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of stressful events for humans. We purposefully narrow our focus to 
provide a richer discussion of the amygdala and hippocampus and 
how developmental timing interacts with environmental infl uences. 
Because the systemic output of the HPA axis, glucocorticoids (corti-
sol in humans), can pass through the blood-brain barrier, the HPA 
axis is one of the major pathways through which the effects of stress 
can shape brain development. The amygdala and hippocampus are 
rich with receptors for cortisol and are therefore major targets of the 
HPA axis. Thus, we see narrowing our review to the amygdala and 
hippocampus as one reasonable way to limit the scope of the neural 
effects of adversity that we examine here. We will describe some 
specifi c examples of when amygdala and hippocampal development 
are disrupted by negative psychosocial environments. By describ-
ing these associations, we hope to distill potential mechanisms by 
which exposure to adversity could become biologically embedded 
resulting in increased susceptibility to mental illness. Finally we 
describe potential future directions for research. Throughout the 
review, we will be making the argument that the effects of adversity 
will vary as a function of developmental timing, such that regionally 
defi ned effects will depend on the age at which exposures occurred 
and when neural outcomes were measured.

This focus on timing is consistent with the notion of sensi-
tive periods identifi ed in other developmental processes, such 
as vision or language, where developmental timing modifi es the 
environment’s impact on neural development. A fundamental 
precept of developmental studies is that the timing of a particu-
lar exposure matters for the expression of a phenotype. Not all 
neural regions follow the same developmental trajectory (Giedd 
et al., 1996; Bourgeois, 1997; Huttenlocher and Dabholkar, 1997). 
For example, primary sensory cortex such as V1 (visual cortex) 
appears to undergo important structural changes in the fi rst year 
leading to life-long differences in visual perception, whereas other 
cortical regions (e.g., prefrontal cortex) continue to show struc-
tural development into adulthood. In the case of binocular vision 

INTRODUCTION
Early adverse social environments such as abuse and neglect have 
been associated with a wide range of negative outcomes, including a 
dramatically increased risk for a variety of mental disorders (Breslau 
et al., 1999; Brewin et al., 2000). These often include, but are not 
limited to, anxiety, depression, ADHD, substance use disorders, and 
tobacco dependence. The link between childhood trauma and adult 
risk for mental health disorders has been described in a variety of 
ways but fundamentally, this link is biological in nature. These nega-
tive social environments become biologically embedded as changes 
in neural structure and function and, ultimately, the behaviors that 
lead to mental illness. Although initial susceptibilities for exposure 
to adversity may contribute to this association, pressures from the 
environment can alter neural development leading to negative 
outcomes. Describing the mechanisms by which adverse experi-
ences during childhood lead to changes in neural development is 
an important step for understanding both brain development and 
ultimately for developing tools for clinical intervention.

In this review we will attempt to link the timing of negative 
childhood psychosocial stress exposure to differences in neural 
structure and function during childhood and adolescence. We 
restrict this review to empirical articles that address psychosocial 
trauma of abuse and neglect. A paper by Raizada & Kishiyama 
(this issue) reviews the literature on cognitive deprivation (e.g., low 
socio- economic status of the family), and therefore, this manuscript 
will not focus on early adversity of that type. We further limit our 
review to the neural development of two subcortical structures: 
the hippocampus and amygdala. We focus on these two regions 
because, based on a large adult human and non-human animal 
literature, we would expect signifi cant environmental infl uence on 
these structures. The hippocampus and amygdala are important 
for socio-emotional functioning throughout development and 
are closely linked with the activity of the hypothalamic pituitary 
adrenocortical (HPA) axis, a signifi cant neuroendocrine mediator 
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1997). In contrast, glucocorticoid occupation of amygdala receptors 
can have a facilitating effect on the activity of the HPA axis, often 
increasing CRH production within the amygdala. Therefore, circu-
lating glucocorticoids can have contrasting effects in the amygdala 
and hippocampus, and these two structures can play contrasting 
roles in the activity of the HPA axis.

As discussed in Gunnar and Quevedo (2007), stress is a psycho-
logical condition in which the individual experiences challenges 
to their well-being that overwhelm their resources for coping. 
Although this construct can be studied behaviorally and biologi-
cally (Dantzer, 1991), behavioral distress does not always mirror 
physiological stress reactions. For example, infants’ physiological 
(cortisol) response to inoculation is not perfectly correlated with 
amount or intensity of crying (Gunnar et al., 1989). However, 
elevated HPA axis activity can provide one biological index of 
stress, and importantly, one that can shape brain development.

