
Frontiers in Human Neuroscience www.frontiersin.org December 2009 | Volume 3 | Article 52 | 1

HUMAN NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 01 December 2009
doi: 10.3389/neuro.09.052.2009

Neuroimaging studies have shown that regions previously 
associated with cognitive control and response selection (Miller 
and Cohen, 2001; Toni et al., 2002) are also active when adults 
receive negative performance feedback, including the dorsal ante-
rior cingulate cortex (dACC) and the dorsolateral prefrontal cor-
tex (DLPFC) (Klein et al., 2007; Taylor et al., 2007). The dACC 
is thought to monitor action outcome regularities and is impor-
tant for signaling adjustment (Botvinick et al., 2001; Yeung et al., 
2004). In addition, the dACC may exercise behavioral control via 
the engagement of the DLPFC (Kerns et al., 2004; Zanolie et al., 
2008), which in turn is important for trial-to-trial adjustments 
of behavior (Dosenbach et al., 2008). Similar to the DLPFC, the 
parietal cortex is also involved in feedback processing, in particular 
negative feedback (Crone et al., 2008; van Duijvenvoorde et al., 
2008). Finally, these regions are thought to work in close concert 
with the basal ganglia, specifi cally the caudate nucleus, which is 
thought to be engaged when learning action- outcome regularities 
(for a review see Cools, 2008).

In two prior developmental studies we have identifi ed the devel-
opmental time course of these regions during adaptive feedback 
processing. In the fi rst study (Crone et al., 2008), participants were 
instructed to infer rules based on positive and negative feedback 
which could change without warning. Following Somsen (2007), we 
were interested in the way children, adolescents, and adults proc-
essed negative feedback indicating a rule shift. As anticipated, adults 
engaged DLPFC, dACC, and the parietal cortex when processing 

INTRODUCTION
Learning to correctly adapt your behavior in a changing  environment 
is an essential feature of human cognition and has been studied 
extensively over the past decades (for reviews, see Ridderinkhof and 
van den Wildenberg, 2005; Rushworth and Behrens, 2008). When 
adapting behavior, individuals often make use of feedback signals, 
which can be positive, encouraging the continuation of behavior, or 
negative, discouraging the continuation of behavior and signaling 
the need for adjustment. Prior studies have indicated that adaptive 
learning based on feedback signals undergoes pronounced devel-
opmental improvements between late childhood and early adult-
hood, as is evident from tasks in which participants need to switch 
between multiple rules (Crone and van der Molen, 2004; Somsen, 
2007) or in which they need to infer sorting rules based on positive 
and negative signals (van Duijvenvoorde et al., 2008).

Early developmental improvements in adaptive behavior are 
observed when feedback has a direct mapping to deterministic 
rules (Somsen, 2007), however, when the feedback is probabilistic, 
changes in adaptive learning are observed until late adolescence 
(Hooper et al., 2004). In these situations, individuals must learn the 
statistical regularities between actions and outcomes, and use that 
information to interpret current feedback signals (see also Rangel 
et al., 2008). Feedback which is not directly mapped to behavior 
is often more complex because it requires individuals to attend 
to long term consequences and override the tendency to respond 
directly to local environmental change.
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in positive feedback (70–80%) (see Figure 1). Over the course of 
the experiment participants had to learn the statistical regularities 
and thus had to learn to choose the stimuli with a high probability 
of positive feedback (A and C) more often than those with a low 
probability of positive feedback (B and D).

When participants have gained knowledge of the statistical regu-
larities, they were expected to more often apply the correct rule. 
Notably, in probabilistic learning tasks individuals generally do not 
consistently apply the correct rule but show matching behavior; i.e., 
they choose the correct stimulus with a frequency that is propor-
tional to the probability of positive feedback associated with that 
stimulus (Estes, 1961; Herrnstein, 1961; Shanks et al., 2002; Frank 
and Kong, 2008). Thus, we anticipated that participants would 
apply the correct rule (in this study, choosing the high probability 
stimuli A and C) more often, but we also anticipated that they 
would remain exploring the alternative rule (choosing the low 
probability stimuli B and D). Therefore, this paradigm allowed us 
to investigate the processing of positive and negative feedback that 
carries different informative value. In particular, receiving negative 
feedback when choosing the correct rule should not be interpreted 
as a signal to switch to the alternative rule because the probability 
of positive feedback remains higher than for the alternative rule. In 
contrast, receiving negative feedback when choosing the alterna-
tive rule should lead to a switch to the correct rule. To be able to 
address the question how neural responses are sensitive to feedback 
signals in the context of learned rules, we only analyzed neural 
responses after participants had reached a learning plateau.

Based on prior studies, we expected that DLPFC and the pari-
etal cortex would be sensitive to whether feedback signals required 
greater attention, and would contain greater informative value 
for performance adjustment on subsequent trials. Therefore, we 
expected that these regions would be engaged mostly after choosing 
the alternative rule (B or D), because this feedback contained learn-
ing signals for performance adjustment, independent of valence. We 
also examined the role of the dACC and the caudate as these regions 
have previously been implicated in feedback processing (Schultz, 
2007; Cools, 2008; Rushworth and Behrens, 2008). We expected 
that the dACC would be most sensitive to negative feedback signals, 
particularly when indicating the need for behavioral adjustment 
(Kerns et al., 2004), whereas we expected that the caudate would 
be most sensitive to positive feedback which signals response con-
tinuation (Cools, 2008).

