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While these data support an involvement of left lateral fron-
topolar cortex in the control of visual attention, it is as yet 
unknown what this role is. Attention changes usually involve 
not anterior prefrontal cortex, but the more posterior frontal 
and supplementary eye fi elds as the frontal components of a 
fronto-parietal network (Corbetta et al., 1998; Gitelman et al., 
1999; Pollmann and von Cramon, 2000; Corbetta and Shulman, 
2002). One hint at the role of frontopolar cortex comes from 
the fi nding that this area is selectively active during exogenously 
driven attention changes (Weidner et al., 2002). Another hint 
comes from the observation that left lateral frontopolar cortex 
was activated in invalidly cued trials of an exogenous spatial cue-
ing experiment (Lepsien and Pollmann, 2002). This suggested 
that frontopolar cortex may be involved rather in reorienting 
attention from a currently attended focus than in attention shifts 
per se. This view is also in line with the increased search times in 
dimension-change trials in patients with lateral anterior prefron-
tal lesions (Pollmann et al., 2007). Other hints come from mem-
ory research. Meta-analyses have shown that anterior prefrontal 
cortex, and specifi cally lateral frontopolar cortex, is consistently 
active during episodic retrieval (Christoff and Gabrieli, 2000; 
Gilbert et al., 2006). Left lateral prefrontal cortex was specifi cally 
involved when two retrieved episodic memory items needed to 
be compared (Reynolds et al., 2006). Especially intriguing is the 
fi nding that lateral frontopolar cortex is sensitive to contextual 
interference (King et al., 2005). In a memory study using virtual 
reality displays, King and colleagues found increased frontopolar 
activation at test when objects were associated to one of two 
locations and one of two persons in the study phase,  compared 
to a version where each object was associated with a unique 
 location and person.

INTRODUCTION
Prefrontal cortex is almost synonymous with executive function. 
Especially the most anterior part of prefrontal cortex, roughly 
equivalent with Brodmann area (BA) 10, has been associated with 
high level cognitive processes like internal thought (Christoff and 
Gabrieli, 2000), changing between externally driven and internal 
mental processes (Burgess et al., 2005), integration of several men-
tal processes (Christoff et al., 2001; Ramnani and Owen, 2004) or 
hierarchical processing of several tasks (Braver and Bongiolatti, 
2002; Koechlin and Hyafi l, 2007), to name but a few.

In past experiments, however, we have found left lateral fron-
topolar activation in visual singleton feature search tasks, in which 
highly salient ‘odd-one out’ targets were to be detected (Pollmann 
et al., 2000; Weidner et al., 2002). Left lateral frontopolar cortex 
showed transient signal increases when the target defi ning fea-
ture dimension (e.g., color or movement) changed, along with 
increased search times in these dimension change trials compared 
with trials in which the target-defi ning dimension remained the 
same. Because of the apparently absent or very low demands on 
executive processes, these fi ndings are not easily explained by the 
above-named hypotheses on anterior prefrontal function.

Behavioral (Müller et al., 1995; Found and Müller, 1996), 
neuroimaging (Pollmann et al., 2006) and electrophysiological 
(Gramann et al., 2007; Töllner et al., 2008) evidence supports the 
view that dimension changes in visual singleton search lead to a 
shift of attentional weight from the old to the new target-defi ning 
dimension. A patient study demonstrated that lesions of left lateral 
anterior prefrontal cortex lead to selectively increased dimension 
change costs (Pollmann et al., 2007). Taken together, the evidence 
suggests that left lateral anterior prefrontal cortex supports shifts of 
attention between visual dimensions (see also Rogers et al., 2000).
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THE CURRENT EXPERIMENT
In order to test this hypothesis, we needed an experimental par-
adigm which would allow us to test implicit contextual change 
detection processes. We adapted the contextual cueing paradigm 
(Chun and Jiang, 1998) in a way that enabled us to do just this. 
In contextual cueing, visual search is facilitated when the spatial 
distractor confi guration in search displays is repeated. This learn-
ing of contextual cues is implicit, it may occur in the absence of 
explicit recollection of the repeated displays. In order to investigate 
implicit change detection processes, we adapted the contextual cue-
ing paradigm by changing the target location in repeated displays 
after an initial learning phase. Response time and eye movement 
measurements have shown that the search advantage due to contex-
tual cueing is lost after the change in target location in new displays 
and that subjects then relearn the new spatial confi guration of 
target and surrounding distractors, all in the absence of awareness 
(Manginelli and Pollmann, 2009).

Derived from our hypothesis of left lateral frontopolar cortex 
as an implicit contextual change detector, we predicted left lateral 
frontopolar activation following a target location change in displays 
with repeated distractor confi guration. Recently, we reported a fi rst 
confi rmation of this hypothesis in that anterior prefrontal activation 
occurred when the target location changed in a repeated distrac-
tor context which was only repeated six times before the change 
(Pollmann and Manginelli, 2009). This was an initial demonstra-
tion that anterior prefrontal cortex is sensitive to changes in the 
 target– distractor confi guration which was not consciously perceived. 
However, the few learning trials did not lead to a signifi cant facilita-
tion of search in the repeated displays. Thus, no conclusions could be 
drawn on the relation of anterior frontal change detection and visual 
learning. This is one main aspect of the current study. Therefore, 
the present experiment was designed to reach optimal learning of 
target–distractor contexts before the change of the target location 
occurred. For this purpose, participants took part in a full session of 
contextual cueing the day before the fMRI experiment. In the fi rst 
half of the fMRI-experiment, they saw the same repeated displays as 
the day before, whereas in the second half, the displays with repeated 
distractor confi gurations contained the target at a new location.

If frontopolar cortex is involved in ‘detecting’ changes of implic-
itly learned contingencies, it should pass further tests. Frontopolar 
change-related activation should be strong if strong search facilitation, 
indicative of robust contextual learning, was observed prior to the 
change. Moreover, if frontopolar activation is due to a specifi c process 
of change detection, it should not be correlated with the search time 
costs induced by the target location change in old displays. Change 
detection should be of comparable duration across change trials, 
whereas search time varies considerably from trial to trial depend-
ing on variations of the search path and the (unknown) location of 
the target. Thus, a correlation of post-change activation strength with 
search costs would rather indicate an unspecifi c role of frontopolar 
cortex in visual search than a specifi c role for change detection.