There is much evidence that children who are exposed to early 
adverse experiences, such as poverty (Lupien et al., 2000), abuse 
(Tarullo and Gunnar, 2006), or orphanage rearing (Gunnar et al., 
2001; Dobrova-Krol et al., 2008), have increased stress reactiv-
ity and corresponding increased GR exposure. Adverse caregiv-
ing is a type of stress also used in animal models. These models 
provide the opportunity, usually not available in humans, for 
examination of stress effects at the cellular level. A variety of 
stressors (Bonaz and Rivest, 1998), as well as administration of 
high levels of glucocorticoids (Makino et al., 1994a), result in 
increased mRNA for CRH receptors hypothalamus and amygdala. 
This upregulation can lead to an increased fear response and/or 
a lowered threshold for the fear response to occur. High levels 
of glucocorticoids will also result in CRH mRNA level increases 
in the amygdala (Makino et al., 1994a), thereby potentiating the 
fear response. The amygdala has been understood to be func-
tionally dormant in the rat neonatal period. However, signifi cant 
stressors and/or GR administration can precociously activate the 
amygdala (Moriceau et al., 2004), indicating that the amygdala is 
biologically prepared to be activated early in life under the right 
conditions. In addition, CRH receptors are maximally expressed 
in the amygdala and hippocampus early in development (reviewed 
in Baram and Hatalski, 1998), a fi nding that may provide insight 
into why young animals are especially vulnerable to adversity. 
Moreover, high elevations of glucocorticoids can downregulate 
hippocampal receptors that normally aid in the negative feedback 
to the HPA axis (van Haarst et al., 1997), thereby resulting in a 
dysregulated axis. The process of glucocorticoids increasing hip-
pocampal receptors occurs throughout development, including 
early in life (Vazquez, 1998). We will discuss in greater detail 
below how the products of the HPA axis specifi cally affects both 
the hippocampus and the amygdala.

HIPPOCAMPUS
The hippocampus has been implicated in learning and memory in 
adults and children. In adults, when the hippocampus is removed 
surgically, encoding of long term memories is disrupted result-
ing in anterograde amnesia: new memories cannot be formed 
(Markowitsch and Pritzel, 1985). Initial fi ndings such as these 
in neuropsychological research were the result of bilateral hip-
pocampal resection as a treatment for epilepsy (including the 

or phoneme perception, timing of environmental exposure and 
timing of measurement is critical for observation of normal per-
ceptual development (Hubel and Wiesel, 1970; Kuhl, 2004). These 
are powerful examples of the concept of a developmental sensitive 
period, which are periods of life when a system exhibits increased 
plasticity and therefore, susceptibility, to environmental infl uences. 
Although the effects of sensitive periods are observed in behavior, 
they are properties of neural circuits (see Knudsen, 2004). Central 
to this concept is the notion that the process of development itself 
may increase the system’s likelihood of being shaped by the envi-
ronment (Casey et al., 2000). These periods often coincide with 
rapid development of a brain system, and therefore, individual 
neural systems will have their own sensitive periods (Lupien et al., 
2009). Once environmental exposure occurs, it modifi es the archi-
tecture of the circuit in such a way that certain patterns of future 
activity are preferred (Knudsen, 2004). Therefore, knowing the 
developmental timing of environmental exposures is critical when 
evaluating its effects. Beyond the timing of exposure, the tim-
ing of measurement can infl uence how we interpret the effects of 
environmental exposures, like adversity. Because compensatory 
neural mechanisms, which were not present during the stressor, 
may emerge once the adverse experience has terminated, timing 
should be well-characterized to disambiguate the effects of stress 
versus the effects of recovery. Moreover, as will be discussed below, 
the effects of an environmental exposure may not emerge for some 
time after the termination of the exposure. In the case of adversity 
we predict that the timing of exposure (i.e., age at which exposure 
occurred) and the timing of measurement (time since stressor) 
will matter for neural structure and function. Therefore, we will 
present human developmental neuroimaging studies to support 
this hypothesis and use fi ndings from the animal literature to pro-
vide some description of mechanisms for developmental timing 
(literature summarized in Table 1).