The second question concerned developmental differences in 
performance and neural activation. In prior research, develop-
mental differences were observed between childhood and mid-
 adolescence, but differences between adolescence and adulthood 
remain unclear (Crone et al., 2008; van Duijvenvoorde et al., 2008). 
For this purpose, we compared behavioral and neural responses of 
three age groups; children (8–11 years), adolescents (13–16 years), 
and adults (18–22 years). Behaviorally, we predicted that differ-
ences in adaptive learning would be largest between childhood and 
adolescence, with refi nement of learning between adolescence and 
adulthood (Luna and Sweeney, 2001; Crone and van der Molen, 
2004; Somsen, 2007). In addition, we expected to fi nd that these 
behavioral changes would be paralleled by changes in the areas 
involved in adaptive control (dACC, DLPFC, parietal cortex and 
caudate nucleus). For the fMRI analyses, we had three specifi c 

negative feedback indicating a rule shift. A similar pattern was 
observed in 14- to 15-year-old adolescents, but 8- to 11-year-old 
children engaged these regions less following negative feedback in 
comparison to positive feedback or a low-level fi xation baseline. In 
the second study (van Duijvenvoorde et al., 2008), participants were 
instructed to guess a correct rule. Because there were two possible 
rules, there was a 50% chances of receiving positive feedback, and 
therefore both feedback signals (negative and positive) were simi-
larly salient and probable. Again, adults engaged DLPFC, dACC, 
and the parietal cortex following negative feedback, but in this 
study 8-year-old children engaged DLPFC and the parietal cortex 
more following positive feedback relative to negative feedback. The 
developmental trajectory of the dACC followed a different pattern, 
as it slowly emerged in response to negative feedback at the age 
of 12, but it was not more active following negative compared to 
positive feedback at a younger age (see also Velanova et al., 2008). 
Although the caudate nucleus was involved in these tasks, these 
studies revealed that there were no developmental differences in 
activation patterns.

Together, these fi ndings indicate that the possible meaning of 
positive and negative feedback signals, and the role of the associated 
neural circuits, changes during development. However, prior studies 
could not dissociate between neural activation as a result of valence 
versus informative value, given that negative feedback always sig-
naled response adjustment and therefore had different informative 
value than positive feedback. Thus, it remains to be determined how 
the involvement of DLPFC and the parietal cortex is dependent on 
valence versus informative value of the feedback.

Prior research suggests that differences in positive and nega-
tive feedback adjustment are the result of differences in attention 
regulation (Somsen, 2007). Following this hypothesis, it is argued 
that children are less able to update the relevant feedback infor-
mation and therefore they are less fl exible in selecting alternative 
actions. We therefore reasoned that the brain regions implicated 
in prior feedback studies may be sensitive to the informative value 
of feedback, and that activation in these brain regions is indicative 
of feedback attendance. Furthermore, we predicted that attention 
to feedback may also underlie the developmental differences in 
brain activation. We hypothesized that DLPFC and parietal cortex 
would be more active following positive feedback in children and 
following negative feedback in adults, but only when the feedback 
has informative value for learning and response adjustment. Thus, 
we sought to test how neural responses are sensitive to informative 
value for learning versus valence of feedback, and the  developmental 
trajectory of feedback processing.

We reasoned that feedback valence versus informative value 
could be disentangled after participants learned probabilistic 
feedback rules. In the probabilistic learning paradigm, participants 
need to learn from positive and negative feedback under different 
levels of probability, and therefore not all positive feedback sig-
nals response continuation and not all negative feedback signals 
response adjustment. The probabilistic learning (i.e., trial-and-
error) task employed in this study was based on a prior study by 
Frank et al. (2004), but was simplifi ed for use with children. In our 
version of the probabilistic learning task, two different stimulus 
pairs (AB or CD) were presented in random order, and participants 
had to learn over trials that one stimulus was more likely to result 
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age-related hypotheses based on prior studies. First, we expected 
an increase in  differentiation in the dACC for positive and negative 
feedback processing with increasing age (van Duijvenvoorde et al., 
2008; Velanova et al., 2008). Second, we expected an attention-based 
shift in recruitment of DLPFC and the parietal cortex from positive 
to negative performance  feedback with age. Third, we expected age 
differences in how learned probabilities would be associated with 
neural changes in feedback processing; in particular we predicted 
that feedback after exploring the alternative rule would be asso-
ciated with developmental differences. Because of the children’s 
putative focus on positive feedback, we expected that with increas-
ing age there would be a decrease in activity related to processing 
positive feedback and an increase in activity related to processing 
negative feedback following selection of the alternative rule.

Finally, our paradigm allowed us to investigate age differences 
in adaptive behavior, that is, whether participants stay or shift on 
subsequent trials based on the received feedback. Besides behav-
ioral analyses of sequential effects, we also employed exploratory 

sequential condition analyses to further understand the relation 
between neural activation and subsequent adjustment of behavior 
(see also Kerns et al., 2004).

MATERIALS AND METHODS
PARTICIPANTS
Sixty-seven healthy right-handed paid volunteers (35 female, 
32 male; ages 8–22 participated in the fMRI experiment. Age 
groups were based on adolescent development stage, result-
ing in three age groups: children (8- to 11-year-olds, n = 18; 9 
female), mid-adolescents (13- to 16-year-olds, n = 27; 13 female) 
and young adults (18- to 22-year-olds, n = 22; 13 female). A chi 
square analysis indicated that the gender distribution was similar 
across age groups, χ2(2) = 0.79, p = 0.67. All participants reported 
normal or corrected-to-normal vision and participants or their 
caregivers indicated an absence of neurological or psychiatric 
impairments. Participants and their caregivers (for minors) gave 
informed consent for the study and all procedures were approved 

FIGURE 1 | (A) At the beginning of each trial a centrally located cue was 
presented with a jittered interval between 500 and 6000 ms, followed by a 
combined presentation of a stimulus pair and a response window of max. 2500 
ms, after which feedback was presented for 1000 ms. After the feedback a short 

filler was presented, in the form of a blank screen, in order to compensate for 
different reaction times between trials and between participants (filler duration = 
2500 ms – reaction time). (B) Average accuracy on AB and CD trials per 
age group.
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by the  medical ethical committee of the Leiden University Medical 
Center. In accordance with Leiden University Medical Center 
 policy, all anatomical scans were reviewed and cleared by the 
radiology department following each scan. No anomalous fi nd-
ings were reported.

BEHAVIORAL ASSESSMENT
Parents fi lled out the Child Behavior Check List (CBCL, Achenbach, 
1991) for participants younger than 18 years, in order to screen for 
psychiatric conditions. All participants scored below clinical levels 
on all subscales of the CBCL, and had scores within 1 SD of the 
mean of a normative standardized sample.