MATERIALS AND METHODS
SUBJECTS
Fifteen healthy volunteer students participated in the training 
session. One subject was excluded from the analysis because he 
was left handed. Another subject could not be used for RT-based 

FRONTOPOLAR INVOLVEMENT IN IMPLICIT CHANGE PROCESSING
Based on these fi ndings, we propose that frontopolar cortex may 
compare the current environment (in the lab experiment, e.g., a 
motion-defi ned target in a search display) with similar environ-
ments in the past (e.g., a color-defi ned target in the same display) 
to signal changes to structures of the fronto-parietal attention 
network (Corbetta et al., 1998; Gitelman et al., 1999; Pollmann 
and von Cramon, 2000; Corbetta and Shulman, 2002), thereby 
enabling a reallocation of attentional resources (in the example 
from color to movement) which is optimal for the new situation. 
Thus, episodic memory traces are compared to the current input 
to detect changes which may be relevant for an optimal alloca-
tion of attention. These changes are then signaled to other brain 
structures, which then initiate the attention changes. A candidate 
structure to receive input from frontopolar cortex (via intermedi-
ary neurons, as there are no direct fi ber connections) may be the 
cortex at the temporo-parietal junction (TPJ), which is known 
to mediate disengagement from the current focus of attention to 
enable reallocation of attention to new aspects of the environment 
(Friedrich et al., 1998; Corbetta et al., 2000). While TPJ may not 
need input from frontopolar cortex when salient events command 
a reorienting of attention, frontopolar change detection signals may 
reach TPJ in cases when subtle, not consciously available changes 
occur, as in the present study.

Taken together, these hints from diverse sources led to our 
hypothesis that lateral frontopolar cortex may play an important 
role in attention control as an episodic monitoring instance which 
detects attention-relevant changes in familiar contexts, thereby 
enabling an optimization of attention allocation (Pollmann, 
2004). This optimization of attention is thought to proceed in 
an implicit, automatic manner, in the absence of consciousness. 
The latter assumption is backed by fi ndings from several areas. 
Change-related frontopolar activation has been observed in sin-
gleton search, where changes of the target are logically irrelevant 
for task execution, because the task is to detect the ‘odd one out’ 
item, but not to identify it. In contrast, left lateral frontopo-
lar activation has typically not been observed in tasks in which 
there is a clear rule-guided association between stimulus and 
response, e.g., in task switching studies (e.g., Dove et al., 2000; 
Kimberg et al., 2000; Sohn et al., 2000; Ruge et al., 2003). There 
is anecdotal evidence that in our singleton search experiments, 
which led to change-related anterior prefrontal activation, par-
ticipants are not always aware of the nature of the singleton, 
even though they correctly detected it. A more direct demon-
stration of anterior prefrontal activation with unaware stimulus 
changes was reported by Konishi et al. (2003). In their version of 
the Wisconsin Card Sorting Task, participants were cued when 
changes of the response-defi ning dimension occurred. However, 
unbeknownst to them, the feature values of the previous rel-
evant dimension continued to indicate the correct response for 
a variable number of trials (i.e., the response was redundantly 
defi ned by the old and new dimension). The anterior prefrontal 
activation was observed only when the old dimension ceased 
to indicate the correct response. Taken together, this led us to 
propose that the proposed episodic change monitoring in fron-
topolar cortex may occur in the absence of conscious awareness 
(Pollmann, 2004).
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 analyses because her response times were not recorded in the 
scanner session, due to a coding error. The remaining 13 partici-
pants [12 female, 20–27 (mean 22.4) years old] had normal or 
corrected-to-normal vision and were naïve about the purpose of 
the experiment. Participants provided informed consent and were 
either paid or compensated with course credits. The experiment 
was approved by the local ethics committee.

STIMULI
Stimuli and procedures followed closely Experiment 1 by Chun 
and Jiang (1998). Each display contained one target (90° or 270° 
rotated T”) and 11 distractors (0°, 90°, 180°, 270° rotated L”). 
The orientation of the target was randomly chosen in each trial, 
so that its stem pointed either to the right or to the left. The color 
of both target and distractors was randomly selected among 
yellow, red, blue and green with the restriction that the four 
colors were equally frequent within the display. The background 
was always gray (RGB = 128, 128, 128). Each item subtended 
0.64° × 0.64° and displays were generated by randomly placing 
items on an imaginary 8 × 6 grid that subtended approximately 
12° × 4.9° of visual angle. The center position of each item was 
randomly jittered in steps of 0.16° (within a range of ±0.48° 
in visual angle along the vertical and horizontal axes) in order 
to prevent collinearities with other stimuli. See Figure 1 for 
schematic displays.

PROCEDURE
Training session
Stimuli were presented on a 19.7-inches color monitor (resolution 
of 1024 × 768 pixels, refresh rate of 60 Hz). Viewing distance was 
70 cm, secured by a chinrest. The software ‘Presentation’, V. 10.03 
was used to generate stimuli, to control the timing of the experi-
mental events, and to record subjects’ responses.

Each experimental trial began with the presentation of a 
small white square centered on a gray background. Subjects were 
instructed to fi xate the square. After 1000 ms, the fi xation cross 
was replaced by the search display that remained visible until the 
participant made a target identifi cation judgment by pressing either 
the left or the right button of the mouse, in accordance with the 
pointing direction of the stem of the T”. They were told to respond 
as fast as possible, without sacrifi cing accuracy. Subjects received 
a feedback about the correctness of their choice by means of two 
different sounds. A 10-s break was imposed after each block.

