re during action recognition (Oram and Perrett, 
1994) and appear to be tuned to the movements of bodies or spe-
cifi c body parts such as the face, arms and legs (Jellema et al., 2004; 
Barraclough et al., 2006; Vangeneugden et al., 2009). The majority 
of these STSa neurons are tuned to specifi c combinations of body 
postures and movements that render them effectively viewpoint 
specifi c (Oram and Perrett, 1996). A smaller population of STSa 
neurons, however, appear to be viewpoint invariant, as demon-
strated by more generalized tuning across changes in viewing per-
spectives (i.e., a person walking backwards as seen from the front, 
or back). Both populations of biological motion selective neurons 
have large receptive fi elds (Bruce et al., 1981), tend to be position 
and size invariant (Wachsmuth et al., 1994), and are anatomically 
intermixed (Perrett et al., 1985b).

The purpose of this study is to use fMRI to investigate view-
point dependence and neural tuning of the human STS, and 
functionally related cortical areas. Based on the range of stimuli 
used to identify functional specialization on the human STS, 
we hypothesized that this region, much like the monkey STSa, 
consists of heterogeneous populations of neurons. Therefore, if 
some viewpoint dependencies do exist, they may exist only within 
some subpopulation of the STS neurons. Standard neuroimaging 
techniques would be unlikely to detect such subtle differences 
among subpopulations in the millions of neurons driving the 
BOLD in a brain area, given the average voxel size of 1.5–4 mm 
and larger effective spatial resolution due to spatial correlations 
of the BOLD response.

To overcome the spatial limitations inherent to the BOLD 
response, we have used fMR-adaptation (also referred to as rep-
etition suppression) to “tag” subpopulation of neurons underly-
ing the fMRI response (e.g., Henson et al., 2003; Grill-Spector, 
2006; Krekelberg et al., 2006). fMR-adaptation was derived from 
the observation that repeated presentations of identical stimuli 
tend to result in reduced hemodynamic responses as compared 
to pairs of different stimuli (Buckner et al., 1998; Grill-Spector 
and Malach, 2001). This is not entirely unlike the double-pulse 
or stimulus specifi c adaptation effects observed in omnibus elec-
trode recording and unit physiology in which prior exposure to an 
image reduces the neural response for that image in subsequent 
presentations (Musselwhite and Jeffreys, 1983; Baylis and Rolls, 
1987; Fahy et al., 1993; Li et al., 1993; Sobotka and Ringo, 1994). 
The physiological mechanism of adaptation is currently unknown, 
but the effect has been linked to habituation, neuronal fatigue, and 
repetition priming (Muller et al., 1999; Ganel et al., 2006; Grill-
Spector et al., 2006).

In the rapid fMR-adaptation paradigm, the suppression of the 
neural response to the second exposure is measured as a slightly 
reduced peak (on the order of 0.05–0.1% signal reduction) in the 
hemodynamic impulse response function. This is because the slug-
gish BOLD response refl ects summation of the two events (i.e., two 
impulse response functions convolved with a 16-s hemodynamic 
response function). Of most importance to these studies, the fMRI-
adaptation paradigm has been exploited to reveal dimensions of 
visual stimuli coded by a particular neural population (sometimes 
referred to as “invariance”). For example, this technique has suc-
cessfully revealed invariant properties of shape, object and face 

perception in ventral temporal cortex (Kourtzi and Kanwisher, 
2001; Andrews and Ewbank, 2004; Self and Zeki, 2005; Andresen 
et al., 2009; Pyles and Grossman, 2009).

In four experiments we tested fi ve specifi c properties of STS 
neurons: action specifi city, invariance across mirror reversals, cross-
adaptation between intact actions and motion-matched controls, 
and invariance across changes in position and size. We compared 
the peak hemodynamic response in targeted brain areas (identi-
fi ed by independent localizers) and explored possible adaptation 
effects in a whole-brain general linear model analysis. We found 
that the STS processes biological motion in a viewpoint-invariant 
manner. The STS BOLD response shows specifi city for individual 
actions, has a subpopulation of neurons that does not adapt from 
the motion features alone, and is invariant across mirror-reversals, 
changes in position and size. Together, these fi ndings are evidence 
for high-level action tuned populations of neurons on the STS, 
much like what has been shown in monkey STSa.

MATERIALS AND METHODS
PARTICIPANTS
A total of 19 participants (6 male, 13 female) from the UC Irvine 
campus and community gave informed and written consent as 
approved by the University of California Irvine Institutional 
Review Board. Fourteen observers with normal or corrected-to-
normal vision participated in Experiments 1 and 2. One subject 
was excluded from the analysis due to excessive head movements, 
and another was excluded due to unusual features in the anatomical 
images. Of the remaining 12, nine were naïve to biological point-
light stimuli. Eight subjects participated in Experiments 3 and 4, 
two of whom had participated in the previous experiments, with 
the remaining all naïve to point-light biological motion. All subjects 
had normal or corrected-to-normal vision.

MRI ACQUISITION
Neuroimaging data were collected on a 3T Philips Achieva whole-
body MRI scanner equipped with an eight-channel head-coil on 
campus at the University of California, Irvine. We collected high-
resolution whole-brain anatomical images (T1-weighted MPRAGE, 
1 × 1 × 1 mm3, TE = 3.7 ms, TR = 8.4 ms, fl ip angle = 8°, SENSE 
factor = 2.4) from each individual to be used for co-registration of 
the functional scans. Subjects participated in two types of functional 
scans (both single-shot T2*-weighted gradient EPI, TE = 30 ms, fl ip 
angle = 90°, right-left phase encoding, SENSE factor = 1.5, slices 
acquired ascending and interleaved). Localizer scans were designed 
to identify regions of interest (ROIs) on the STS and in more pos-
terior areas, and were acquired using standard imaging parameters 
(28 oblique axial slices, 2.05 mm × 2.05 mm × 4 mm voxels, 0 mm 
gap, TR = 2 s). The rapid event-related scans were designed to more 
accurately estimate the amplitude of the hemodynamic response, 
and thus were acquired rapidly, with fewer slices targeting the inter-
section of the temporal, occipital, and parietal lobes (17 oblique 
axial slices, 4 × 4 × 4 mm3 voxels, 1 mm gap, TR = 1000 ms).

PROCEDURE
During scanning participants viewed point-light biological motion 
sequences extracted from videotaped segments of an individual 
performing actions with lights attached to their joints (Figure 1A). 
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fi xation intervals. Subjects viewed eight exemplars of motion 
(1 s each, with 1 s interstimulus interval) within each 16-s block. 
Subjects also passively fi xated the initial 8 s and fi nal 16 s of each 
scan. During the stimulus blocks, subjects performed a one-back 
task on each exemplar to indicate if an animation repeated sequen-
tially. Responses were collected on an MR-compatible response box 
(Current Design, Inc.).