Participants completed two subscales (similarities and block 
design) of either the Wechsler Adult Intelligence Scale (WAIS) 
or the Wechsler Intelligence Scale for Children (WISC) in order 
to obtain an estimate of their intelligence quotient (Wechsler, 
1991, 1997). There were no signifi cant differences in estimated IQ 
scores between the different age groups, F(2, 66) = 1.63, p = 0.20 
(see Table 1).

TASK PROCEDURE
Probabilistic learning task
The procedure for the probabilistic learning task (Frank et al., 2004) 
was as follows: The task consisted of two stimulus pairs (called 
AB and CD). The stimulus pairs consisted of pictures of everyday 
objects (e.g., a chair and a clock). Each trial started with the display 
of one of the two stimulus pairs and subsequently the participant 
had to choose one of the two stimuli (e.g., A or B), which were 
presented on the left or the right side of the screen. The stimulus 
pairs were presented in random order. Participants were instructed 
to choose either the left or the right stimulus by pressing a button 
with the index or middle fi nger of the right hand within a 2500 ms 
window, which was followed by a 1000 ms feedback display. The 
feedback display consisted of a green V-signal for positive feedback 
and a red cross for negative feedback. If no response was given 
within 2500 ms, the text “too slow” was presented on the screen. 
This occurred on less than 2% of the trials.

The feedback displayed was probabilistic. Choosing stimulus A led 
to positive feedback on 80% of AB trials, whereas choosing stimulus B 
led to positive feedback on 20% of these trials. The CD pair procedure 
was similar, but probability for positive feedback was lower; choosing 
stimulus C led to positive feedback on 70% of CD trials, whereas 
choosing stimulus D led to positive feedback on 30% in these trials. 
Thus, the correct choice in order to obtain most positive feedback 
was A or C, whereas the incorrect choice was B or D.

Participants were instructed to earn as many points as possible 
(as indicated by receiving a positive feedback signal), but were also 
informed that it would not be possible to receive positive feedback 
on every trial. Further, participants were informed that although 
stimuli sometimes appeared on the right side and sometimes on 
the left side, that laterality was an irrelevant dimension. After the 
instructions and right before the scanning session, the participants 
played 40 practice rounds on a computer in a quiet laboratory to 
ensure profi ciency on the task.

In total, the task in the scanner consisted of two blocks of 100 
trials each: 50 AB trials and 50 CD trials per block. To ensure that 
participants had to learn a new mapping in both task blocks, the 
fi rst and the second block consisted of different sets of pictures. 
The duration of each block was approximately 8.5 min. The 
stimuli were presented in pseudo-random order with a jittered 
interstimulus interval (min = 1000 ms, max = 6000 ms) optimized 
with OptSeq2 (surfer.nmr.mgh.harvard.edu/optseq/, Dale, 1999). 
During inter trial intervals, a central fi xation cross was shown.

DATA ACQUISITION
Participants were familiarized with the scanner environment on the 
day of the fMRI session through the use of a mock scanner, which 
simulated the sounds and environment of a real MRI scanner. Data 
were acquired using a 3.0T Philips Achieva scanner at the Leiden 
University Medical Center. Stimuli were projected onto a screen 
located at the head of the scanner bore and viewed by participants 
by means of a mirror mounted to the head coil assembly. First, a 
localizer scan was obtained for each participant. Subsequently, T2*-
weighted Echo-Planar Images (EPI) (TR = 2.2 s, TE = 30 ms, 80 × 80 
matrix, FOV = 220, 35 2.75 mm transverse slices with 0.28 mm gap) 
were obtained during two functional runs of 232 volumes each. The 
fi rst two scans were discarded to allow for equilibration of T1 satura-
tion effects. A high-resolution T1-weighted anatomical scan and a 
high-resolution T2-weighted matched-bandwidth high-resolution 
anatomical scan, with the same slice prescription as the EPIs, were 
obtained from each participant after the functional runs. Stimulus 
presentation and the timing of all stimuli and response events were 
acquired using E-Prime software. Head motion was restricted by 
using pillow and foam inserts that surrounded the head.

fMRI DATA ANALYSIS
Data were preprocessed using SPM5 (Wellcome Department of 
Cognitive Neurology, London). The functional time series were 
realigned to compensate for small head movements. Translational 
movement parameters never exceeded 1 voxel (<3 mm) in 
any direction for any subject or scan. There were no signifi -
cant differences in movement parameters between age groups 
F(2, 65) = 0.152, p = 0.85, (see Table 1). Functional volumes 
were spatially smoothed using a 6 mm full-width half-maximum 
Gaussian kernel. Functional volumes were spatially normalized to 
EPI templates. The normalization algorithm used a 12 parameter 
affi ne transformation together with a nonlinear transformation 
involving cosine basis functions and resampled the volumes to 
3 mm cubic voxels. The MNI305 template was used for visu-
alization and all results are reported in the MNI305 stereotaxic 
space (Cosoco et al., 1997), an approximation of Talairach space 
(Talairach and Tourneaux, 1988).

Table 1 | Group measures.

 IQ Reaction  Points Head motion Max

  times (ms)  avg (mm) (mm)

Adults 107(2.4) 811(44) 118(3) 0.08(0.01) 1.56

Adolescents 108(2.0) 773(39) 114(3) 0.08(0.01) 2.96

Children 111(2.6) 804(42) 107(6) 0.09(0.01) 2.85

Displays means per age group, standard errors between brackets. Final column 
represents the maximum head motion between two time points in each 
age group.
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As expected, the age (8–11 years, 13–16 years, 18–22 years) × 
probability (AB, CD) × task block (5) ANOVA showed that par-
ticipants learned to make more correct choices over time, as indi-
cated by a main effect of task block, F(4, 260) = 40.44, p < 0.001, 
ηp

2 0 038= .  (See Figure 1B). There was a signifi cant difference in 
accuracy between the two probabilities; participants were more 
accurate on the AB (80%–20%)  trials than the CD (70%–30%) tri-
als, F(1, 65) = 11.58, p < 0.001, ηp

2 0 151= .  Contrary to predictions, 
there were no age  differences in learning (age × task block interac-
tion, F(8, 260) = 1.38, p = 0.11, ηp

2 0 203= . ηp
2 0 041= . ), no age differ-

ences in accuracy on the two pairs (age × probability interaction, F(2, 
65) = 0.941, p = 0.393, ηp

2 0 028= . ), and no age × probability × task 
block interaction (p > 0.10). A similar ANOVA for reaction times 
revealed no differences for age,  probability, or task block (all 
p’s > 0.10) (see Table 1).