The experiment was framed into 30 blocks of 24 trials, for a total 
of 720 trials. For each subject, 24 target locations were randomly 
chosen at the beginning of the experiment. Twelve of them, bal-
anced between the left and right halves of the screen, were assigned 
to 12 randomly generated confi gurations that were preserved dur-
ing the experiment (“old” confi gurations), while the other 12 target 
locations, equally balanced between the two halves of the screen, 
were presented in each block with newly generated distractor 

old configuration
+

new target location
new

old

new

FIGURE 1 | Sample displays. ‘New’ and ‘old’ refers to randomly generated and repeated distractor confi gurations, respectively. At the right, an ‘old’ display with 
new target location is shown. Displays are schematic, please refer to methods section for exact description.
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 confi gurations (new confi gurations”). In this way, frequency of 
target presentation was the same for all old and new confi gura-
tions, ruling out target frequency differences to confound contex-
tual cueing. The sequence of old and new trials was individually 
randomized for each participant. The target color and the colors 
of repeated distractors were kept constant. As described above, 
however, the orientation of the target ‘T’ was randomly varied, to 
prevent learning an association between a display confi guration 
and a response.

fMRI session
On the day following the training session, participants took part in 
the fMRI session. The fMRI experiment was identical to the train-
ing experiment, with the following exceptions. Trial duration was 
6 s. We (Pollmann et al., 1998) and others (Huettel and McCarthy, 
2000) have previously shown that an interval of 4–6 s yields opti-
mal power to detect blood oxygenation level dependent signal 
changes. After presenting the fi xation cross for 2 s, search displays 
were presented until a response was given or a maximum of 4 s 
was reached. The session consisted of two epochs (i.e., 10 blocks). 
In each block, the 12 old confi gurations and the 12 new confi gura-
tions were  presented, randomly sequenced and intermingled with 
two null events (in which the fi xation cross was presented for the 
whole length of the trial). The fi rst epoch contained the same old 
displays as in the training session. In the second epoch, the set of 
target locations for the old confi gurations was swapped with the 
set of target locations for the new displays. Consequently, the old 
distractor confi gurations were not anymore predictive for the old 
target locations (i.e., the target locations used in the training ses-
sion and the fi rst epoch of the fMRI session). Exchanging the sets 
of target locations for old and new confi gurations ensured that 
presentation frequency for each location remained the same.

Stimuli were displayed by an LCD projector on a back- projection 
screen mounted in the bore of the magnet above the observer’s 
chest. Participants viewed the screen by means of a mirror posi-
tioned on top of the head coil.

Explicit recognition test
At the end of the fMRI experiment, participants conducted an 
explicit recognition test without previous notice. For this test, the 
12 old confi gurations of the learning part of the experiment (train-
ing and fMRI-epoch 1) were sequenced randomly with 12 novel 
(i.e., not previously shown) displays, and subjects were asked for 
each display to indicate by an alternative forced choice button press 
whether or not they had seen the display in the experiment. The 
explicit recognition test was carried out after the end of the scan-
ning, while participants were still lying in the scanner.

FMRI-METHODS
FMRI data were acquired at 1.5T (GE Signa LX, General 
Electric, Milwaukee, WI, USA) with a GR-EPI sequence with 
TR = 2000 ms, TE = 40 ms and fl ip angle α = 80°. The fMRI-
experiment consisted of 790 volumes of 23 horizontal slices 
acquired in ascending, interleaved order with 5 mm slice thick-
ness and 1 mm gap. In-plane voxel size was 3.15 mm × 3.15mm. 
Data were acquired in a single run. The fi rst 10 volumes were not 
analyzed to remove saturation effects. A conventional 2D spin 

echo sequence (TR = 520 ms, TE = 9 ms, matrix 256) was used 
to acquire structural images in the same plane as the functional 
images, which were used for registration with individual high-
resolution anatomical 3D datasets.

FMRI data were analyzed using BrainVoyager QX (Brain 
Innovation, Maastricht, The Netherlands). The anatomical volume 
was transformed to the Talairach coordinate system (Talairach and 
Tournoux, 1988) in three subsequent steps: fi rst, voxel intensity 
was corrected for inhomogeneity (Vaughan et al., 2001) and data 
were resampled to 1 mm resolution using a cubic spline interpo-
lation. Second, data were aligned with AC-PC by means of cubic 
spline transformation and normalized into Talairach standard space 
using trilinear interpolation. Finally an automatic segmentation 
(Kriegeskorte and Goebel, 2001) was performed to identify the 
boundary between gray and white matter, in order to perform a 
cortex-based data analysis.

For each subject, preprocessing of functional images included 
slice scan time and head movement correction using sinc inter-
polation and rigid body transformations with the fi rst volume 
as the reference volume; linear trend removal, high pass fi ltering 
(frequency-space fi lter by FFT with frequency cutoff 0.02 Hz) 
and spatial smoothing with a 6-mm FWHM Gaussian fi lter. 
Functional images were then coregistered to the structural vol-
ume and transformed into Talairach space with a resolution of 
3 mm × 3 mm × 3 mm using sinc interpolation.

DATA ANALYSIS
We carried out parallel multi-subject random effects general linear 
model (GLM) analyses on reaction time data and fMRI data. Error 
trials were removed from these analyses. For the fMRI analysis, 
event-related predictor functions were constructed using a classical 
two-gamma hemodynamic response function. Statistical maps were 
thresholded at a voxel-level threshold of p = 0.005 and a cluster-
level threshold of p = 0.05 (Forman et al., 1995). For the behavioral 
data, the signifi cance criterion was α = 0.05. GLM analyses were 
followed by t-tests as described in results.

Relation of learning and change costs
We further wanted to know whether the amount of facilitation 
observed in the fi rst, pre-change, epoch was related to the prolon-
gation of search when the target changed in old displays. For this 
purpose, we fi rst calculated a normalized prolongation score by 
subtracting the response times in the new trials of the fi rst four post-
change blocks from the old trials in the same blocks and dividing the 
difference by the mean of the new trials. The score was calculated 
over only four (instead of all fi ve) post-change blocks because some 
relearning may have occurred in the fi fth block, at least in a subset 
of participants (Figure 4C). We then correlated the prolongation 
score with the facilitation score of the fi rst epoch.