We also collected an hMT+ localizer in 11 of the 12 subjects 
that participated in Experiments 1 and 2, and in all of the subjects 
who participated in Experiments 3 and 4. The purpose of this scan 
was to identify a motion-selective control area that would refl ect 
the low-level motion properties of the stimulus (e.g., position). To 
achieve this, we positioned two fi elds of expanding and contracting 
optic fl ow motion, centered 14.6° to the left and right of a central 
fi xation cross. In alternating 14 s intervals separated by 6 s fi xa-
tion, subjects viewed the moving optic fl ow in the left hemifi eld or 
right hemifi eld, or viewed both fi elds of dots held stationary. These 
epochs were repeated fi ve times within the 5-min scan. Subjects 
passively fi xated the initial 8 s and fi nal 16 s of the scan.

fMR-adaptation was measured in separate rapid event-related 
scans. A single trial in these scans consisted of a pair of animations, 
each 750 ms, with a brief fi xation (50–250 ms, described below) 
between the items in the pair. The fi rst animation in each pair 
depicted one of 25 actions such as walking, squatting, throwing, 
or pushing. The second animation in a pair was determined by 

The point-light animations in these experiments depicted 25 
unique actions, including walking, running, jumping, and throw-
ing, and have been used in previous psychophysical and neuroim-
aging studies (Grossman et al., 2004; Garcia and Grossman, 2008). 
These sequences were digitized and encoded as (x, y, t) joint posi-
tions in Matlab (Mathworks, Inc.), then displayed as 12 small black 
dots (0.17° of visual angle, with overall fi gure subtending approxi-
mately 8 × 3.5° of visual angle) on a gray background. Stimuli were 
displayed on a Christie DLV 1400-DX DLP projector using the 
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) controlled by 
a Macintosh G4 computer. Subjects viewed the animations through 
a periscope mirror mounted on the birdcage head-coil and directed 
at a screen positioned at the head end of the scanner.

To eliminate issues of circularity in the data analysis (e.g., 
Kriegeskorte et al., 2009), all subjects participated in two types 
of scans: localizer scans and fMR-adaptation experimental scans. 
Localizer scans were designed to identify the areas of the brain that 
respond selectively to biological motion (e.g., Pyles et al., 2007). 
This was achieved by comparing neural responses when subjects 
viewed point-light biological motion to when subjects viewed 
motion-matched “scrambled” animations. Scrambled animations 
were created by randomizing the starting position of the point-light 
dots within a region approximating the target fi gure, then leaving 
their motion vectors intact. Seven blocks each of biological motion 
and scrambled motion were interleaved, separated by 6 s passive 
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FIGURE 1 | (A) Schematic of stimuli. Subjects viewed 750 ms point-light animations, separated by a short interstimulus interval (250 ms in Experiments 1 and 2, 
50 ms in Experiments 3 and 4). (B) Adaptation indices were computed from the three timepoints at the peak of the hemodynamic response, as the average increase 
in BOLD response relative to the Repeated condition.
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experiment and condition, as explained below. For all experiments, 
subjects viewed 10 trials of each experimental condition per scan. 
To optimize deconvolution of the hemodynamic response and 
separate the BOLD amplitude estimates for each condition, we 
jittered the inter-trial interval from 3 to 9 s between pairs (Dale, 
1999; Serences, 2004). The initial 18 s and fi nal 24 s of each scan 
consisted of passive fi xation to allow for MR saturation, to acquire 
an estimate of passive fi xation, and to allow measurement of the 
hemodynamic response associated with the fi nal trial.

Experiment 1 tested for action specifi city in the STS response, 
and for invariance across changes in viewing perspective. Subjects 
viewed the following three types of trials: (1) Repeated trials in 
which the same action was repeated twice, (2) Different trials in 
which two different actions were viewed, and (3) Mirror Reversal 
trials in which the same action was repeated, but was left-right 
reversed in viewing perspective. Each action animation was 750 ms 
in duration, with a 250-ms interstimulus interval between the two 
animations in the pair. Subjects were asked to indicate whether 
the animation depicted the same or different action by a keypress 
(2-alternative forced choice discrimination). All actions were viewed 
foveally, centered on a fi xation cross in the center of the image. 
The fi rst four subjects were instructed that the correct response 
for the Mirror Reversal condition was “same”. Because this task 
confounded the task decision with viewpoint invariance (namely, 
Mirror Reversal trials and Repeated trials were both associated with 
a “same” response), we instructed the remaining eight subjects to 
assign the Mirror Reversal trials as “different”. This experimental 
scan was repeated eight times for each subject, yielding 80 estimates 
for each predictor of the hemodynamic response, per condition 
and per subject.

Experiment 2 tested for possible adaptation of low-level features, 
unspecifi c to action interpretation. In these scans, subjects viewed 
four types of trials: (1) Biological motion alone trials in which a 
single action was shown once, (2) Scrambled trials in which a single 
motion-matched non-biological “scrambled” control animation 
was viewed (see Section “Materials and Methods” for construc-
tion of the scrambled animations), (3) Biological + Scrambled trials 
in which fi rst a point-light biological animation was shown, fol-
lowed by the same action scrambled such that all the local motion 
features were matched with the prior biological sequence (e.g., 
walker + scrambled walker, kicker + scrambled kicker), and (4) 
Scrambled + Biological trials in which a scrambled sequence was 
followed immediately by the same action intact (e.g., scrambled 
walker + walker). Each action animation was 750 ms in duration, 
with a 250-ms interstimulus interval between the two animations 
in the pair. Observers passively viewed the foveally positioned 
sequences, which were centered on a fi xation cross in the central 
part of the screen.

Experiment 3 tested the position specifi city of the neural 
response on the STS. In these scans, subjects viewed the following 
three types of trials: (1) Fovea + Fovea in which the same action 
was presented twice in the central vision (same as the Repeated 
condition from Experiment 1), (2) Fovea + Left in which the same 
point-light action was positioned fi rst in the fovea, then centered 
5.2° into the left hemifi eld, and (3) Fovea + Right in which the 
same point-light action was viewed fi rst in the fovea, then cen-
tered 5.2° in the right hemifi eld. For all conditions, the animations 

could depict one of the 25 unique actions, but the same action 
was always repeated within the pair and subtended 8 × 3.5° in vis-
ual angle. Each action animation was 750 ms in duration, with a 
50-ms interstimulus interval between the two animations in the 
pair. This scan was repeated four times for a total of forty estimates 
for each predictor of the hemodynamic response, per condition, 
per subject.

Subjects were instructed to maintain fi xation when animations 
were positioned in the visual peripheral fi eld. At the time of data 
collection, we were not able to measure eye movements to verify that 
subjects successfully maintained fi xation; however, we will report 
on the visual response from retinotopic hMT+, which demonstrates 
a high degree of retinotopic specifi city (e.g., Wandell et al., 2007). To 
maintain attention throughout the scans, observers were required 
to make a leftward/rightward facing judgment on each trial. Because 
the action was identical, the observers could make this assessment 
on the basis of the fi rst animation, which was always positioned 
in the foveal fi eld.

Experiment 4 measured for size invariance in the BOLD 
response. In these scans, subjects viewed three types of trials: (1) 
Medium + Medium in which the same action was presented in 
the fovea twice, both of the same size (5.2° of visual angle), (2) 
Medium + Small in which the same action was viewed fi rst as 5.2°, 
then as 3°, (3) and Medium + Large in which the same animation 
was viewed fi rst as 5.2°, then as 9°. For all trial types, the same ani-
mation was repeated within the pair and could depict any one of the 
25 unique actions. Each action animation was 750 ms in duration, 
with a 50-ms interstimulus interval between the two animations in 
the pair. Subjects viewed ten trials of each type per each 3:36 min 
scan, and the scan was repeated for a total of forty estimates for 
each predictor of the hemodynamic response, per condition, per 
subject. To maintain attention throughout the scans, observers were 
required to make a leftward/rightward facing judgment on each 
trial. Because the action was identical, the observers could make 
this assessment on the basis of the fi rst animation.