The task block factor allowed us to obtain the point in learning 
where participants reached a plateau. By selecting the task phase 
in which there were no longer differences in learning, we could 
examine how feedback was processed in the context of applying 
the correct (choosing the stimuli with a high probability of posi-
tive feedback) or alternative rule (choosing the stimuli with a low 
probability of positive feedback). Follow up comparisons showed 
that the last 60 trials were appropriate for this purpose, as per-
formance stabilized and participants showed probability match-
ing behavior (Shanks et al., 2002). That is, both the AB and the 
CD pairs showed no effects of block (learning) on accuracy in the 
last three blocks, F(2, 130) = 3.47, p = 0.08 and F(2, 130) = 1.81, 
p = 0.52, respectively. When we reanalyzed these last 60 trials, we 
still found a signifi cant effect of stimulus pair, F(1, 65) = 16.51, 
p < 0.001, ηp

2 0 203= . , and again no signifi cant interactions with 
age (all p’s > 0.3).

To summarize, the behavioral results showed that all partici-
pants learned to perform more accurately over time and they 
learned faster on the easier AB trials than the more diffi cult CD 
trials. Performance stabilized in the last 60 trials, at which point 
participants showed probability matching behavior (Shanks 
et al., 2002).

The fMRI analyses focused on the last 60 trials. In order to 
have enough trial numbers in each condition, we collapsed across 
probabilities in the analyses below. Thus, we differentiated between 
over-learned high probabilities (A and C collapsed) and alternative 
low probabilities (B and D trials collapsed). These will be referred 
to as the correct and alternative rules. Each of these rules could 
result in positive and negative feedback.

fMRI RESULTS POSITIVE VERSUS NEGATIVE FEEDBACK
Whole-brain comparisons across age groups
First, we identifi ed the neural correlates of feedback process-
ing by comparing the (positive feedback vs. negative feedback) 
contrast across all participants. This analysis revealed increased 
BOLD responses for positive feedback > negative feedback in 
 several regions including the left and right caudate, left DLPFC 
and left parietal cortex (see Figure 2A). The opposite contrast (neg-
ative > positive feedback) resulted in increased activation in the 
dACC. The coordinates for these comparisons (positive  feedback 
vs. negative feedback) are reported in Table 2.

Statistical analyses were performed on individual  participants’ 
data using the general linear model in SPM5. The fMRI time 
series data were modeled by a series of events convolved with a 
canonical haemodynamic response function (HRF). The pres-
entation of the feedback screen was modeled as 0-duration 
events. The stimuli and responses were not modeled separately 
as these occurred in one prior or overlapping EPI images as 
feedback presentation.

In the model, feedback was further subdivided into correct vs. 
alternative rule and positive vs. negative feedback. These trial func-
tions were used as covariates in a general linear model, along with a 
basic set of cosine functions that high-pass fi ltered the data, and a 
covariate for run effects. The least-squares parameter estimates of 
height of the best-fi tting canonical HRF for each condition were used 
in pair-wise contrasts. The resulting contrast images, computed on a 
participant-by-participant basis, were submitted to group analyses. 
At the group level, contrasts between conditions were computed by 
performing one-tailed t-tests on these images, treating participants 
as a random effect. We further performed voxelwise ANOVAs to 
identify regions that showed age-related differences in relation to 
feedback processing. We tested for linear increases (−1 0 1) and 
decreases (1 0 −1) in the contrasts specifi ed below.

We applied AlphaSim (Ward, 2000) to calculate the appropriate 
threshold signifi cance level and cluster size for the whole-brain 
analyses. A signifi cance threshold of p < 0.05, corrected for multiple 
comparisons was calculated by performing 10.000 Monte Carlo 
simulations in AlphaSim resulting in an uncorrected threshold 
of p < 0.001, requiring a minimum of 24 voxels in a cluster. This 
threshold was used for all whole-brain analyses.

REGION OF INTEREST ANALYSES
We used the Marsbar toolbox for use with SPM5 (http://marsbar.
sourceforge.net, Brett et al., 2002) to perform Region of Interest 
(ROI) analyses to further characterize patterns of activation. We 
created ROIs of the regions that were identifi ed in the functional 
mask of whole-brain analyses. The masks used to generate func-
tional ROIs was based on the general (positive vs. negative feedback) 
contrasts (p < 0.001, > 24 voxels) across all participants, which was 
unbiased for effects of probability rule or age. Because this statis-
tical image spanned several distinct functional brain regions in 
the striatum, we used Marsbar anatomical masks for the caudate 
nucleus to further specify our ROIs.

For all ROI analyses, effects were considered signifi cant at an α 
of 0.0125, based on Bonferroni correction for multiple compari-
sons, p = 0.05/4 ROIs (caudate, DLPFC, parietal cortex and dACC), 
unless reported otherwise.

RESULTS
BEHAVIOR
Performance
To investigate the age differences in learning performance for the 
different stimulus pairs we calculated the percentage of correct 
choices (choosing the high probability stimulus) per block of 20 
trials for each participant, resulting in fi ve blocks in total. Because 
the two runs in the scanner consisted of new stimulus pairs, the 
two runs were collapsed.

http://marsbar.sourceforge.net
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fMRI REGION OF INTEREST RESULTS FOR FEEDBACK × RULE × AGE 
GROUP INTERACTIONS
Next, we tested for age differences and rule sensitivity in these regions 
by performing region of interest (ROI) analyses. The ROI analyses 
were restricted to the four a priori defi ned regions which emerged in 
the (positive vs. negative) contrast across participants: bilateral cau-
date, left DLPFC, left parietal cortex and dACC. In order to investigate 
whether there were age differences in how the statistical regularities 
learned by the participants had an effect on how feedback was proc-
essed we performed 3 × 2 × 2 ANOVAs testing for the interaction 
between valence (positive vs. negative) and rule (correct vs. alterna-
tive) as within-subjects factors and age (children, adolescents, adults) 
as the between-subjects factor for each ROI (see Figure 2B).