High and low facilitation subgroups
Due to the technical failure of response time recording in one sub-
ject, we could analyze the search times in 13 subjects. Out of these, 
we created equally sized subgroups of six participants each with the 
highest respectively lowest normalized response time differences 
between old and new displays of the fi rst epoch and analyzed them 
in the same way as for the whole group.
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Correlation with search duration
Signal increases after target location change may potentially refl ect 
the longer search processes which were observed after the change 
in target location, instead of the hypothesized change detection. 
To investigate this issue, we correlated the individual beta value-
increase for the old trials from block 5 to block 6 (the last block 
before and the fi rst block after the change) divided by the beta-
values of block 5 with the individual ‘old’ response time increase 
in the same blocks calculated equivalently.

RESULTS
BEHAVIOR
Training
Errors occurred in only 1.2% of trials and were not further analyzed. 
The 30 blocks of the training session were grouped into 6 epochs 
of 5 blocks to increase statistical power. Search times were analyzed 
with a repeated measures ANOVA with confi guration (old, new) 
and epoch (1–6) as factors. The main effect of epoch was signifi cant 
[F(5, 70) = 84.99, p < 0.001], due to a general learning effect visible 
in both conditions (Figure 2). The main effect of  confi guration was 
not signifi cant [F(1, 14) = 0.65, p = 0.434], yielding no hint at an 

overall difference between confi gurations. Importantly, the inter-
action of confi guration by epoch was signifi cant [F(5, 70) = 3.57; 
p < 0.05], refl ecting an added facilitation of search in the old dis-
plays which developed over epochs. Thus, the response times rep-
licated the typical contextual cueing pattern.

fMRI-experiment
Only 0.5% errors were committed, probably due to the train-
ing on the day before. Errors were thus not further analyzed. An 
ANOVA on response times with confi guration (old, new), change 
(before, after) and block (1–5) yielded signifi cant main effects 
of confi guration [F(1, 12) = 11.94, p < 0.05] and block [F(4, 
48) = 2.80, p < 0.05] and a signifi cant interaction of change by block 
[F(4, 48) = 8.03, p < 0.05]. All other main effects and interactions 
were not signifi cant (all p > 0.53).

Figure 3 shows that the search times in old displays were faster 
than those in new displays before the target location change. After 
the change, this advantage was lost.

These differences were confi rmed by separate ANOVAs with 
confi guration (old, new) and block (1–5) on the fi rst and second 
epoch. Epochs again consisted of fi ve blocks, so that the pre-change 
and the post-change blocks formed one epoch each. The analy-
sis of the fi rst epoch yielded a signifi cant effect of confi guration 
[F(1, 12) = 4.93, p < 0.05] which disappeared in the second epoch 
[F(1, 12) = 0.677, p = 0.427].

Individual differences
We had expected a selective increase of response times to accompany 
target location changes in displays with repeated distractor con-
fi gurations. Whereas we found that the advantage for the repeated 
displays disappeared after the change in target location, the confi gu-
ration by change interaction was nevertheless not signifi cant. This 
prompted us to look for individual differences in the facilitation of 
search due to contextual cueing. Figure 4A shows the normalized 
individual differences in search times in old and new displays in the 
fi rst epoch of the fMRI experiment (i.e., before the target location 
change). Normalization was obtained by dividing the difference of 
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FIGURE 2 | Search times in the training session.
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FIGURE 3 | Search times in the fMRI session. Target location change occurred from block 6 on.



Frontiers in Human Neuroscience www.frontiersin.org October 2009 | Volume 3 | Article 28 | 6

Pollmann and Manginelli Implicit anterior prefrontal processing

–0,3
–0,25
–0,2
–0,15
–0,1
–0,05

0
0,05
0,1
0,15
0,2
0,25

Participants

Contextual FacilitationA

cb

B

C

fMRI session - facil-

600

700

800

900

1000

1100

1 2 3 4 5 6 7 8 9 10
Blocks

R
T 

(m
s)

Old
New

fMRI session - facil+

600

700

800

900

1000

1100

1 2 3 4 5 6 7 8 9 10
Blocks

R
T 

(m
s)

Old
New

FIGURE 4 | Individual differences in the contextual cueing effect. (A) Normalized individual facilitation scores (see text for details). Search times for the high 
(B) and low (C) facilitation group.

‘new’ – ‘old’ by ‘new’ search times. We observed a continuum from 
strong facilitation of search in old displays to the reverse, longer 
search times in old displays. The individual contextual cueing effects 
in our study were not random. The correlation of the facilitation by 
contextual cueing observed in the last epoch of the training and the 
fi rst epoch of the fMRI experiment was r = 0.65 (p < 0.05).

We further wanted to know whether the amount of facilitation 
observed in the fi rst, pre-change, epoch was related to the prolon-
gation of search when the target changed in old displays. There 
was a high correlation between the two scores (r = 0.725; p < 0.05) 
indicating that the post-change increase in search times was highest 
in participants with strong facilitation by contextual cues.

Subgroup analyses
For the subgroup with high facilitation by contextual cues 
(Figure 4B), the ANOVA with confi guration (old, new), change 
(before, after) and block (1–5) yielded a signifi cant main effect of 
confi guration [F(1, 5) = 4.37; p < 0.05]. Importantly, the interac-
tion of confi guration by change was signifi cant [F(1, 5) = 7.66; 
p < 0.05], as was the interaction of change by block [F(4, 20) = 3.32; 
p < 0.05]. All other main effects and interactions were not signifi -
cant (all p > 0.244).

Following the overall ANOVA, we again analyzed the pre- and 
post-change epochs separately. In the fi rst, pre-change, epoch, search 
times for old displays were signifi cantly faster than for new displays 
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[F(1, 5) = 99.36; p < 0.05], refl ecting the  selection  criterion. There 
was also a signifi cant effect of block [F(4, 20) = 3.45; p < 0.05], 
whereas the interaction was not signifi cant [F(1, 5) = 0.75; 
p = 0.572]. In the post-change epoch, neither main effects nor the 
interaction were signifi cant (all p > 0.140).