ANALYSIS
Preprocessing and fMRI data analysis were conducted with 
BrainVoyager QX (Brain Innovations, Inc.). All fMRI images were 
corrected for slice acquisition order, corrected for any subject move-
ment both within and across scans, corrected for any linear signal 
drift, temporally high-pass fi ltered at three cycles per scan (approxi-
mately 0.01 Hz), and co-registered to the individual subjects’ ana-
tomical images. All timecourses were normalized to percent signal 
change and all subsequent statistical maps were thresholded using a 
false discovery rate (FDR, with a corresponding q-value). The FDR 
corrects for the family-wise error rate by controlling the proportion 
of expected false positives, and has the advantage of being adap-
tive to the signal levels in data while still correcting for multiple 
comparisons (Genovese et al., 2002).

Localizer scans were analyzed in native brain space (not warped 
to a standard head model) using a general linear model analysis 
with boxcar predictors convolved with a model of the hemody-
namic response (Boynton et al., 1999), and statistical maps were 
thresholded at q < 0.01. Biological motion selective brain areas were 
localized as the regions with signifi cantly higher beta estimates 
for the biological epochs as compared to the scrambled estimates. 
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This statistical comparison typically yields a number of brain areas 
within occipital, temporal and parietal cortex (Figure 2, see Table 1 
for Talairach coordinates across our population of subjects). On 
the basis of previous literature and the known anatomical location 
of these regions, we identifi ed the following ROIs in our subjects: 
the STSp was identifi ed along the dorsal extent of the STS, near 
the intersection with the ITS; the posterior extent of the ITS, a 
region on the lateral surface of the posterior temporal lobe, on 
the inferior occipital gyrus (IOG); a region on the ventral surface 
of the temporal lobe, adjacent to the inferior occipital sulcus and 

the fusiform gyrus (Fus), a region on the most posterior extent of 
the Sylvian Fissure likely corresponding to the multisensory subre-
gions of the planum temporale (PT, Meyer et al., 2007; Hickok and 
Saberi, in press), and a region on the inferior frontal gyrus, likely 
corresponding to PMC. In some subjects the ITS and IOG ROIs 
formed a continuous region with different peaks. In these instances, 
the ROIs were restricted so as to consist of non- overlapping vox-
els centered at the peaks. We should also note that some of these 
ROIs may correspond to brain areas discussed in the literature and 
identifi ed with other functional localizers. For example, the Fus 
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FIGURE 2 | Statistical maps and ROIs identifi ed with the biological 

motion localizer. (A) Biological motion selective regions as computed 
from a group average of all subjects (Experiments 1–4) on Talairach 
standardized data, shown on an individual subject’s anatomy. This analysis is 
shown only to demonstrate those regions that are consistently selective for 
biological motion, across our group of subjects. To account for individual 
differences in anatomical features (i.e., sulcal and gyral patterns), the 
primary experimental analyses for these experiments were computed in 

native (unwarped) brain space. (B) The biological motion selective areas in 
two individual subjects, shown in native brain space. These two 
representative subjects demonstrate the range of variability we observed 
across the subject population for this localizer. All statistical maps (biological 
motion – scrambled motion) are corrected with a false discovery rate of 
q < 0.01. STSp, posterior superior temporal sulcus; ITS, inferior temporal 
sulcus; IOG, inferior occipital gyrus; Fus, posterior fusiform; PMC, premotor 
cortex; PT, posterior planum temporale.



Frontiers in Human Neuroscience www.frontiersin.org March 2010 | Volume 4 | Article 15 | 6

Grossman et al. Biological motion invariance on STS

region we have identifi ed likely corresponds to the human FBA, 
while the ITS region may overlap with the functionally identifi ed 
EBA (Grossman et al., 2004; Michels et al., 2005; Peelen et al., 2006). 
However, because we did not collect those traditional localizers on 
these subjects we have used anatomical (as opposed to functional) 
labels for these regions. All of the Talairach coordinates for all of 
these brain areas shown in Table 1, including the number of sub-
jects and hemispheres in which they were observed.

The hMT+ localizer was analyzed using a GLM with predictors 
for optic fl ow and stationary dots, convolved with the estimated 
hemodynamic response. The hMT+ was identifi ed as the region on 
the ascending limb of the ITS that is more activated by the optic 
fl ow as compared to the stationary dots (q < 0.001).

For the fMR-adaptation scans, two types of analyses were per-
formed. First we conducted a ROI-based deconvolution analysis 
that estimated the hemodynamic response for each stimulus con-
dition, within each independently identifi ed ROI. This was done 
in “native” brain space (i.e., without transforming the functional 
data to standardized space), allowing for some fl exibility among the 
variations in individual anatomical structure (e.g., Ono et al., 1991). 
The focus on pre-defi ned ROIs (from the biological motion local-
izer) was chosen because of the known importance of these regions 
in supporting biological motion recognition. For this ROI-based 
analysis, the hemodynamic response for each voxel was estimated 
using a deconvolution GLM with 20 predictors for each of the 20 s 
following stimulus onset, for each condition. The input to this 
GLM model was the BOLD timecourse from each ROI, normalized 
to percent signal change from the mean baseline intensity. This 
analysis makes no a priori assumptions as to the shape or latency 
of the underlying response profi le, and was largely successful in 
yielding classic hemodynamic response functions from the ROI 

timecourses. The latency of the peak amplitude in the deconvolved 
BOLD responses from Experiments 1 and 2 was approximately 
6–8 s following the onset of the fi rst animation in each trial pair, 
and 5–8 s in Experiments 3 and 4. The difference in the peak laten-
cies across these experiments likely refl ects the shorter stimulus 
duration in the latter experiments (Boynton et al., 1996; Dale and 
Buckner, 1997).

To test for signifi cant differences among the conditions, planned 
contrasts computed the statistical signifi cance of the peak of the 
BOLD responses for each condition, with the peak amplitudes 
from each condition (e.g., the 5–7 s of the response post-stimulus 
onset) weighted as −1 and contrasted against a second condition 
weighted +1.

In a second analysis, we conducted a whole-brain GLM to 
probe across the entire brain for regions with evidence of action 
specifi city, or invariance across viewing perspective, position or 
size. We should note that this analysis is not entirely independent 
of the ROI-based analysis as it is being conducted on the same 
data (in part, see below) and using the same statistical hypotheses 
(Kriegeskorte et al., 2009). Thus the whole-brain analysis should be 
interpreted as complementary to the ROI-based analysis in that it 
reveals larger patterns of brain activity engaged in repetition sup-
pression across cortex and across our group of subjects.

This whole-brain GLM analysis was computed across subjects, 
with functional data normalized to standardized Talairach space 
(Talairach and Tournoux, 1988). This was achieved by aligning the 
high-resolution anatomical brain images along the native ACPC 
axis, then scaling the images to the boundaries of the gray mat-
ter. The resulting transformation matrices were then applied to 
the functional images. Within this standardized space, we then 
estimated the hemodynamic response function for each voxel and 

Table 1 | Mean Talairach coordinates for the ROIs isolated using the independent localizers on each subject.