Left DLPFC
The (age group × valence × rule) ANOVA for left DLPFC resulted 
in an interaction between valence and rule, F(2, 64) = 6.32, p < 0.01, 
showing that left DLPFC was more active for both negative and posi-
tive feedback after choosing the alternative rule compared to the 
correct rule, but this difference was larger for positive than negative 
feedback. In addition, there was an interaction between rule (AC vs 
BD) and age group, F(2, 64) = 3.87, p = 0.02, and a three-way interac-
tion between rule, valence, and age group, F(2, 64) = 6.77, p < 0.01.

As can be seen in Figure 2B, children and adolescents showed 
more activity for positive feedback after choosing the alterna-
tive rule compared to the correct rule (t(17) = 2.64, p < 0.01 and 
t(26) = 3.18, p < 0.004, respectively), whereas this difference was 
not present in adults. In addition, adults and adolescents showed 
more activity for negative feedback after choosing the alternative 
rule compared to the correct rule, (t(21) = −2.49, p = 0.02 and 
t(23) = −2.81, p < 0.01 respectively), but this difference was not 
present in children.

Left parietal cortex
The (age group × valence × rule) ANOVA for the left parietal cortex 
revealed a similar three-way interaction which approached sig-
nifi cance, F(2, 64) = 3.16, p = 0.05 (see Figure 2B). Although the 
pattern of activation for the different conditions in the left parietal 
cortex appears similar to the pattern for left DLFPC, it did not 
survive Bonferroni correction and none of the post hoc comparisons 
resulted in signifi cant effects.

dACC
The (age group × valence × rule) ANOVA for the dACC resulted 
in a rule × valence interaction, F(2, 64) = 14.14, p < 0.001, 
an age × valence interaction, F(2, 64) = 4.11, p < 0.01, and 

FIGURE 2 | (A) Regions from the (positive vs. negative feedback) contrasts 
across all participants (B) Parameter estimates and standard errors for positive 
and negative feedback that followed either the correct or the alternative rule 

displayed for each age group in left DLPFC, left parietal cortex, dACC and left 
caudate. Signifi cant differences between brain activity in two conditions are 
indicated with an asterisk (*Bonferroni corrected).

Table 2 | Brain Regions revealed by whole-brain contrasts.

Anatomical region L/R voxel  Z MNI

  volume  coordinates

    x y z

POSITIVE > NEGATIVE 

Striatum (ventral and dorsal) L/R 774 7.49 −6 12 −3

Dorsolateral prefrontal cortex L 71 4.61 −27 24 51

Superior parietal cortex L 170 4.23 −30 −75 48

Precuneus L/R 137 4.07 −3 −36 33

Ventral medial PFC L/R 26 4.03 3 54 −12

Visual cortex L/R 332 4.50 27 −93 −9

NEGATIVE > POSITIVE 

Dorsal anterior cingulate cortex L/R 63 4.43 9 21 36

MNI coordinators for main effects, peak voxels reported at p < 0.001, at least 24 
contiguous voxels (SVC).
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an age × rule interaction, F(2, 64) = 4.81, p = 0.03, but the 
three-way interaction failed to reach signifi cance F(2, 64) = 0.28, 
p = 0.75.

As can be seen in Figure 2B, adults showed more activation 
in dACC after negative feedback than after positive feedback, 
F(1, 21) = 8.25, p < 0.01, but this was not found for the younger 
age groups. Children and adolescence, in contrast, showed more 
dACC activation after positive feedback for the alternative rule 
relative to the correct rule (t(17) = 2.51, p < 0.01 and t(26) = 3.44, 
p < 0.01 respectively). In addition, adults and adolescents showed 
more activity for negative feedback after choosing the alternative 
rule compared to the correct rule, (t(21) = −2.89, p < 0.01 and 
t(26) = −3.32, p < 0.003 respectively), but this difference was not 
present in children.

Left and right caudate
Finally, we performed an (age group × valence × rule) ANOVA 
for the left caudate nucleus. This analyses did not reveal any age 
effects, but a main effect for feedback, F(1, 64) = 33.17, p < 0.001, 
and a feedback × rule interaction F(2, 64) = 17.21, p < 0.01. All 
age groups showed more activity for the alternative (low prob-
ability) compared to the correct rule (high probability) positive 
feedback (all p’s < 0.001), but there were no additional main 
or interaction effects (Figure 2B). Similar analyses for right 
caudate yielded the same results; a main effect of feedback, 
F(1, 64) = 28.16, p < 0.005, and a feedback × rule interaction 
F(2, 64) = 19.33, p < 0.01.

WIN STAY – LOSE SHIFT STRATEGIES: BEHAVIOR AND BRAIN ANALYSES
Finally, to further investigate differences in feedback processing 
we explored developmental changes in decision-making strate-
gies on the behavioral and neural level. In order to investigate the 
strategy used on the task we examined how often participants 
chose either the same stimulus after positive feedback (win-stay) 
or the other stimulus after negative feedback (lose-shift). For this 
set of analyses we further broke down the trials based on the 
subsequent choice when presented with the same stimulus pair; 
win-stay, win-shift, lose-stay and lose-shift. The factor ‘win-stay’ 
was computed by calculating the proportion of choice repetitions 
following positive feedback as a function of the total number 
of positive feedback events. Likewise, the factor ‘lose-shift’ was 
computed by calculating the proportion of choice shifts following 
negative feedback as a function of the total number of negative 
feedback events. Because previous analyses revealed that positive 
and negative feedback were processed differently dependent on 
rule type we analyzed the sequential effects for the correct and 
alternative rule separately.

Behavior
For correct rules, the univariate ANOVAs with age group as the 
between-subjects factor revealed a signifi cant age difference in 
lose-shift strategies, F(2, 64) = 4.04, p < 0.02 as well as in win-
stay strategies, F(2, 64) = 4.51, p < 0.02 (see Figure 3A). These 
results illustrate that adults showed more optimizing behavior 
than adolescents and children; they stayed more often with the 
correct rule after positive feedback and shifted less often after 
negative feedback.