For the subgroup with low facilitation in the pre-change epoch 
(Figure 4C) we observed a marginally signifi cant main effect of 
confi guration [F(1, 5) = 6.41; p = 0.052] and a signifi cant change by 
block interaction [F(4, 20) = 3.95; p < 0.05], all other main effects 
and interactions (notably including the confi guration by change 
interaction) were not signifi cant (all p > 0.180).

In the ANOVA on the fi rst epoch, only a signifi cant main effect 
of block was observed [F(4, 20) = 4.13; p < 0.05; all other p > 0.543]. 
In the analysis of the second epoch, only a marginally signifi cant 
effect of confi guration [F(1, 5) = 6.00; p = 0.058] was observed. 
This refl ected numerically higher search times in the new, rather 
than the old, confi guration.

Thus, the subgroup which showed signifi cant pre-change 
facilitation by contextual cues did also show a selective signifi cant 
increase in search times in old displays following the target location 
change. This selective increase was not observed in the subgroup 
without signifi cant pre-change contextual cueing.

Recognition
Finally, we analyzed the explicit recognition scores obtained at the 
end of the fMRI session. ‘Old’ responses were equally often hits 
(rate = 0.5055) and false alarms [0.5057; t(13) = 0.006, p = 0.995]. 

Analysis of high and low facilitation subgroups yielded no  differences 
[high: hits/false alarms: 0.5467/0.5357; t(6) = 0.159, p = 0.879; low: 
hits/false alarms: 0.4583/0.4450; t(6) = 0.275, p = 0.794].

Imaging
In the same way as for the response time data, we analyzed the 
imaging data with a repeated measures ANOVA with confi guration 
(old, new), change (before, after) and block (1–5).

For the topic of this paper, selective signal changes after the 
change in target location in repeated distractor confi gurations 
are of central importance. We will therefore focus the analysis on 
the interaction of confi guration by change. Although our main 
hypothesis concerned anterior prefrontal cortex, specifi cally left 
lateral frontopolar cortex, we refrained from using a region-of-
interest approach in order to analyze selective target change-
related responses across the whole brain. All activations are listed 
in Table 1.

A signifi cant interaction of confi guration by change was observed 
in left lateral frontopolar cortex (BA10), as predicted (Figure 5). 
Another area showing this activation pattern was observed  somewhat 
more dorsally and posteriorly in left superior frontal gyrus (BA9). 
BOLD time courses measured in this area in the immediate pre- and 
post-change blocks are shown in Figure 6. Signifi cant confi guration 
by change interactions were further observed in right lateral orbital 
gyrus, bilaterally in the posterior medial orbital gyri, at several fron-
tomedian locations, in pre- and postcentral gyri, left posterior mid-
dle temporal gyrus and in the fusiform gyri (Table 1).

Table 1 | List of activations.

 Coordinates Structure BA Size (mm3) F(1,13) p value

x y z     

−21 51 16 Frontopolar cortex 10 331 15.11 0.002

 34 40 −10 Lateral orbital gyrus 11 256 15.61 0.002

 −3 40 35 Superior frontal gyrus, medial aspect 8 180 13.00 0.003

−26 40 28 Superior frontal gyrus 9 183 13.35 0.003

−24 33 −15 Lateral orbital gyrus 11 108 12.33 0.004

−11 29 36 Superior frontal gyrus, medial aspect 6 164 14.03 0.003

  6 26 50 Superior frontal gyrus, medial aspect 6 408 14.46 0.003

−12 25 −5 Cingulate gyrus 32 186 14.74 0.003

−14 14 44 Superior frontal gyrus 6 190 14.05 0.003

−12 8 −14 Medial orbital gyrus 25 280 15.03 0.002

  6 6 −12 Medial orbital gyrus 25 129 13.93 0.003

 31 −1 30 Precentral gyrus 6 223 13.08 0.003

  0 −1 38 Cingulate gyrus 24 180 15.19 0.002

−12 −5 33 Cingulate gyrus 24 222 14.05 0.003

  6 −7 39 Cingulate gyrus 24 343 15.39 0.002

−45 −8 28 Precentral gyrus 6 363 17.89 0.002

 34 −15 36 Postcentral gyrus 3 116 14.05 0.003

−49 −15 19 Postcentral gyrus 43 108 12.93 0.003

 25 −26 39 Postcentral gyrus 5 541 14.21 0.003

 13 −40 26 Cingulate gyrus 31 154 13.44 0.003

 21 −47 −7 Fusiform gyrus (T4) 19 203 14.38 0.003

−49 −52 11 Middle temporal gyrus, posterior part 39 312 13.22 0.003

 −8 −79 −11 Fusiform gyrus (O4) 18 172 15.39 0.002

Coordinates refer to the coordinate system of Talairach and Tournoux. Confi guration by change interaction: n1 + n2 + n3 + n4 + n5 − o1 − o2 − o3 − o4 − o5 − n6 −
n7 − n8 − n9 − n10 + o6 + o7 + o8 + o9 + o10. (o: old, n: new; numbers indicate blocks).
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FIGURE 7 | Signifi cant confi guration by change interaction in left 

temporo-parietal junction area. (A) The TPJ-activation is marked by the 
cross hair. Left hemisphere is presented on the right. (B) Group signal 
strength as a function of condition and block. The graph shows beta values, 
signifying the amplitude of the modeled BOLD-response. Old: repeated trials, 
new: novel trials.
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FIGURE 5 | Signifi cant confi guration by change interaction in left 

frontopolar cortex. (A) Location of left frontopolar activation. The frontopolar 
activation is marked by the cross hair. Somewhat more dorsally and 
posteriorly, the superior frontal gyrus activation is visible. Left hemisphere is 
presented on the right. (B) Group signal strength as a function of condition 
and block. The graph shows beta values, signifying the amplitude of the 
modeled BOLD-response. Old: repeated trials, new: novel trials. (C) Signal 
strength as a function of condition and block, separately for the high (+) and 
low (−) facilitation subgroups.