PSYCHOSOCIAL STRESS EXPOSURE: HPA AXIS FUNCTION
Psychosocial stress can adversely impact brain development, and 
the literature on stress suggests that these changes occur largely 
through the HPA axis (reviewed in Loman and Gunnar, 2010). 
We will begin by briefl y reviewing the structure of the HPA axis. A 
stressor suffi ciently strong will elicit a full stress response (Kemeny, 
2009) which includes activation of both the sympathetic nervous 
system and activation of the HPA axis. The latter, which produces 
a longer-term response to a stressor than the former (hours rather 
than seconds to minutes), begins with signals from the amygdala 
(reviewed in Herman and Cullinan, 1997), which lead to peripheral 
(systemic) glucocorticoid increases via hypothalamus, pituitary, 
and adrenal gland activity and increases in corticotropin-releasing 
hormone in the brain (CRH; including in the amygdala; Makino 
et al., 1994a). Eventually peripheral glucocorticoids make their way 
to the brain. Glucocorticoids easily pass through the blood-brain 
barrier (Zarrow et al., 1970), and because the amygdala and hip-
pocampus have a high density of receptors for unbound glucocor-
ticoids, they are regions that are highly susceptible to the products 
of the HPA axis. When the stressor is removed and high circulating 
glucocorticoids are no longer necessary, glucocorticoids suppress 
HPA axis activation by occupying receptors in the hippocampus 
eventually inhibiting activity of the HPA axis (van Haarst et al., 
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famously described patient HM; Zola-Morgan et al., 1982). When 
the  hippocampus is lesioned in children, a similar specifi c defi -
cit in episodic memory is observed (Vargha-Khadem et al., 1997; 
Brizzolara et al., 2003; Temple and Richardson, 2004).

As described above, in the context of stress exposure, the hippoc-
ampus has another important role; it provides a negative feedback 
mechanism, which modifi es the HPA axis response (as reviewed 
in Kim and Yoon, 1998). This negative feedback mechanism is 
 accomplished via activation of glucocorticoid (GR) and miner-
alocorticoid receptors (MR) by circulating levels of glucocorticoids. 
Within the brain, MR have a 90% higher affi nity for glucocorti-
coids than GR. At basal (non-stress) levels, the majority of MR are 
occupied by circulating levels of glucocorticoids. During a typical 
HPA axis stress response, increased availability of glucocorticoids 
leads to GR occupation, activating a negative feedback loop and 
 decreasing the HPA axis response. Early in life, the MR/GR ratio is 
lower than later in life, with MR mRNA increasing with age and GR 
mRNA decreasing with age (Vazquez et al., 1996). The immature 
ratio of MR to GR may result in unique hippocampal vulnerability 
to stress early in life. As has been demonstrated in older animals, 
chronic occupation of GR may impair the hippocampally-mediated 
negative feedback process resulting in extended HPA axis activa-
tion following stressful events and dysregulation of the HPA axis. 
Down-regulation of hippocampal MR has been identifi ed in very 
young rats as well (reviewed in Vazquez, 1998), which may increase 
the likelihood of GR occupation for young animals.

HIPPOCAMPAL DEVELOPMENT
In developmental neuroimaging studies, there is some evidence for 
age-related change (increases) in recruitment of the hippocam-
pus during long-term memory tasks across late childhood (Paz-
Alonso et al., 2008). However, other studies observed unchanging 
hippocampal recruitment across 8–24 years of age during scene 
memory encoding (Ofen et al., 2007), supporting the idea that 
hippocampal function is intact at least by childhood. Structural 
studies using magnetic resonance imaging (MRI) have revealed 
developmental differences in the volume of the hippocampus 
from birth through young adulthood. From birth to year 2, the 
hippocampus shows relatively little growth (Knickmeyer et al., 
2008). More substantial structural changes tend to be observed 
later in development. In an initial cross-sectional study of chil-
dren it was determined that the hippocampus showed protracted 
volumetric growth across childhood for girls but not boys (Giedd 
et al., 1996). In subsequent studies, however, this gender differ-
ence was not replicated, and instead, a longitudinal analysis of 
hippocampal growth between the ages of 4–25 years has shown 
continued developmental change into adulthood, where that 
the anterior hippocampus decreases in volume across childhood 
while the posterior hippocampus increased in volume (Gogtay 
et al., 2006).