For the alternative rules, the univariate ANOVAs revealed no 
age differences for win-stay strategies, F(2, 64) = 0.85, p = 0.43, 
but there was a signifi cant age difference in lose-shift strategies, 
F(2, 64) = 3.91, p < 0.03. In the latter case, children showed less 
optimal behavior compared to the adolescents and adults; surpris-
ingly, they stayed more often with the alternative (incorrect) rule 
after negative feedback.

ROI analyses
In order to explore the relation between brain activity and behav-
ior on the subsequent trial, we compared brain activity after posi-
tive and negative feedback that resulted in staying or shifting 
for the two rule types separately. We explored the same ROIs as 
reported above. These analyses revealed signifi cant shift and age 
effects only in the dACC and left DLPFC, but not in the caudate 
or the parietal cortex. In general, the ANOVAs showed that in 
adults, dACC and DLPFC were more active when participants 
shifted on the next trial. There were some differences in signifi -
cance levels, but overall this effect seemed generally independent 
of feedback valence or rule. The analyses are described in more 
detail below.

The dACC showed the strongest relation between brain activ-
ity and subsequent behavioral change. When applying the correct 
rule, the shift × age group ANOVA for positive feedback revealed 
a main effect of shifting, F(1, 65) = 6.27, p < 0.01 but no interac-
tion with age, F(2, 64) = 2.29, p = 0.11 (see Figure 3B). There was 
more dACC activity when shifting after positive feedback. The same 
ANOVA for negative feedback revealed an age × shift interaction, 
F(2, 64) = 3.62, p = 0.03. Post hoc comparisons revealed that there 
was more dACC activity when shifting compared to staying after 
negative feedback for adults (t(21) = −2.76, p < 0.01) but not for 
the adolescents and children (both p’s > 0.1).

When applying the alternative rule, the shift × age group ANOVA 
for positive feedback revealed no signifi cant effects of age or shift-
ing. However, the same ANOVA for negative feedback revealed an 
age × shift interaction (F(2, 63) = 5.31, p < 0.01). Post hoc com-
parisons revealed that there was more dACC activity when shifting 
after negative feedback for adults (t(21) = −3.01, p < 0.01) but not 
for adolescents and children (both p’s > 0.2).

Finally, the pattern of activation in the left DLPFC appeared 
similar to that of the dACC (Figure S2 in Supplementary 
Material). The shift × age ANOVAs for the correct rule resulted 
in signifi cant shift × age interactions for both positive and neg-
ative feedback (F(2, 63) = 4.46, p = 0.03 and F(2, 64) = 4.91, 
p = 0.02, respectively). Post hoc test revealed that there was 
more left DLPFC activity when shifting on the next trial after 
positive and negative feedback, but this was only signifi cant for 
the adults (t(21) = −2.54, p < 0.01 and t(21) = −2.32, p = 0.03, 
respectively). There were no signifi cant effects for the alternative 
rule (all p’s > 0.2).

DISCUSSION
The goal of this study was to examine the neural developmental 
changes when processing positive and negative feedback signals 
in a probabilistic decision-making task. As predicted, all partici-
pants learned to choose the correct rules (high probability stimuli 
A and C) more often than the alternative rules (low probability 
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stimuli B and D) (Frank et al., 2004; Klein et al., 2007). After 
approximately 40 trials, participants adapted a performance pattern 
consistent with ‘probability matching behavior’, and this behavioral 
phase was the focus of our further analyses.

Behavioral analyses showed two important patterns: (1) 
 probability matching behavior occurred in all age groups, but 
there were no age differences in overall learning rate, and (2) task 
adaptive win-stay, lose-shift strategies were observed, but age 

FIGURE 3 | (A) Percentages of win-stay and lose-shift choices per age group 
and rule type, error bars represent standard error. (B) Parameter estimates and 
standard errors for positive and negative feedback that followed by either staying 

or shifting, displayed for each age group and rule type separately. Signifi cant 
differences between brain activity in two conditions are indicated with an 
asterisk (*Bonferroni corrected).
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Finally, the caudate nucleus also showed sensitivity to feedback 
and rule type, but this region was more active after positive com-
pared to negative feedback when participants chose the alternative 
rule. Given that this effect was specifi c for positive feedback, and 
that the probability for positive feedback for the alternative rule 
was low, the signal in the caudate could refl ect a positive prediction 
error; i.e., signaling that the outcome is better than predicted (for 
review see Schultz, 2007).

Together, analysis of the adult activation pattern confi rms prior 
fi ndings showing that DLPFC and dACC are sensitive to negative 
feedback and the caudate is sensitive to positive feedback, but the 
fi ndings further elucidate that these neural responses are dependent 
on the extent to which these feedback signals provide a learning 
signal of future performance. That is, DLPFC and caudate responses 
were more pronounced after selecting the incorrect rule which 
had a low probability of resulting in positive feedback, but which 
may have been important to explore. In contrast, when applying 
over-learned high probability rules, DLPFC and caudate were less 
involved, possibly because the informative value was smaller.

FEEDBACK PROCESSING: DEVELOPMENTAL COMPARISONS
The neural activation patterns described above were differentially 
sensitive to age modulations. The fi rst notable fi nding is that of dif-
ferential activation patterns in the DLPFC. All participants, regard-
less of age, showed increased recruitment of DLPFC when choosing 
the alternative rule compared to the correct rule. However, children, 
but not adults, showed more activation in DLPFC after positive feed-
back when choosing the alternative rule. In contrast, adults, but not 
children, showed more activation in DLPFC after negative feedback 
when choosing the alternative rule. Adolescents seemed to be in a 
transition phase, because their neural response to positive feedback 
was similar to that observed in children, but their neural response to 
negative feedback was similar to that observed in adults. Thus, con-
sistent with prior studies, these developmental differences indicate a 
shift from focus on positive to a focus on negative  feedback with age 
(Somsen, 2007; Crone et al., 2008; van Duijvenvoorde et al., 2008), 
which appears to continue across adolescence. In addition, the cur-
rent results extend previous fi ndings by showing that  developmental 
differences in neural responses to feedback are not related to valence 
per se, but suggest an age-related change in processing learning sig-
nals with different informative value.