Among the posterior brain areas which showed a signifi cant 
 confi guration by change interaction, the posterior segment of left 
middle temporal gyrus, in the TPJ area (Figure 7) is of  special interest, 
because this area may play a role in disengaging of  attention from the 
learned target location to facilitate search for the new location.

To fi nd out whether the cross-over pattern observed in the 
ANOVA was due to negative signal changes, we carried out  separate 
contrasts of pre-change old and post-change new displays versus 
null events. We found one area in left fusiform gyrus (−38, −50, 
−7) where new displays yielded lower signal  amplitudes than null-
events. There was no area where lower signal amplitudes were 
observed for pre-change old displays versus null events.

Correlation with search duration
We did not observe a signifi cant correlation of activation strength 
and search time increase from block 5 to block 6 in any of the acti-
vated areas (see Section ‘Materials and Methods’ for details). Even 

without correcting for multiple comparisons, which is a conservative 
approach here, because it facilitates observation of a signifi cant acti-
vation occurring by chance, no correlation was observed. There was 
also no signifi cant correlation between signal change and RT-change 
from block 5 to block 7, calculated analogously. Thus, the post-
change signal increase was not simply due to prolonged search.

High versus low facilitation
If left frontopolar cortex, as hypothesized, was involved in the 
detection of contextual changes or the interruption of attentional 
guidance to the old target location, it should have shown a more 
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FIGURE 6 | BOLD curves for frontopolar cortex as a function of condition 

and block. Curves represent the average event-related signal for old and new 
trials after subtraction of the null-event curves. Bl5/6: block 5/6.
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selective signal change in those participants who effi ciently learned 
the  target–context relation. Comparing the subgroups with high 
versus low search facilitation by contextual cues (Figure 4A), we 
indeed observed a selective signal increase after target location 
change in old displays in the high facilitation group [F(1,5) = 13.58, 
p < 0.05] whereas no such effect was observed in the low facilita-
tion group [F(1,5) = 0.003, p = 0.959; Figure 5C]. Please not that 
both groups showed virtually identical activation in the pre-change 
epoch, with numerically higher activation for new trials. Only 
after the change did both groups show virtually mirror-image 
activation patterns.

Baseline differences
Many of the areas with a signifi cant confi guration by change 
interaction had, in absolute values, lower activation for repeated 
than novel displays before the target location change. We ran a 
conjunction analysis (Nichols et al., 2005) between the confi gura-
tion by change contrast and a new-old contrast for the fi rst epoch. 
The conjunction was signifi cant in the medial aspect of the left 
superior frontal gyrus, the left medial orbital gyrus and the left 
cingulate gyrus.

DISCUSSION
Our aim was to investigate the contribution of anterior prefrontal 
cortex to the implicit ‘detection’ of changes in implicitly learned 
stimulus contingencies in the service of optimal attention allocation. 
We used the contextual cueing paradigm to induce implicit learn-
ing of the spatial relation between target locations and distractor 
confi gurations. We then changed the target location, so that the 
learned distractor confi guration lost its predictiveness as to the target 
location. When these changes occurred, subjects needed to change 
their gaze pattern to fi nd the target. In a previous study we could 
show that subjects learn to redirect their gaze from a path leading 
to the learned target location to a new path which leads more effi -
ciently to the new location (Manginelli and Pollmann, 2009). Thus, 
subjects learn to reorient their overt attention (gaze) in a situation 
in which they are not aware that they had learned to effi ciently use 
the distractor confi guration to fi nd the target in the fi rst place and in 
which they are also not aware that this contingency between learned 
distractor confi guration and target location changed.

Our hypothesis was that anterior prefrontal cortex is involved in 
detecting this change, although our subjects were not aware of it, as a 
precondition for subsequent attentional control processes necessary to 
adapt to the new situation. In support of this hypothesis, we observed 
a confi guration by change interaction with an increase of activation 
for repeated displays after the change in target location in left lateral 
frontopolar cortex as well as left anterior superior frontal gyrus.

In addition to these anterior brain areas, selective post-change 
signal increases were also observed in a number of posterior brain 
areas. Some of these, like multiple activations along cingulate cortex 
and superior temporal activations, are in good agreement with the 
results of a recent tract-tracing study, which showed fi bers from 
BA10 to terminate along the cingulate gyrus and in superior tempo-
ral cortex (Petrides and Pandya, 2007). Of interest is also the absence 
of posterior parietal change-related activations, which concurs with 
the absence of rostral prefrontal fi bers terminating in this area in 
the Petrides and Pandya study.

Among the areas which showed a selective post-change increase 
for old displays were further the posterior medial orbital gyrus 
(which is discussed below) and the posterior segment of the middle 
temporal gyrus in the temporo-parietal junction area, which we 
hypothesized to be a potential recipient of signals from frontopolar 
cortex, because of its role in disengaging attention from a current 
focus to facilitate a reorienting to new aspects of the environment 
(also discussed in more detail below). There is no evidence for 
monosynaptic connections between BA10 and TPJ (Petrides and 
Pandya, 2007), so a communication between these areas will most 
likely be relayed over intermediary neurons.

CHANGE OF IMPLICITLY LEARNED CONTINGENCIES
Search in displays with repeated (‘old’) distractor confi gura-
tions was faster than in randomly generated, new confi gurations, 
replicating previous reports of contextual cueing. This search 
advantage was still visible 1 day after training, when the same old 
displays were presented in the scanner. However, when the target 
location was changed in old displays after learning, the search 
advantage was lost (in replication of Manginelli and Pollmann, 
2009). These learning effects distinguish the current data from a 
previous study, in which distractor confi gurations were repeated 
only six times before the target location change occurred, which 
was not suffi cient to induce a signifi cant facilitation of search 
times in repeated displays (Pollmann and Manginelli, 2009). 
While anterior prefrontal change-related activation was observed 
in both studies, we could therefore not be certain to relate these 
changes to implicit learning of repeated contexts in the previ-
ous study. In contrast, in the present experiment, the size of the 
change-related activation in anterior prefrontal cortex scaled with 
the size of the facilitation due to context learning. In fact, only 
those subjects who showed a signifi cant facilitation before the 
target location change also showed a signifi cant increase of left 
frontopolar activation after the change.