ROI Left hemisphere Right hemisphere

 N X Y Z N X Y Z

EXPERIMENTS 1 AND 2. DIRECTION INVARIANCE AND CROSS-ADAPTATION

STSp 10/12 −51.8 −57.9 9.5 8/12 48.1 −51.1 11.7

ITS 6/12 −41.2 −63.7 6.3 8/12 41.9 −62.1 7.0

IOG 6/12 −48.8 −69.8 4.5 8/12 47.8 −70.0 0.6

Fus 9/12 −37.3 −52.7 −12.4 8/12 37.6 −53.9 −11.3

PMC 9/12 −44.4 23.3 12.1 7/12 45.0 26.4 10.3

PT 8/12 −53.3 −45.5 21.1 7/12 49.4 −44.0 20.0

hMT+ 11/11 −44.8 −70.5 2.7 10/11 36.4 −69.1 3.9

EXPERIMENTS 3 AND 4. SIZE AND POSITION INVARIANCE

STSp 6/8 −48.2 −58.0 14.2 8/8 49.3 −50.3 14.9

ITS 6/8 −42.8 −73.0 8.2 7/8 44.3 −66.6 9.0

IOG 3/8 −51.7 −73.0 11.7 4/8 46.8 −73.3 4.0

Fus 6/8 −39.8 −56.3 −10.8 6/8 39.0 −52.7 −11.2

PMC 7/8 −42.9 30.9 14.1 6/8 42.8 25.5 12.5

PT 4/8 −53.8 −50.3 27.3 6/8 50.5 −44.2 24.5

hMT+ 8/8 −44.1 −78.4 5.9 8/8 43.3 −71.4 1.7

N indicates the number of subjects in which this ROI was identifi ed, out of the total possible. All ROIs except the hMT+ were isolated using the biological motion 
localizer. One subject from Experiments 1 and 2 did not participate in the hMT+ localizer. STSp, posterior superior temporal sulcus; ITS, inferior temporal sulcus; 
IOG, inferior occipital gyrus; Fus, posterior fusiform; PMC, premotor cortex; PT, posterior planum temporale, ventral angular gyrus; hMT+, human middle temporal 
area complex.
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condition using the same deconvolution analysis procedure as in the 
ROI-based analysis. We computed statistical contrasts testing for 
stimulus specifi city and invariance (detailed in Section “Results”) 
and applied a false discovery rate threshold of q < 0.01.

QUANTIFYING fMR-ADAPTATION
To determine the difference in BOLD responses for each condi-
tion in each ROI, an adaptation index (AI) was computed for each 
experimental condition (Figure 1B). The AI is a method for cal-
culating the differences in the peak amplitudes between the test 
conditions (i.e., Different Actions) and the Repeated conditions 
(including Fovea + Fovea and Medium + Medium), for which one 
would anticipate the weakest neural response given repetition sup-
pression. However, we found the differences in the deconvolved 
hemodynamic response for our experimental conditions often 
extended beyond the peak response, which we hypothesize may 
be due to the dynamic nature of our stimuli. Therefore, to capture 
this more robust estimate of differences between our conditions 
we computed an AI that estimated the mean of this response over 
a range of timepoints surrounding the peak amplitude response. 
The AI was calculated as:

AI
Test Rep

=
−( )∑ i i

N

with Test
i
 = BOLD percent signal change for the condition of 

 interest (i.e., Different Actions) at timepoint i; Rep
i
 = percent sig-

nal change for the Repeated condition at timepoint I, and N = the 
number of timepoints included in the analysis (always 3).

RESULTS
EXPERIMENT 1: DIRECTION INVARIANCE
In this fi rst experiment we measured the specifi city with which the 
STSp encode actions, and specifi cally whether these brain areas 
dissociate between different actions, and between the same action 
seen as mirror reversals. To do this, subjects viewed pairs of the 
same actions (Repeated), two different actions (Different), or the 
same action mirror reversed (Mirror Reversed). Results from these 
measurements are shown in Figure 3 with the corresponding sta-
tistical analyses in Table 2.

We found evidence for action specifi c encoding in both hemi-
spheres of the STSp, as evidenced by statistically signifi cant fMR-
adaptation, meaning that the BOLD response for the Repeated 
condition was weaker than for the Different condition. Indeed, 
we observed adaptation for the repeated actions throughout our 
independently localized ROIs, including in the motion sensitive 
hMT+ and PMC in the right hemisphere. The fMR-adaptation 
effect is preliminary evidence that the analysis of different actions 
is supported by unique neural populations.

FIGURE 3 | Average deconvolved hemodynamic response functions and the 

corresponding adaptation indices for each hemisphere of the STSp (left) and 

hMT+ (right) for Experiment 1. *Indicates statistically signifi cant different peak 

response relative to the Repeated baseline, as computed from the deconvolved 
BOLD responses using planned statistical contrasts (see Section “Materials and 
Methods”). More detailed statistical analyses are shown in (Table 2).
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To determine whether these brain areas were encoding the low-
level features of the specifi c exemplar being observed (such as local 
motion vectors and specifi c body postures) or a more generalized 
representation of the action being depicted, we tested for adaptation 
across mirror reversals of the same point-light animation. Both 
hemispheres of the STSp revealed intermediate levels of adapta-
tion for the mirror-reversed actions, with the left hemisphere being 
completely adapted, and the right hemisphere adaptation being 
marginally signifi cant.

EXPERIMENT 2: CROSS-ADAPTATION
In a second experiment, we considered the extent to which the 
adaptation fi ndings we observed for the Mirror Reversal trials 
could be attributed to a population of neurons encoding low-
level properties of the stimulus, such as velocity. In particular, the 
mirror manipulation reversed the horizontal motion trajectories 
of the sequences, but left intact the vertical trajectories and hori-
zontal mid-level features, which may be critical features in these 
sequences (Casile and Giese, 2005; Thurman and Grossman, 2008). 
It is likely that many of our ROIs, and in particular hMT+ and 
the STSp, contain populations of velocity-tuned neurons (e.g., 
Bruce et al., 1981), and our adaptation effect may have been due 
to those neurons alone.

Therefore, to determine whether our adaptation fi ndings refl ect 
the “low-level” (directionally tuned, but not action specifi c) or 
“high-level” (action tuned) population of neurons, we made two 
measurements. First, we measured the BOLD response to single 
presentations of biological or scrambled sequences, which serves to 
estimate the relative proportion of low- and high-level neurons in 
each ROI. Second, we measured for cross-adaptation between bio-
logical and motion-matched non-biological (scrambled) anima-
tions. Neurons encoding only low-level features should be subject 
to adaptation from both of these types of stimuli, while neurons 
encoding the actions (the high level neurons) would only be subject 
to adaptation by the biological sequences. Because the outputs of 
action-tuned high-level neurons are believed to be constructed 
from the outputs of the low-level neurons (Jellema et al., 2000; 
Giese and Poggio, 2003), a critical factor is the order of the stimuli 
in the cross-adaptation trials. One should expect an asymmetry 
of adaptation depending on which stimulus serves as the adaptor, 
with stronger adaptation in trials where the scrambled animation 
is shown fi rst (thus resulting in a dampened response in both the 
low-level and high-level populations). The predictions of this asym-
metry are shown in the top panel of Figure 4, and generalize to 
any brain area in which low-level neurons serve as afferents to 
higher-level computation. Critically, this asymmetry should not 
be observed in a brain area that encodes only the low-level features 
of the stimulus.

We found that the measured BOLD response in the STSp was 
indicative of a mixture of low- and high-level neurons, with a sig-
nifi cantly stronger response to the biological as compared to scram-
bled motion (t = 3.33, p < 0.0001). Moreover, we found evidence 
for cross-adaptation, with signifi cantly stronger adaptation when 
the scrambled animation (the low-level stimulus) preceded the 
biological animation in the pair (t = 2.51, p < 0.01). As a means 
for comparison, the deconvolved BOLD response in hMT+ favors 
the scrambled sequences of the biological (t = 2.4, p < 0.05), but 
only weakly differentiates between the order of the pairs in the 
cross-adaptation trials (t = 2.052, p < 0.05). Thus while hMT+ has 
the neural response expected of a brain area with predominantly 
low-level velocity tuned responses, the STSp has the signature of 
a population of neurons encoding the action-specifi city of the 
stimulus.