In contrast, for all age groups the caudate nucleus was more active 
for positive compared to negative feedback, in particular when par-
ticipants chose the alternative rule. This fi nding indicates that part of 
the feedback processing network, which is implicated in processing 
statistical regularities of reward (Schultz, 2007) matures already at an 
early age, whereas the part of the network that is involved in processing 
negative feedback and the subsequent control of behavior has a more 
protracted developmental time course. These fi ndings are consistent 
with prior reports using cognitive tasks, as these studies have also 
reported early maturation of subcortical regions and protracted devel-
opment of cortical brain areas (Casey et al., 2004; van Duijvenvoorde 
et al., 2008; Velanova et al., 2008). It should be noted that other devel-
opmental studies have reported increased sensitivity of the striatum 
in early adolescence, however, these studies have employed paradigms 
with a more affective content, such as gambling tasks with real mon-
etary rewards or emotion recognition (Ernst et al., 2005; Galvan et al., 

 differences in adaptive behavior indicated more task-adaptive 
optimizing  behavior in adults. These task and age differences in 
decision- making strategy were paralleled by changes in functional 
brain activity; (1) neural responses in DLPFC, dACC, and caudate 
were sensitive to rule × feedback interactions and an age-related 
difference was observed in DLPFC and dACC, and (2) activity in 
DLPFC and dACC predicted behavioral change on subsequent tri-
als more strongly in adults than in adolescents and children. These 
behavioral data and their neural correlates provide important new 
insights in feedback processing in general and across development. 
The discussion will be organized according to these themes.

FEEDBACK PROCESSING IN ADULTS
Our analysis of positive and negative feedback processing in a 
probabilistic environment demonstrated that feedback-related 
activity in the DLPFC, dACC and caudate was dependent on 
valence and information value. We started out with a general 
whole-brain comparison for positive versus negative feedback 
and used ROI analyses to explore the areas identifi ed in this con-
trast. This analysis revealed that especially left DLPFC, dACC and 
bilateral caudate were sensitive to feedback × rule context interac-
tions. Before interpreting age differences in these activation pat-
terns, we start out with the interpretation of feedback sensitivity 
observed in adults, which will set the stage for interpreting the 
developmental effects.

When exploring the data for adults separately, the results 
showed increased recruitment of DLPFC after receiving negative 
feedback following the alternative compared to the correct rule. 
Given that negative feedback after choosing the alternative, but 
not the correct, rule indicates the need for a switch in behavior, the 
adult fi ndings are consistent with previous studies demonstrating 
negative feedback-related sensitivity in DLPFC for feedback that 
is important for subsequent behavioral adjustment (Kerns, 2006; 
van Duijvenvoorde et al., 2008; Zanolie et al., 2008) and not for 
negative feedback per se.

Besides DLPFC, the parietal cortex has previously been implicated 
in feedback processing (Crone et al., 2008, van Duijvenvoorde et al., 
2008) and implementing cognitive control as part of the fronto-
parietal network (Brass et al., 2005; Bunge et al., 2002; Dosenbach 
et al., 2008). In support of this hypothesis our whole-brain analy-
ses revealed that the left superior parietal cortex was involved in 
feedback processing. However, in contrast with previous studies 
(van Duijvenvoorde et al., 2008), our subsequent post hoc analyses 
could not confi rm a strong contribution of the superior parietal 
cortex. Possibly, the parietal cortex was more engaged in prior studies 
because these involved trial-to-trial learning, whereas in the current 
study we investigated feedback processing when rules were already 
learned. Future research is necessary to elucidate the role of the supe-
rior parietal cortex in feedback processing in relation to learning.

The analyses of dACC revealed a very similar activation pattern 
as DLPFC, however the dACC activation pattern in adults was more 
supportive of a general increase in activity after negative feedback 
regardless of rule type. Possibly, this fi nding indicates that, at least 
in adults, the dACC has a more general role in processing negative 
feedback; both in terms of detecting general confl ict (Brown and 
Braver, 2005) and signaling the need for behavior change (Holroyd 
and Coles, 2008; Rushworth, 2008).
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 adolescents, but only when applying the correct rule. We failed to 
fi nd similar  relations in children, which may indicate that the neural 
mechanisms that facilitate future behavioral adjustment are still 
immature or that they employed different strategies to perform the 
task. These interpretations are consistent with an ERP study showing 
increased error related negativity across adolescence (Ladouceur 
et al., 2007). Furthermore, the same study showed that only in adults 
the ERN amplitude was related to task performance.

The current study is limited by the relatively small number of trials 
for some of the contrasts examining the neural correlates of shifting 
behavior. Future studies should make use of tasks that are optimized 
for studying these developmental differences in more detail.

In addition, a challenging direction for future research will be 
to investigate the developmental differences in the learning phase. 
The combined use of computational reinforcement learning models 
(Klein et al., 2007) with imaging techniques could be a promising 
endeavor to parse out the developmental changes in different phases 
of learning (e.g. learning rate) and their neural correlates. These 
methods could be combined with trial-to-trial data categorization 
to understand how the observed developmental change in sensitiv-
ity from positive to negative feedback hinders or facilitates learning 
locally versus oriented towards future goals.

CONCLUSION
Taken together, the current fi ndings confi rm that DLPFC, dACC 
and caudate are important for probabilistic feedback processing, 
and show that they have dissociable roles as refl ected in differential 
sensitivity to feedback valence and rule types. The DLPFC and 
dACC were sensitive to information value in response to negative 
feedback, but the caudate was sensitive to information value in 
response to positive feedback. These fi ndings are consistent with 
previously suggested computational models of feedback learning 
(Cohen, 2008; Frank and Kong, 2008).

The results of this study replicate the previously reported devel-
opmental shift in sensitivity from positive to negative feedback 
as reflected in neural activation in the DLPFC, with a transition 
phase in adolescence. Using probabilistic feedback stimuli, we could 
dissociate between two competing hypotheses with respect to this 
developmental change. The results confi rm the hypothesis that this 
shift is associated with different attention focus on learning sig-
nals and disconfi rm the hypothesis that this shift refl ects a simple 
valence effect. Further understanding of the age related changes in 
strategy differences, and how to infl uence decision-making strate-
gies by guiding attention regulation, promise to be useful sources 
to improve learning behavior of children and adolescents.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at 
http://www.frontiersin.org/humanneuroscience/paper/10.3389/
neuro.09/052.2009/

2006; McClure-Tone et al., 2008; van Leijenhorst et al., 2009). In future 
studies, it will be of interest to examine whether the caudate activa-
tion can be modulated by the use of affective task modulations when 
learning rules or processing performance feedback.