While frontopolar activation depended on the strength of 
implicit learning, it was not correlated with the response time cost 
induced by the target location change in old displays. Thus, fron-
topolar cortex appears to support a specifi c process, the detection 
of change, rather than unspecifi c visual search processes.

We had observed that frontopolar activation was often observed 
in ill-structured situations, in the absence of explicit rules how 
to respond to the change (Pollmann, 2004). The current experi-
ment was designed to test the further hypothesis that frontopolar 
cortex is involved in change ‘detection’ (in an implicit sense) not 
only in the absence of rules or instructions to do so, but even 
if subjects are unaware of the change. We could show that our 
subjects could not distinguish between previously encountered 
and novel displays better than chance, confi rming the hypothesis 
that even in the absence of change awareness, anterior prefrontal 
cortex is engaged.

This distinguishes our fi ndings from previous fi ndings of pre-
frontal responses to breaches of expectation. In one study, rais-
ing the proportion of invalid trials in a visuospatial cueing task 
elicited activation in orbitofrontal cortex, in the neighborhood of, 
but inferior to the frontopolar activation observed in the current 
study (Nobre et al., 1999). In another study, violation of a tempo-
ral sequence led to more posterior prefrontal activation (Huettel 
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INDIVIDUAL DIFFERENCES
In keeping with a previous report (Lleras and von Mühlenen, 2004), 
we observed a considerable range of interindividual degrees of 
search facilitation. Importantly, the activation patterns refl ected 
these differences in that post-change signal increase in all investi-
gated areas (for reasons of space only shown for frontopolar cor-
tex, Figure 5C) was higher in participants with effi cient usage of 
contextual cues, mirrored by strong initial search facilitation and 
subsequent pronounced post-change search costs.

The individual differences replicate closely a previous report 
of a very similar continuum of individual responses to contextual 
cues (Lleras and von Mühlenen, 2004). As in the study of Lleras 
and von Mühlenen, the individual effects in our study were not 
random. There was a high correlation of the facilitation by con-
textual cueing observed in the last epoch of the training and the 
fi rst epoch of the fMRI experiment, on the next day. Interestingly, 
a subset of three participants showed (at least in absolute terms) 
slower responses for repeated than for new trials. As mentioned 
above, contextual cueing relies on both facilitatory and inhibitory 
processes (Ogawa et al., 2007). It may be worthwhile to investigate 
whether in some individuals, the target location may be inhibited 
along with the distractor locations in repeated displays. This could 
explain the slower response to repeated displays.

RELATION OF FRONTOPOLAR AND POSTERIOR-TEMPORAL 
CHANGE-RELATED PROCESSES
The temporo-parietal junction area, which has been proposed to sup-
port changes of attention away from a current focus to new aspects 
of the environment (Corbetta et al., 2008) showed a confi guration 
by change interaction. It makes sense that TPJ would be more active 
after the change in target location in old displays, because attending to 
the old, implicitly learned target location needs to give way to learn-
ing the new location. Typically, TPJ activation has been observed in 
response to salient events in the environment (e.g., Friedrich et al., 
1998; Corbetta and Shulman, 2002). In the absence of such salient 
events, as in the present study, in which the change of target–distrac-
tor context was not even consciously recognized, anterior prefrontal 
cortex may play a vital role in signaling task-relevant changes to 
posterior brain areas, such as the TPJ, as a precondition for adap-
tive reallocation of attentional resources to changed aspects of the 
environment. Clearly, this relationship awaits further tests in which a 
higher number of old displays allow the investigation of the immedi-
ate post-change processing with higher statistical power.

The cortex along the middle part of the intraparietal sulcus may 
also contribute to the attentional selection of competing stimuli 
(Molenberghs et al., 2008). We found no evidence for a differen-
tial involvement of this structure in the conditions of the present 
experiment. This may be due to the fact that this area is also strongly 
involved in reorienting of attention (Vandenberghe et al., 2001) 
and was therefore comparably active in old as well as new trials, 
before and after the change, given that visual search in this study 
was ineffi cient, demanding multiple saccades in a typical trial.

DIFFERENTIATION OF PAST AND PRESENT
Our proposition that frontopolar cortex is involved in implicit con-
textual change detection rests on the idea that old relations between 
an object and its context, which have been helpful to search for the 

et al., 2002). Given that our subjects did not notice the change of 
target–distractor contingencies (nor the presence of such contin-
gencies), the change-related signal changes cannot be explained 
by breaches of expectation. Thus, the discrepancies between the 
prefrontal areas activated in the present study and those activated 
by breaches of expectation are not unexpected. Another notewor-
thy aspect is that spatial contextual cueing and temporal sequence 
learning, although structurally similar, appear to rely on different 
anatomical circuits (e.g., Negash et al., 2007a,b).

CONTEXTUAL INTERFERENCE
In the contextual change paradigm applied here, anterior prefrontal 
cortex appears to subserve an implicit control function. It comes 
into play when implicitly learned context relations are no longer 
predictive of the target location and attention (including overt eye 
movements) needs to be directed elsewhere in search of the target. 
As outlined in the introduction, studies of memory have implicated 
lateral frontopolar cortex in episodic retrieval processes. Episodic 
retrieval would appear to be a prerequisite for the detection of task-
relevant change. The memory literature suggests that frontopolar 
cortex becomes active when previously attended or memorized 
objects reappear in a changed context (King et al., 2005). This was 
also the case in the present study, where displays with repeated 
distractor confi gurations contained a target at a new location. 
Critically, the present study shows that this context retrieval does 
not demand previous explicit encoding.