EXPERIMENT 3: POSITION INVARIANCE
In object recognition, is it believed that the ability to recognize 
an object in different positions of space is supported in part 
by neurons that discard position information, likely in ventral 
visual cortex (e.g., Riesenhuber and Poggio, 2002). Moreover, 
we know from previous research that individuals are able to 
accurately recognize and discriminate actions, with some limita-
tions, outside foveal vision (Gibson et al., 2005; Ikeda et al., 2005; 
Thompson et al., 2007). Therefore, in a second set of experi-
ments we explored the extent to which the viewing invariance 
observed in our initial measurements generalizes to position (in 
retinal coordinates).

To test for position invariance, we measured the BOLD response 
for pairs of the same action repeated in the same position (Repeated 
Foveal) or at two different positions (fi rst foveally, then centered 
5.2° into the right or left hemifi elds). To account for possible 

Table 2 | The results of planned statistical contrast on the deconvolved 

hemodynamic response functions from the STSp and hMT+, for 

Experiments 1, 3 and 4.

EXPERIMENT 1. DIRECTION INVARIANCE

ROI Hemi Different– Different–Mirror Mirror–

  Repeated  Repeated

STSp Right t = 4.37*** t = 1.79, p = 0.07 t = 2.56*

 Left t = 3.66** t = 2.34* t = 1.32, 

    p = 0.19

hMT+ Right t = 3.63** t = 4.13*** t = −0.50, 

    p = 0.62

 Left t = 3.88*** t = 4.76*** t = −0.87, 

    p = 0.38

EXPERIMENT 3. POSITION INVARIANCE 

ROI Hemi Contralateral Ipsilateral 

STSp Right t = 1.78, p = 0.08 t = −0.60, p = 0.55 

 Left t = 0.22, p = 0.83 t = 1.55, p = 0.12 

hMT+ Right t = 3.40*** t = −4.39*** 

 Left t = 2.16* t = −5.54*** 

EXPERIMENT 4. SIZE INVARIANCE

ROI Hemi Large Small 

STSp Right t = −1.00, p = 0.32 t = −0.18, p = 0.86

 Left t = −0.31, p = 0.76 t = 0.47, p = 0.64 

hMT+ Right t = −1.72, p = 0.09 t = −1.86, p = 0.06

 Left t = −1.33, p = 0.18 t = −1.86, p = 0.06

Planned statistical contrasts were computed on the timepoints surrounding 
the peak response, as deconvolved using a general linear analysis (see Section 
“Materials and Methods”). Abbreviations are the same as in Table 1.

Statistical signifi cance at *p < 0.05, **p < 0.01, ***p < 0.0001.
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We therefore tested for size invariance by measuring the BOLD 
response for pairs of actions, scaled in size within a range expected 
to result in approximately equivalent psychophysical performance 
(3–9°). Subjects viewed repeated presentations of the same action, 
shown as pairs of animations of the same size (Repeated, medium 
size), or a medium size animation paired with the same sequence 
scaled smaller (Small) or larger (Large). Results from these meas-
urements are shown in Figure 5B with the corresponding statistical 
analyses in Table 2.

We found no effects of the size changes on the BOLD response 
from both the STSp and hMT+. Neither of these ROIs had BOLD 
signals that differentiated the same size conditions (Repeated) 
from those trials in which the size of the depicted action changed, 
although the hMT+ response was marginally weaker for the size 
change conditions as compared to the Repeated trials. The STSp 
results dovetail with previous single-unit fi ndings of action tuned 
neurons on the STS that are invariant to changes size perspective 
(Jellema et al., 2004), and extend them to related cortical areas.

hemifi eld representations (such as in hMT, Huk et al., 2002), the 
shifted position trials were analyzed relative to the hemisphere, 
as Contralateral or Ipsilateral shifts. Results from these measure-
ments are shown in Figure 5A with the corresponding statistical 
analyses in Table 2.

We found no effects of position shift on the BOLD response 
in the STSp, with the same BOLD responses for Repeated trials 
as for Ipsilateral and Contralateral shifts. This is the fi rst report 
of position invariance in the human STS. In contrast, the hMT+ 
yielded responses that would be expected from a retinotopically 
mapped brain area, with the largest responses on Contralateral 
trials, the weakest for Ipsilateral trials, and intermediate responses 
for foveally Repeated trials.

EXPERIMENT 4: SIZE INVARIANCE
We know from psychophysical studies that action recognition is 
quite stable across changes in size of the fi gure, from very small 
(approximately 2°) up to very large (16°) (Ikeda et al., 2005). 
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FIGURE 4 | The predicted and measured BOLD responses for the cross-

adaptation between biological and scrambled motion (Experiment 2). Top 
Panel: The predicted BOLD response from a brain area with only “low-level” 
neurons that are velocity tuned (left), and a mixture of low- and high-level neurons 
(right). This model predicts the same BOLD response for the single biological and 
single scrambled trials (orange and green), and an identical BOLD response for 
the biological + scrambled as the scrambled + biological trials (blue and purple, 

respectively). The adaptation effect was estimated from Experiment 1 (Repeated 
trials reduced the neural response by ≈84% in the STSp, as compared to 
Different trials), and the relative proportion of low- and high-level neurons 
estimated from the trials with single presentations of biological and scrambled 
motion in the STSp (≈74% as many low-level neurons as compared to high-level 
neurons). Bottom panel: Deconvolved hemodynamic response functions 
measured across our subjects from the hMT+ (left) and the STSp (right).
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OTHER BIOLOGICAL MOTION SELECTIVE ROIs
In a further analysis, we considered the pattern of responses in 
the additional biological motion selective ROIs that comprise the 
action recognition network. These include a region on the ITS that 
may correspond to the EBA, a more ventral region on the inferior 
occipital sulcus (IOG), a region in ventral temporal cortex (Fus) 
that may correspond to the FBA, PMC, and a region on the posterior 

extent of the PT that is know to have multisensory properties. The 
results from these ROIs are shown in Figure 6, with the correspond-
ing statistical analyses in Table 3.

We found evidence for action specifi city in the posterior regions 
of interest (ITS, IOG and Fus), but not in the more anterior PT 
or frontal PMC. The occipital and temporal ROIs all had BOLD 
responses that adapted for Repeated trials as compared to Different 
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from the deconvolved hemodynamic response functions.
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STSp (right and left hemispheres), the ITS and IOG in the right 
hemisphere, and a small region on the fusiform gyrus in the 
right hemisphere.

In a second whole-brain group analysis, we tested for action-
specifi c, but not exemplar-specifi c, adaptation by comparing peak 
BOLD response for the Mirror Reversal trials against the Different 
trials (Figure 7B). This analysis revealed signifi cant patches of 
adaptation in the right STS and IOG, and bilaterally in the ITS 
and FG.

action trials. These posterior areas also adapted across the mirror 
reversal manipulation, suggesting a similar high-level representa-
tion as we had found in the STSp.

In a second (non-independent) analysis, we conducted a 
whole-brain deconvolution analysis probing for brain areas 
expressing fMR-adaptation BOLD effects (Figure 7A). The group 
GLM analysis revealed patches of adaptation for Repeated actions 
across anterior occipital and posterior parietal cortex, with small 
patches in the ventral temporal lobe. These patches include the 

FIGURE 6 | Average deconvolved hemodynamic response functions and 

the corresponding adaptation indices for each of the remaining ROIs. (A) 
Experiment 1, action specifi city and invariance across mirror reversals, (B) 

position invariance, and (C) size invariance. *Indicates statistically different peak 
BOLD response from the Repeated condition, as computed in the ROI-based 
planned statistical contrasts. Abbreviations are the same as in Figure 2.
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When we tested for invariance across shifts in position, we found 
the neural signals in the ITS and IOG that were stronger for the 
Contralateral trials as compared to the Repeated trials. This pattern 
of responses is more consistent with space-based encoding than 
adaptation. Given the proximity of these regions to retinotopically 
mapped areas (e.g., Wandell et al., 2007), this is not surprising.