ADAPTIVE BEHAVIOR AND BRAIN ACTIVATION ACROSS DEVELOPMENT
One of the challenging questions for future studies is how the  neural 
activation is associated with trial-to-trial learning. For example, 
we did not observe age differences in general learning perform-
ance, despite differences in neural activation. This was unexpected, 
and again demonstrates that differences in neural activation can 
be present without differences in observable behavior (Ladouceur 
et al., 2004). However, consistent with prior studies, the sequential 
analyses revealed that with age, participants became better at using 
the negative feedback signals to adjust their behavior on subsequent 
trials (Crone and van der Molen, 2004). As expected, when receiv-
ing positive feedback after having applied the correct rule, partici-
pants were more likely to stay and select the same stimulus on the 
subsequent trial. Likewise, when receiving negative feedback after 
having applied the incorrect alternative rule, participants were more 
likely to shift and select the correct stimulus on the subsequent trial. 
Overall, adults appeared better at optimizing than adolescents, and 
adolescents performed better than children. Based on these fi nd-
ings, in combination with the developmental differences in neural 
activation, the data are supportive of a linear increase across ado-
lescence. Although these fi ndings differ from earlier reports which 
have showed larger differences in early adolescence than in later 
adolescence (e.g. Ladouceur et al. 2004) the fi ndings are consistent 
with prior fMRI results showing late changes in brain activation and 
behavior (e.g. Scherf et al., 2006; van Duijvenvoorde et al., 2008).

Intriguingly, even though children were more likely than adults 
to shift after receiving negative feedback when applying the cor-
rect rule, they were also more likely to stay after receiving negative 
feedback when applying the incorrect alternative rule. The reason 
for this behavioral pattern is still unclear, but it is possible that chil-
dren waited with shifting when applying the incorrect alternative 
rule until they received positive feedback (20%). Future research 
should use task manipulations that allow for further investigation 
of this hypothesis.

We performed exploratory analyses to investigate the relation 
between brain activity and win-stay, lose-shift behavior, although 
it should be noted that these analyses are preliminary as our study 
design was not optimized to test for these differences. The analyses 
on the ROIs identifi ed in the main analyses revealed that, consist-
ent with prior research, dACC and left DLPFC activity predicted 
behavioral adjustment on the subsequent trial in adults (Kerns et al., 
2004; Jocham et al., 2009). However, this pattern was observed for 
both rule types and appeared independent of feedback valence. 
Possibly, the dACC and left DLPFC were important for trial-by-trial 
 adjustment (Kerns et al., 2004). We found a similar pattern in 

REFERENCES
Achenbach, T. M. (1991). Manual for 

the Child Behavior Checklist 4-18/
and 1991 profile. Burlington, VT, 
University of Vermont, Department 
of Psychiatry.

Botvinick, M. M., Braver, T. S., Barch, D. M., 
Carter, C. S., and Cohen, J. D. (2001). 
Conflict monitoring and cognitive 
control. Psychol. Rev. 108, 624–652.

Brass, M., Derrfuss, J., Forstmann, B., and 
von Cramon, D. Y. (2005). The role of the 

inferior frontal junction area in cognitive 
control. Trends Cogn. Sci. 9, 314–316.

Brett, M. C., Anton, J. -L., Valabregue, R., 
and Poline, J. -B. (2002). Region of 
interest analysis using an spm toolbox. 
Neuroimage, 16, 497. 

Brown J. W., and Braver T. S. (2005). 
Learned predictions of error  likelihood 
in the anterior cingulate cortex. Science 
307, 1118–1121.

Bunge, S. A., Hazeltine, E., Scanlon, M. 
D., Rosen, A. C., and Gabrieli, J. D. 

http://www.frontiersin.org/humanneuroscience/paper/10.3389/neuro.09/052.2009


Frontiers in Human Neuroscience www.frontiersin.org December 2009 | Volume 3 | Article 52 | 11

van den Bos et al. Neurocognitive development of feedback processing

van Leijenhorst, L., Zanolie, K., Van Meel, 
C. S., Westenberg, P. M., Rombouts, 
S. A., and Crone, E. A. (2009). What 
motivates the adolescent? Brain 
regions mediating reward sensitiv-
ity across adolescence. Cereb. Cortex. 
bhp078.

Velanova, K., Wheeler, M. E., and Luna, 
B. (2008). Maturational changes in 
anterior cingulate and frontoparietal 
recruitment support the development 
of error processing and inhibitory 
control. Cereb. Cortex 18, 2505–2522.

Ward, B. D. (2000). Simultaneous infer-
ence for fmri data. Available at: http://
afni.Nimh.Nih.Gov/afni/docpdf/
alphasim.Pdf, (last accessed 5 janu-
ary 2009).

Wechsler, D. (1991). Wechsler Intel-
ligence Scale for Children-Third 
Edition. Manual. San Antonio, The 
Psychological Corporation.

Wechsler, D. (1997). Wechsler Adult 
Intelligence Scale—Third Edition. 
Administration and Scoring Manual. 
San Antonio, The Psychological 
Corporation.

Yeung, N., Botvinick, M. M., and Cohen, 
J. D. (2004). The neural basis of error 
detection: confl ict monitoring and the 
error-related negativity. Psychol. Rev. 
111, 931–959.

Zanolie, K., Van Leijenhorst, L., Rombouts, 
S. A., and Crone, E. A. (2008). Separable 
neural mechanisms contribute to feed-
back processing in a rule-learning task. 
Neuropsychologia 46, 117–126.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential confl ict 
of interest.

Received: 21 August 2009; paper pending 
published: 12 September 2009; accepted: 
03 November 2009; published online: 01 
December 2009.
Citation: van den Bos W, Güroğlu B, van 
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