As will be discussed further below, the animal literature sug-
gests that hippocampal development lags slightly behind amygdala 
development. For example, whereas learning to pair a cue with a 
shock (cued fear conditioning – an amygdala-dependent function) 
is present by postnatal day 18 in the rat, the same aged rats are 
unable to pair a context to a shock (contextual fear  conditioning – a 
hippocampus dependent function; Rudy, 1993). These fi ndings have 

been interpreted as occurring because of the relative immaturity 
of the hippocampus (Cotman et al., 1973; Wilson, 1984; Rudy and 
Morledge, 1994) Similarly, a recent non-human primate fi nding 
obtained with longitudinal structural MRI showed that, although 
both structures showed early development during an age- equivalent 
to early childhood, hippocampal development lagged behind the 
amygdala as indexed by age at which the slope of change leveled 
off (Payne et al., 2010).

Despite the protracted development of the hippocampus, behav-
ioral evidence suggests that some aspects of hippocampal function 
are present early in life. Across the fi rst year of life, memory becomes 
increasingly context-independent, which is evidence of increased 
relational memory and involvement of the hippocampus (Robinson 
and Pascalis, 2004). Extending putative hippocampal development 
into early childhood, Sluzenski and colleagues demonstrated that 
4-year olds were not able to perform a relational memory task 
binding together pictures of animals and backgrounds whereas 
6-year olds could and showed adult-like performance (Sluzenski 
et al., 2006). However, when using more familiar objects (faces and 
scenes), 9-month-old infants showed evidence of intact relational 
memory (Richmond and Nelson, 2009). Taken together, these 
fi ndings are consistent with the notion that the basic relational 
function of the hippocampus is present early in life, although the 
hippocampus and its connections continue to show developmental 
change into adulthood.

HIPPOCAMPUS AND STRESS
Evidence from adult rodent models shows that stress exposure 
alters hippocampal volume and function in adulthood (McEwen, 
1999, 2007). At baseline levels, glucocorticoids appear to aid 
memory formation by enhancing hippocampal excitability 
(Diamond et al., 1992; Pavlides et al., 1993, 1994). However, dur-
ing stress-induced HPA axis activation, hippocampal function is 
disrupted (Diamond et al., 1992; Pavlides et al., 1993), and pro-
longed exposure to glucocorticoids from chronic stress is harmful 
to the hippocampus, resulting in reduced dendritic spines and 
eventually apoptosis of hippocampal neurons (Sapolsky, 1996; 
Kim and Yoon, 1998). Rodents exposed to early stress also dem-
onstrate dendritic atrophy in hippocampal cells and decreased 
amplitude of long term potentiation in the CA3 area of the hip-
pocampus, leading to defi cits in memory formation (Brunson 
et al., 2005).

Most animal studies of stress exposure examine pre- and 
early postnatal stress exposure or chronic stress exposure in the 
mature animal. To keep the parallels to human psychosocial 
trauma exposure as consistent as possible, we will not review 
the effects of prenatal stress here. Poor or absent maternal care 
has lasting effects on the hippocampus. Early stress exposure of 
this variety is associated with decreased hippocampal volume 
and function and dysregulated HPA function in adulthood (Liu 
et al., 1997; for review, see Sanchez et al., 2001). Few rodent stud-
ies have examined the effect of stress experienced or measured 
during the child/adolescent equivalent of the juvenile phase. In 
one study of juvenile rodents, early exposure to chronic stress 
did not result in differences in the hippocampus 24-h post stress 
but did 3-weeks post exposure when these rodents had reached 
adulthood (Isgor et al., 2004), suggesting that hippocampal effects 
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may not be readily apparent until animals are mature. In studies 
of mature rodents, chronic stress exposure is followed by hip-
pocampal volume reductions 24-h post stress exposure. Adult 
rodent stress exposure confers risk for short-term differences in 
hippocampal structure, which within ten stress-free days, reverse 
(Conrad et al., 1999). Intervention during the adolescent phase of 
development may modify the behavioral effects of juvenile stress 
exposures in rodents (Francis et al., 2002), but does not alter the 
hippocampal pathology in adulthood associated with exposure 
to stress during the juvenile phase. Thus, it appears that stress-
related reductions in hippocampal volume and changes in HPA 
axis activation incurred as a result of juvenile stress exposure are 
more permanent than those incurred during adulthood (Seckl 
and Meaney, 2004). This may be the result of a greater number 
of stress hormone receptors early in life (reviewed in Baram and 
Hatalski, 1998) and/or decreased MR (higher affi nity)/GR(lower 
affi nity) ratios early in life (Vazquez et al., 1996).