When we tested for invariance across shifts in size of the action 
target, we found no statistically signifi cant differences in any of our 
ROIs (although the PMC reached marginal signifi cance for changes 
to the smaller size). Together, these fi ndings dovetail with previous 
reports of position invariance in face, body and object processing in 
the ventral temporal cortex (Fang et al., 2007; Taylor et al., 2009), 
and extend them to action recognition.

DISCUSSION
Action recognition is an essential component of daily interpersonal 
interactions. Neurophysiological studies of biological motion per-
ception have implicated the human STS as the region most critically 
involved (for review, see Allison et al., 2000). More broadly, there 
appears to be a network of brain areas across occipital and frontal 
cortex that supports action recognition, putatively linking recognition 
to motor planning. To better understand the response properties of the 
neurons underlying this network, we conducted four experiments to 
measure the specifi city and invariance of neural action encoding.

Using an fMR-adaptation paradigm, we found evidence for 
 repetition suppression across cortex when observers viewed pairs of 
identical actions as compared to when they viewed pairs of two dif-
ferent actions. This basic adaptation fi nding in the STSp is consist-
ent with the hypothesis that unique neural networks code different 
actions, with each of the component brain areas exhibiting stimulus 
specifi c adaptation. We also found repetition suppression in these 
brain areas when subjects viewed the same actions mirror-reversed, 
suggesting some invariance across changes in viewing perspective. 
To determine whether this adaptation effect is due to low-level 
encoding of velocity features (only some of which are altered in 
mirror reversals) or high-level action encoding, we tested for cross-
adaptation between biological and motion-matched scrambled 
sequences. We found evidence for the existence of action-tuned 
neurons in the STSp, with likely only low-level velocity coding in 
the hMT+. Overall, these fi ndings in STSp are consistent with the 
hypothesis that the STS is organized with subpopulations of neu-
rons tuned to different actions, a proposal initially based on earlier 
single-unit fi ndings in monkeys (Oram and Perrett, 1994).

In two additional experiments, we measured for neural invari-
ance across common perspective changes, namely shifts in posi-
tion and changes in size. The STSp was invariant to changes across 
both of these conditions, with the same peak BOLD response as 
when there was no perspective shift. This was mirrored in the fusi-
form, and is in contrast to the hMT+, ITS and IOG that all coded 
for position.

These fi ndings are evidence for high-level representations of 
actions in subpopulations of neurons in the STSp, are consistent 
with previous single-unit reports of functional specialization within 
the monkey STSa, and are further evidence for functional homolo-
gies across the STS of the two species. Because we found similar 
results in the fusiform, these fi ndings also suggest that much of the 
visual processing engaged during action recognition is abstracted 
away from retinal coordinates.

ACTION RECOGNITION AS A REPRESENTATIONAL CHALLENGE
Action recognition could be considered as analogous to object rec-
ognition, with all the associated computational diffi culties con-
nected to properly assigning unique and stable identities to objects 
through the range of changes in viewing perspective that commonly 
occur in natural vision. There are caveats to this analogy, however, 
because human actions are dynamic, defi ned by a sequence of 
changing form over time, and are constrained by the inherent struc-
ture and connectivity of the human body. Thus one might infer 
that a range of action representations may exist in the brain, from 
stationary form-based “snapshots” of specifi c postures (as have 
been proposed by a number of computational and experimental 
studies, Giese and Poggio, 2003; Lange et al., 2006; Vangeneugden 
et al., 2009), to the encoding of action specifi c dynamic patterns 
(e.g., sprites or space-time fragments, Cavanagh, 1992; Davies and 
Hoffman, 2003), to object-oriented representations that encode 
underlying body structure (Oram and Perrett, 1996; Jellema and 
Perrett, 2006).

We know from neurophysiological studies of object vision that 
both viewpoint-specifi c and viewpoint-invariant neural represen-
tations are likely to exist. For example, single-unit studies have 
revealed neurons in monkey inferotemporal cortex that are sharply 

Table 3 | Statistical analyses for the remaining biological motion 

selective ROIs for Experiments 1, 3 and 4. Planned statistical contrasts 

were computed on from the timepoints surrounding the peak response, as 

deconvolved using a general linear analysis (see Section “Materials and 

Methods”).

EXPERIMENT 1. DIRECTION INVARIANCE

ROI Different–Repeated Different–Mirror Mirror–Repeated

ITS t = 4.84*** t = 5.87*** t = −0.96, p = 0.34

IOG t = 3.29** t = 4.64*** t = −1.35, p = 0.18

Fus t = 5.57*** t = 4.82*** t = 0.74, p = 0.46

PT t = 0.29, p = 0.77 t = −0.42, p = 0.67 t = 0.13, p = 0.90

PMC t = 1.30, p = 0.19 t = −0.36, p = 0.72 t = 1.67, p = 0.10

EXPERIMENT 3. POSITION INVARIANCE

ROI Contralateral Ipsilateral 

ITS t = 3.51** t = −1.20, p = 0.23

IOG t = 4.89*** t = 0.02, p = 0.98 

Fus t = 0.01, p = 1.0 t = −1.55, p = 0.12

PT t = 0.54, p = 0.59 t = 1.47, p = 0.14 

PMC t = 0.96, p = 0.34 t = 1.39, p = 0.17 

EXPERIMENT 4. SIZE INVARIANCE

ROI Large Small 

ITS t = −0.90, p = 0.37 t = 0.72, p = 0.47 

IOG t = −1.38, p = 0.17 t = −0.96, p = 0.34 

Fus t = −0.24, p = 0.81 t = 0.05, p = 0.96 

PT t = −1.0, p = 0.31 t = −1.74, p = 0.08

PMC t = 0.30, p = 0.76 t = 1.93, p = 0.05 

Abbreviations are the same as in Table 1.

Statistical signifi cance at *p < 0.05, **p < 0.01, ***p < 0.0001.
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tuned to complex objects, with nearby neurons tuned more broadly 
to a variety of complex shapes (e.g., Tanaka, 1996). Together these 
neurons form a sort of robust population code that supports gen-
eralization of object recognition across viewpoint-specifi c neural 
representations (DiCarlo and Cox, 2007). Our fi ndings are evidence 
for the same type of heterogeneous population coding in visual 
cortex during action recognition.

ACTION ENCODING IN THE MONKEY STS
The hypotheses for these experiments were drawn primarily from 
previous single-unit physiology studies of action recognition tar-
geting the anterior portions of the monkey STS (STSa). The STSa, 
sometimes called the anterior STPa or the temporal–parietal–
 occipital area (TPO, Bruce et al., 1981; Pandya and Seltzer, 1982; 
Cusick et al., 1995) is a heterogeneous, higher-order brain area that 
is a convergence zone for the visual, auditory and somatosensory 
systems (Jones and Powell, 1970; Seltzer and Pandya, 1978; Cusick, 
1996). Accordingly, neurons in this area have complex response 
properties including the tendency to be multi-modal, with vision 
being the dominant modality (Bruce et al., 1981). The visually 
responsive cells tend to have large receptive fi elds, many of which 
are best driven by specifi c moving patterns, such as the movements 
of faces, heads, arms and bodies (Perrett et al., 1985a). More recent 

studies have found these biological motion selective neurons to be 
intermixed with neurons that respond equally well to stationary 
images of body postures, perhaps with some patchy organization 
(Perrett et al., 1985a; Oram and Perrett, 1994; Nelissen et al., 2006; 
Vangeneugden et al., 2009). Together these single-unit studies have 
documented the response features necessary for shape and motion 
analysis on the monkey STSa during action recognition (for review, 
see Puce and Perrett, 2003).