REPETITION SUPPRESSION
Repetition of a stimulus can lead to adaptation of neural responses 
as well as the BOLD response (e.g., Grill-Spector et al., 2006). It is 
unlikely, however, that repetition suppression is the neural process 
which leads to the facilitation of visual search due to contextual cue-
ing. Repetition of the distractor confi guration could lead to a ‘fading’ 
representation of the display which, in turn, makes the target more 
salient, leading to faster search times. In this case, however, a target 
presented at a new location in a repeated display should be as salient, 
or even more salient than, a target at the old location (Manginelli 
and Pollmann, 2009). Repetition suppression thus cannot explain 
the loss of facilitation in old displays following the target location 
change. This does not rule out that neural responses to repeated 
displays may be reduced in some brain areas, particularly in visual 
cortex. However, when we investigated this question recently, we 
observed no change of signal amplitude following repeated displays, 
but rather an earlier onset of the BOLD response compared with 
novel displays (Pollmann and Manginelli, accepted).

INTERFERENCE IN NEW DISPLAYS
An unexpected fi nding was the decrease of activation for new 
displays after the change in target location, which was consist-
ently observed across anterior and posterior brain regions 
(Figures 5 and 7). This pattern almost looks as if there was a lim-
ited capacity that needs to be distributed between old and new 
trials, so that increased demand for old displays, for example, 
after the target location change goes along with a redistribution 
of resources from the new to the old trials. However, it remains 
currently unclear how such a redistribution should proceed in the 
absence of voluntary resource allocation.
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object in the past, need to be replaced by new object–context  relations 
if these relations have changed in the environment. In other words, 
previously learned contextual relations need to be tagged as memories 
of the past, whereas the new contextual relations need to be tagged as 
presently relevant. This same distinction between memories of the 
past and memories which are relevant for guiding present behavior 
breaks down in patients with spontaneous confabulations (Schnider, 
2003). These patients commonly have lesions of the basal forebrain 
and medial orbitofrontal cortex. Moreover, activation of the basal fore-
brain increased with increasing repetition of stimuli in a memory task 
when only the last repetition was task-relevant and previous occur-
rences needed to be suppressed (Schnider et al., 2000). In the present 
study, selective post-change signal increases for repeated displays in 
basal forebrain and orbito-frontal cortex may well indicate suppres-
sion of the old target context relations in favor of the new.

LATERALITY
Change-related activation in anterior prefrontal cortex was lat-
eralized to the left hemisphere. This replicates previous fi ndings 
of dimension- and location-change-related activation changes 
(Pollmann et al., 2000; Weidner et al., 2002) or anterior prefron-
tal lesions (Pollmann et al., 2007). Reviews of episodic retrieval 
studies indicate a preponderance of right frontopolar activations, 
along with a sizeable number of bilateral frontopolar activations, 
but a scarcity of left-frontopolar only activations (Christoff and 
Gabrieli, 2000). In contrast, Reynolds et al. (2006) report a left 
lateral frontopolar involvement in integrating contents retrieved 
from episodic memory. Taken together, this may suggest that the 
left lateral frontopolar cortex does not subserve pure retrieval of old 
contextual information from memory, but processes this informa-
tion, perhaps trying to integrate the current context with similar 
previously learned contexts and signaling if this is not possible.

One crucial question which remains open is whether left lateral 
frontopolar cortex is involved only in detecting changes between 
past and present episodes or whether it generates control signals 
that instruct more posterior areas, e.g., in the temporo-parietal 
junction area, to start a process cascade of attentional disengage-
ment from the old and engagement to a new aspect (such as a new 
location or feature dimension) of the environment.

SCOPE OF EXPLANATION
Since anterior prefrontal function has become a focus of research 
in recent years, lateral frontopolar activation has been reported in 
many different paradigms. It remains an open question whether 
these fi ndings are due to a common process or whether differ-
ent paradigms tap different functions which are subserved by 
frontopolar neurons. In other words, can the implicit detection 
of attention-relevant environmental changes explain anterior 
prefrontal activations in other paradigms? Clearly, this remains 

speculative at the moment and awaits further tests, including 
direct comparisons between implicit attention change, memory 
retrieval and explicit change processes. Some candidate processes 
are discussed below.

It has been proposed that lateral frontopolar cortex is selec-
tively involved in branching (Koechlin et al., 1999). Branching 
is characterized by holding information about an interrupted 
task in memory while carrying out a second task. For branching, 
it is crucial, that enough information about the task contents 
of the primary task is held in memory to be able to continue 
it when the second task is fi nished, as compared to a dual task 
situation, in which one of two tasks is alternately worked on. It 
appears that branching is thus characterized by a stronger ‘con-
textual interference’ component, in that current stimuli need 
to be manipulated according to the rules of one task when the 
rules (and stimuli) of the previous task are still held available. 
The same holds in general for situations of subgoal processing, 
which also lead to lateral frontopolar activation (e.g., Braver and 
Bongiolatti, 2002). Similarly, relational integration (Christoff 
et al., 2001) is characterized by two contexts, which fi rst need to 
be processed separately and then being integrated to solve the 
task. A recent classifi cation analysis yielded a distinction between 
episodic memory demands in the most lateral and multitask-
ing in the more anteromedial parts of lateral frontopolar cor-
tex (Gilbert et al., 2006). Integration of two episodic memory 
contents has been postulated to be a function specifi cally of left 
lateral frontopolar cortex (Reynolds et al., 2006). Recently, lateral 
frontopolar cortex has been reported to respond differentially to 
the validity of working memory contents used in visual search 
(Soto et al., 2007). The authors’ view that anterior prefrontal 
cortex may compare internal and external representations and 
prioritize them in accordance with task goals also fi ts with our 
concept of left lateral prefrontal function.

The proposed role of lateral frontopolar cortex in detecting 
contextual change and potentially suppressing the old context 
may thus specify one aspect of frontopolar function that falls 
into the broad concepts of evaluating self-generated informa-
tion (Christoff and Gabrieli, 2000), a ‘gate-keeper’ function 
between stimulus-oriented and stimulus-independent proc-
esses (Burgess et al., 2005), or the integration of several mental 
processes (Christoff et al., 2001; Ramnani and Owen, 2004). 
But again, the decisive difference is that these concepts were 
developed with explicit executive functions in mind, whereas we 
show that frontopolar cortex is involved in changes of implicitly 
learned confi gurations.
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