In human adults, stress-related pathologies, such as major 
depressive disorder and post-traumatic stress disorder (PTSD), 
correlate with decreased hippocampal volume (Sheline et al., 2003; 
Campbell et al., 2004; Geuze et al., 2005; Kitayama et al., 2005; 
Smith, 2005) and altered activity (Bremner, 2006; often decreased 
activity Etkin and Wager, 2007, but increased activity has also been 
identifi ed – Shin et al., 2004). Even in healthy middle-aged adults, 
self-reported stress over 12 years in a longitudinal study was associ-
ated with decreases in hippocampal grey matter volume acquired 
at year 13 in women aged 54 years (Gianaros et al., 2007). In aging 
populations (60–90 years), high baseline and chronically increasing 
exposure to glucocorticoids measured yearly across a 6-year period 
predicted decreases in hippocampal volume relative to moderate 
baseline and decreasing glucocorticoids across the same time period 
(Lupien et al., 2005). Patients taking high doses of corticosteroids 
for long periods demonstrate hippocampally-mediated memory 
defi cits (Keenan et al., 1996), and healthy volunteers given GR 
agonists perform more poorly on memory tasks within a few days 
(Wolkowitz et al., 1990; Newcomer et al., 1994). Finally, studies of 
adults who were exposed to abuse during childhood reveal decreases 
in hippocampal volume (Bremner et al., 1997) and increased stress 
hormone production (Heim et al., 2002).

Because toxic levels of stress cannot be experimentally manipu-
lated in humans, these studies cannot causally link stress exposure 
to hippocampal volume. Recent data has called into question the 
direction or timing of the association between adult stress expo-
sure and hippocampal volume; for instance small hippocampal 
volume may confer risk for acquiring PTSD or reporting greater 
stress instead of vice-versa. One study attempted to address this 
problem of directionality by showing that for monozygotic twins 
one of whom was in combat and one who was not, volume of the 
hippocampus in the non-combat exposed twin predicted PTSD 
symptomology in the individual exposed to combat (Gilbertson 
et al., 2002; Kasai et al., 2008). This fi nding points to the potential 
importance of early-shared environment and/or genetics in deter-
mining hippocampal volume separate from chronic exposure to 
toxic levels of stress in adulthood. Early environment in the form of 
childhood trauma exposure is a predictor of PTSD risk in combat 
exposed veterans (Brewin et al., 2000; Dedert et al., 2009). How 
early stress predisposes an individual to hippocampal alterations 

and increases stress reactivity is unclear, but a recent study showed 
that the association between hippocampus and emotional reactivity 
is predicted by pre-existing amygdala reactivity (Admon et al., 2009). 
This prospective study suggests a specifi ed temporal relationship 
between amygdala and hippocampus – one potential mechanism 
by which hippocampal volume indexes risk for PTSD.

Despite the numerous studies showing reduced hippocampal 
volume in adulthood following stress exposure in either childhood 
or adulthood, there is no evidence of hippocampal volume dif-
ferences during childhood caused by stress. In fact, it has been 
concluded that adversity exposed individuals studied during child-
hood do not differ in hippocampal volume from their peers (De 
Bellis et al., 2001; Woon and Hedges, 2008), despite evidence that 
children who experience trauma have increased GR exposure (De 
Bellis et al., 1999a). While it is possible that developmental timing 
of stress exposure is responsible for this lack of effect in the hip-
pocampus, it is also possible that this discordance in fi ndings is the 
result of timing of measurement. That is, hippocampal impacts 
could emerge late in life even when exposure to stressful life circum-
stances occurred early. Only one longitudinal study has attempted 
to directly test this hypothesis. De Bellis and colleagues imaged 
children before puberty (Tanner stage I or II) and 2 to 3 years 
later (Tanner stage III or IV) to determine if childhood stress-
induced changes in hippocampal volume become evident during 
adolescence. This investigation did not support the hypothesis that 
early abuse exposure might ‘emerge’ as differences in hippocampal 
volume during adolescence (De Bellis et al., 2001); however, in the 
fi nal stage of this longitudinal study, these participants were not 
yet adults. A more recent study that extends the age at test has 
shown evidence of hippocampal changes that emerge in adulthood 
from childhood stress (Andersen et al., 2008). Taken together, these 
data suggest that early-life stress results in hippocampal volume 
decreases and functional alterations when measured in adulthood, 
but these effects are diffi cult to observe or are not observable during 
childhood. The conclusion that childhood stress exposure leads to 
adult but not childhood differences in hippocampal volume leaves 
open certain possibilities. For instance, early stress exposure, while 
unrelated to childhood hippocampal volume, may result in other 
neurobiological changes (for example, in the amygdala) during 
childhood, which subsequently result in adulthood differences in 
hippocampal volume. We will discuss the impact of adversity on 
the amygdala during development in the subsequent section.