Of the biological motion tuned neurons, the vast majority is 
highly specifi c (Oram and Perrett, 1996; Jellema et al., 2004). These 
neurons require particular combinations of body movements and 
postures to generate the strongest neuronal fi ring. For example, a 
neuron may fi re for a leftward facing actor walking forward, but 
not when that actor bends forward, walks backwards or faces the 
opposite direction. Nearly 90% of the biological motion tuned 
neurons have this property, which renders them effectively action 
and viewpoint-specifi c.

Even with action specifi city, many of these STS neurons gener-
alize over a range of changes in the visual scene that accompany 
shifts in viewing perspective, such as changes in the actor size 
(which is associated with near versus far viewing) and in position 
across the visual fi eld (Jellema and Perrett, 2006). Computationally, 
response invariance over these types of properties can be built from 

Different Actions > Repeated Actions

Posterior

Anterior

STSp

q < .001q < .01

Different Actions > Same Action, Mirror Reversed

STSp

ITS ITS

ITS

Fus Fus

Fus

q < .001q < .01
IOG

IOG

A

B

FIGURE 7 | Group GLM results for statistical contrasts testing for fMR-

adaptation in the deconvolved BOLD response, overlaid on a single subject 

anatomy. (A) Group contrast testing for adaptation for the repeated action trials 

(Different actions – Repeated actions). (B) Group contrast testing for adaptation 
in trials depicting the same action from two viewpoints (Different – Mirror 
Reversed). All contrasts are thresholded at a false discovery rate of q < 0.01.
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 pooling inputs across a range of more narrowly tuned subunits 
(e.g., Riesenhuber and Poggio, 1999; Giese and Poggio, 2003), and 
is supported by the anatomical evidence for highly refi ned input 
to the monkey STS, and by single-unit evidence for large receptive 
fi elds in these neurons.

A smaller minority of the STSa neurons has response properties 
that generalize over a much larger range of views. For example, 
some STS neurons will generalize across depictions of actions as 
shown in live action viewing, in movies, as stick fi gures or in point-
light form (Bruce et al., 1981; Oram and Perrett, 1994). That these 
neurons generalize across many of these low-level changes is evi-
dence for some abstracted representation of actions in the tuning 
of STS neurons, sometimes discussed as object-centered encoding 
(as opposed to strictly viewpoint specifi c), or as more abstracted 
goal-centered coding. In both interpretations the emphasis is on 
the ability of these STSa neurons to generalize across relatively 
large changes in the visual depictions of the actions, without loss 
of specifi city for the action itself.

Our measurements provide evidence for these same types of 
computations (action specifi city and invariance to mirror reversals, 
size, and position) on the human STS. It is currently not clear from 
our measurements the relative proportions of viewpoint specifi c and 
object-oriented (e.g., size and position invariant) sub- populations 
of neurons, although we do not have any reason to believe them to 
be different from that measured in the monkey. From single unit 
measures, researchers have estimated the more viewpoint-invariant 
neurons to represent a minority. Our population BOLD measures 
found equivalent fMR-adaptation in the STSp for many of our per-
spective changes, which would seem to imply at least a substantive 
number so as to generate the same response suppression. However, 
because there is not yet a quantitative link between the magnitude 
of the adaptation effect and relative numbers of neurons underlying 
the BOLD response, it remains an open question of whether the 
human STS is more or less densely populated with neurons coding 
these viewpoint invariant responses.

ACTION ENCODING OUTSIDE OF THE STS
We also found evidence for viewing perspective invariances in 
ROIs outside of the STS, including the more ventral and lateral 
temporal lobe (ITS, IOG), and in ventral temporal cortex (Fus). 
Unfortunately, we have relatively little knowledge of the monkey 
homologies to these areas, and even within human fMRI studies, 
only a handful of studies have targeted these regions. As a result, we 
have little physiological data on which to build hypotheses as the 
underlying neural tuning and the relative contributions to action 
perception as a whole. However, we can make predictions on the 
basis of computational models, which have suggested that more 
ventral brain areas serve to extract key body postures the are embed-
ded within action sequences (Giese and Poggio, 2003), with some 
theories suggesting that these key postures alone could be suffi cient 
to support action recognition (Lange et al., 2006). Under such a 
scheme, one could then hypothesize that neurons in these areas 
should be largely action specifi c (to the extent that each action relies 
on a unique set of key body postures), and may also be narrowly 
tuned across mirror reversals. One would expect, however, that this 
tuning is position and size invariant, within some suitable range, as 
many ventral temporal neurons tuned to complex objects are.

We found little evidence for action specifi city in the more 
 anterior PMC, although this may largely be attributed to the low 
amplitude of the BOLD response and the relatively high variance 
in that area. PMC is believed to be involved in action planning, 
and as such would be anticipated to have a relatively high-level 
representation of actions (Rizzolatti and Craighero, 2004), how-
ever the existence of neurons that generalize across perceptual and 
motor representations of actions in human PMC is currently a very 
contentious scientifi c debate (Hickok, 2009).

NEUROIMAGING STUDIES OF VIEWPOINT SPECIFICITY ON THE STS
It is important to note that our study is not the fi rst to investigate 
neural tuning on the human STS, particularly in the context of 
action encoding. A previous investigation using animated clips of 
actors performing various activities (such as playing basketball or 
doing cartwheels) found repetition suppression on the STS for 
previously viewed action sequences, even when those actions were 
executed by a new actor and seen several minutes later (Kable and 
Chatterjee, 2006). Interestingly, this study also found these repeti-
tion effects in the hMT+ and the EBA, two brain areas that appear 
to be involved in motion analysis and shape recognition during 
action recognition (Peuskens et al., 2005; Peelen et al., 2006).

More recently, Lestou et al. (2008) investigated the role of low-
level visual features and inferred action goals in the encoding of 
hand movements. They found the STS to discriminate between 
trials depicting sequential pairs of the same hand movements 
as compared to different movements, the basic fMR-adaptation 
effect for repeated action sequences. Using morphed sequences 
of the same actions, they also measured adaptation for action 
sequences depicting the same overall goal while controlling for 
low-level kinematic patterns. They found fMR-adaptation for 
actions that had the same implied goal whether played forwards 
or backwards (e.g., waving), but a release from adaptation when 
playback implied different implied goals (e.g., lifting up versus 
lowering down). This study thus argues for goal-oriented encoding 
on the STS that is abstracted away from the low-level kinematics 
of the action sequences.

SPACE-BASED ENCODING ON THE STS
Although retinotopic organization is a hallmark of visual brain 
areas, relatively little is known about any space-based organization 
outside of occipital cortex. Single-unit fi ndings have demonstrated 
monkey STSa receptive fi elds to be large, across all sensory modali-
ties. For example, the STSa neurons that fi re for somatotopic input 
tend to respond to touch on any part of the body, not just for a single 
limb (Mistlin and Perrett, 1990). Visual receptive fi elds likewise are 
large (on average, greater than 30° of visual angle) and often cross 
into the ipsilateral visual fi eld. There is some evidence that even 
with classical receptive fi elds covering such a large region of space, 
there is a tendency for neurons to fi re stronger for visual patterns 
in the contralateral fi eld or in foveal vision, as compared to stimuli 
restricted to the ipsilateral fi eld (Bruce et al., 1981).

There are few studies of retinotopy on the human STS, with the 
fi ndings beginning to converge on a similar space-based represen-
tation as that found in monkey. Retinotopic maps generated with 
“traveling waves” of point-light biological motion reveal a crude 
map of the contralateral fi eld, particularly in the fundus and lateral 
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surface of the STS (Saygin and Sereno, 2008). BOLD responses were 
“virtually nonexistent” for ipsilateral viewing, and, like much of 
visual cortex, the strength of the responses was strongly modulated 
by attention. We found weak, but not signifi cant, evidence for space-
based encoding in the right hemisphere STSp, which had slightly 
stronger BOLD responses for trials in which the action was shifted 
to the contralateral hemifi eld.

A recent study by Michels et al. (2009) using parafoveally 
viewed point-light walkers found strong BOLD signals in the right 
hemisphere STS for biological motion viewed on the right or left, 
while BOLD signals in the left hemisphere STS were highest only 
for the contralateral trials. Together these fi ndings would seem to 
imply some space-based encoding (and in particular, an ipsilateral 
hemifi eld representation) in the right hemisphere that does not 
exist in the left STS. The behavioral consequence of this inequi-
table retinotopic organization is not entirely clear, as observers 
can discriminate biological motion in the near periphery with 
relatively good accuracy, and with no clear bias for viewing in the 
right hemifi eld as compared to the left (Gibson et al., 2005; Ikeda 
et al., 2005; Thompson et al., 2007). An exception is an appar-
ent facing effect, which appears to have some basis in the neural 
signals in ventral temporal cortex, but not the STS (de Lussanet 
et al., 2008).

SIZE INVARIANCE
To the best of our knowledge, ours is the fi rst neuroimaging 
study to target biological motion size invariance in human cortex. 
Psychophysical studies have demonstrated that point-light anima-
tions ranging from approximately 2–8° are all discriminated with 
the same apparent ease, with sharp declines in performance for 
smaller stimuli and slower deterioration at larger sizes (Ikeda et al., 
2005). Thus biological motion recognition is robust across a wide 
range of distance-based viewing perspectives.

Scientists have used a wide range of stimulus sizes in neuro-
physiological measurements, with little attempt to control this 
parameter directly. An exception is a single-unit study that found 
approximately half the biological motion selective STS neurons 
to tolerate approximately two-fold increases in viewing distances 
(Jellema et al., 2004). When actions are held stationary, however, 
this tolerance appears to be minimized, with invariance across 
relatively small changes in size (e.g., within 6°), and only a small 
population of STS neurons tolerating larger size changes (approxi-
mately 15°, Ashbridge et al., 2000).

In human neurophysiological studies there have been no pub-
lished reports that we have found, that directly test for size specifi -
city in the biological motion response. Researchers across studies 
have used a wide range of stimulus sizes, from 3° of visual angle 
(Garcia and Grossman, 2008) up to 11° (Vaina et al., 2001a). Often 
the stimulus size is not even reported.

A weakness of our fi ndings was the lack of size differentiation 
in any of the ROIs that we measured, with all having equivalent 
neural responses for the size change conditions as compared to 
the Repeated size trials. We have interpreted this as evidence for 
response invariance, however one could argue that this interpreta-
tion would require inclusion of conditions that result in a release 
from adaptation (much like the Different Action condition in 
Experiment 1). It is therefore possible that our selection of stimulus 

sizes, chosen within the range associated with equivalent behavioral 
performance, contributed to similarity in the BOLD response across 
all three conditions.

We consider, however, that size and position invariance would 
be expected from brain areas that encode actions as unique, even 
when viewed from different vantage points. Computationally, size 
and position invariance have been modeled in feed-forward net-
works that pool across subunits with smaller receptive fi elds, tak-
ing the maximum response across the entire pool of units (Giese 
and Poggio, 2003). This winner-take-all computation benefi ts from 
the narrow tuning properties inherited from the subunits, with-
out loss of generality across the entire range of tuning features in 
the underlying subunits. Interestingly, we found evidence for size 
invariance across most of the ROIs we measured, suggesting this 
feature may be passed up along the entire network of brain areas 
supporting action recognition.

IMPLICATIONS FOR MODELS OF SOCIAL PERCEPTION
The human STS is a large expanse of cortex that extends from 
the anterior pole of the temporal lobe to the posterior aspects 
of posterior parietal cortex. As should be expected from such a 
large portion of neural real estate, the STS appears to be engaged 
in many functions specializations, including some that appear 
to be uniquely human. These include speech perception on the 
more anterior aspects (Hickok and Poeppel, 2000), face and 
body perception on the more central aspects (Haxby et al., 2000; 
Campbell et al., 2001; Materna et al., 2008), and brain systems sup-
porting social awareness on the most posterior and dorsal extent 
(Martin and Weisberg, 2003; Saxe et al., 2004; Gobbini et al., 2007; 
Mitchell, 2008).

There has been little agreement on how to synthesize the human 
experimental fi ndings related to STS functional specialization, to 
the extent that some researchers to wonder whether it is appropriate 
to assume that the STS is organized by functional specifi city (Hein 
and Knight, 2008). Others have argued that the common thread 
though the wide-range of reported functional specialization is in 
successfully navigating social interactions, which has led to the 
dubious label of the STS as the “social brain” (Brothers, 2002).

Attempts to resolve these issues of functional localization using 
meta-analyses and even within-subject comparisons have largely 
been inconclusive (e.g., Pelphrey et al., 2005; Gobbini et al., 2007; 
Hein and Knight, 2008; Mitchell, 2008). This suggests that the 
underlying structure to the functional organization on the STS 
exists at the subvoxel level, and thus demands the application of 
newer, more sophisticated experimental techniques.

There is basis for this idea in the single-unit physiology, which 
fi nds neurons responsive to biological motion intermixed with 
those that respond to a much wider range of moving and station-
ary patterns. Even within the action-tuned neurons, there appears 
to be much overlap between those that are strictly viewpoint specifi c 
and those that have viewpoint invariant tuning (e.g., discriminate 
more clearly between actions than between different viewpoints of 
the same action). From this evidence there is every reason to antici-
pate the STS to have heterogeneous functional specialization within 
close anatomical proximity. In one unifying proposal, researchers 
have argued that together these neurons form a hierarchical network 
of action recognition, with viewpoint-tuned units pooling inputs 
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into units that code specifi c actions, which then feed into more 
abstracted goal-oriented computations (e.g., Jellema and Perrett, 
2006). Thus, the multiplexed network serves multiple functional 
specializations, including action recognition and social cognition, 
depending on the level of analysis. Under this view, studying the 
voxel-wide tunings for biological motion representations reveals 
more about the properties of the region as a whole.

This study, using the fMR-adaptation technique to identify 
sub-populations of neurons underlying the BOLD response, was 
designed to measure some of the properties of this network. Our 
results show that the biological motion-sensitive STS is largely 
invariant to changes in direction, position, and size. Moreover, the 
STSp had neural signals consistent with a mixture of interdepend-
ent high- and low-level neural populations, as evidenced by the 
asymmetry in our cross-adaptation experiments. Thus our fi nd-
ings are compatible with theories of social cognition that propose 
hierarchically abstracted action representations.

CONCLUSION
To the extent that the fMR-adaptation technique can identify 
unique populations of neurons underlying the voxel BOLD 
response, our fi ndings report on the tuning properties of neu-
rons on the human STS. Our fi ndings support the existence of 
unique representations for different actions on the STS that are 
largely position and size invariant. We should note that, much 
like object-tuned responses from individual neurons in ventral 
temporal cortex, it is presumed that these highly tuned individual 
neurons represent small units within a much larger network. It is 
this larger network that is likely to be best detected by the fMRI 
BOLD responses reported in this study.
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