AMYGDALA
The amygdala has been implicated in learning about the emotional 
signifi cance of stimuli (Davis and Whalen, 2001). Having a mecha-
nism to determine the relative safety or danger of situations is adap-
tive at any age. However, when less is known about the environment 
(e.g., early in life), the need to learn about the safety or danger 
of novel events will be greater (Tottenham et al. 2009a), and this 
type of learning is heavily dependent on the amygdala (reviewed 
in Davis and Whalen, 2001; LeDoux, 1993). Neuroimaging studies 
have confi rmed that, like in rodents and non-human primates, the 
human amygdala responds to negative as well as positively valenced 
stimuli (Breiter et al., 1996; Somerville et al., 2004; Hennenlotter 
et al., 2005), suggesting it supports learning about the emotional 
signifi cance of the environment in general.
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that negative events activate amygdala response above and beyond 
positive events (Morris et al., 1998; Hamann et al., 2002; Whalen 
et al., 2004) – suggesting that the adult amygdala discriminates 
based not only on arousal properties but also on the valence of 
stimuli. It is not yet established whether early in life the amygdala 
discriminates stimuli of different valence as well as it does to 
arousal properties.

The amygdala appears to be more reactive earlier in life than in 
adulthood. This claim is supported by the repeated fi ndings that 
amygdala activity continues to change from childhood to adult-
hood, peaking in activity during adolescence before it declines 
in adulthood (Monk et al., 2003b; Killgore and Yurgelun-Todd, 
2007; Guyer et al., 2008; Hare et al., 2008) and this activity is tightly 
 coupled to the modulatory connections of the ventromedial pre-
frontal cortex (vmPFC) (Hare et al., 2008). This increased suscep-
tibility to emotionally-relevant events would aid in learning about 
the environment, at a time in life when relatively little is known 
about the world. Moreover, the functional precocity of the amygdala 
may refl ect the relative importance of establishing competence in 
recognizing and learning about emotionally-relevant stimuli prior 
to establishing competence in other developmental domains (e.g., 
cognitive development).

Consistent with the notion that the amygdala is highly active 
early in life, lesion studies that have isolated the timing of lesions 
to discrete periods of life suggest that lesions early in life often 
have a more dramatic effect on behavior than those that occur 
later. Naturally occurring lesion studies in humans show that early 
amygdala lesions (i.e., congenital) signifi cantly impair processing of 
facial expressions, particularly fearful ones (Adolphs et al., 1994). 
However, amygdala lesions occurring later in life (i.e., adulthood) 
appear to have less of an effect on processing these expressions 
(Hamann and Adolphs, 1999). These developmental differences 
are most apparent when the task is non-verbal (e.g., judgments of 
perceived similarity between expressions). Presumably, the amy-
gdala is important during developmental periods when learning 
about the meaning of relevant social stimuli, like facial expressions, 
is occurring, but may be less critical once these associations have 
been formed. More precise lesion studies in non-human primates 
when the effects of timing can be manipulated also lend support to 
the idea that the amygdala of young animals is uniquely important 
in learning about the environment. Amygdala lesions that occur 
both in neonatal or adult macaques result in the animals showing 
less fear of non-social items. However, these lesions produce distinct 
responses to social stimuli that vary as a function of the timing of 
the lesion. Amygdala lesions in adult animals result in an increase 
in affi liative social behaviors (e.g., less distance from peers, more 
affi liative vocalization coos, more walk bys; Emery and Amaral, 
1999), but when they occur in infancy, these lesions result in exag-
gerated fear responses during social interactions (e.g., decreased 
exploration, increased fear grimaces and screams; Bauman et al., 
2004). Prather et al. (2001) suggest that the exaggerated social fear 
in monkeys with early amygdala lesions is the result of these mon-
keys never having the capacity to appropriately learn any social 
signal from conspecifi cs, and therefore, are left unable to recognize 
social cues that signal safety. To summarize, the literature suggests 
that the amygdala becomes functionally active early in life although 
it demonstrates continued refi nement (largely through increased 

AMYGDALA DEVELOPMENT
The basic architecture of the human amygdala is present at birth 
(Humphrey, 1968; Ulfi g et al., 2003). Nonetheless, the amygdala 
undergoes structural and functional change across an extended 
developmental period (reviewed in Tottenham et al., 2009a). 
Structurally, the amygdala exhibits a protracted period of devel-
opment, extending from year one through late childhood. In an 
initial study, the amygdala was observed to grow in volume across 
4–18 years only for male subjects (Giedd et al., 1996); structur-
ally, the female amygdala reached adult-like volume by age 4-years 
old. This growth trajectory was confi rmed in subsequent studies 
(Schumann et al., 2004) and observed developmental change even 
when children 2 years of age were included (Mosconi et al., 2009). 
Notably, many studies of amygdala volume in children have focused 
on autism, therefore limiting the control sample to male children, 
which may be problematic given the sexual dimorphism identifi ed 
in structural studies (Giedd et al., 1996). Amygdala volume devel-
opment for female children is understudied, and sex-hormones 
infl uence amygdala development in human populations (Rose 
et al., 2004), indicating that future research should carefully con-
sider the role of sex in modifying differences in amygdala function 
and structure in response to stress. Despite these structural changes 
observed during childhood, a recent longitudinal non-human study 
showed that the most rapid rate of primate amygdala develop-
ment occurs during the early postnatal period, leveling off soon 
after (Payne et al., 2010). This rapid rate of change may heighten 
the vulnerability of the amygdala to environmental infl uence early 
in life.

Similar to structural development, the amygdala shows early 
functionality that is followed by developmental change across child-
hood and adolescence. Like adults (e.g., Breiter et al., 1996), chil-
dren and adolescents reliably recruit the amygdala when processing 
emotion from facial expressions. Greater amygdala activity for fear-
ful faces relative to fi xation is observed in both adolescents (Baird 
et al., 1999; Killgore et al., 2001) and children (Thomas et al., 2001). 
Adolescents also demonstrate greater activity in response to these 
faces than adults, activity that is not generated by differential visual 
scanning of the faces (Guyer et al., 2008). However, the response 
pattern differs for younger subjects where children, unlike adults, 
exhibit greater amygdala recruitment for neutral faces than fearful 
(Thomas et al., 2001) and other facial expressions (Lobaugh et al., 
2006), suggesting that the amygdala (and most likely its connec-
tions with cortical regions) undergoes refi nement over childhood 
and adolescence.

Fear conditioning experiments with adolescents (e.g., pair-
ing a neutral cue with an air blast directed at the larynx) have 
shown that before adulthood, individuals can learn to associate 
a neutral stimulus with a negative one via increased amygdala 
activity to the conditioned stimulus (Monk et al., 2003a). This 
type of amygdala-dependent cued fear conditioning is similar 
to the process identifi ed in adults (LaBar et al., 1998; Critchley 
et al., 2002; Knight et al., 2005; Delgado et al., 2006). In adults, 
both positively valenced (e.g., reward, happy and/or attractive 
faces) and negatively valenced events recruit amygdala activity 
(Breiter et al., 1996; LaBar et al., 1998; Baxter and Murray, 2002; 
Hamann et al., 2002; Somerville et al., 2004; Hennenlotter et al., 
2005; Belova et al., 2007). However, many studies with adults fi nd 
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cortical connections) throughout childhood and adolescence. How 
this trajectory interacts with exposure to stress will be discussed 
in the next section.

AMYGDALA AND STRESS
The amygdala and the extended amygdala (the bed nucleus of the 
stria terminalis; Davis, 1994), appear to be critical in activating the 
HPA axis in response to cognitive-emotional challenge and threat 
(reviewed in Dedovic et al., 2009). Stress and glucocorticoids have 
been found to increase CRH levels and upregulate CRH recep-
tors in the amygdala of both mature (Makino et al., 1994b) and 
developing rodents (Hatalski et al., 1998) lowering the threshold 
for the fear response to occur. Chronic GR administration acts to 
augment the amygdala-mediated startle response in rats (Lee et al., 
1994) and CRH antagonist administration (Swerdlow et al., 1989) 
suppresses the fear response in primates. Lesions of the amygdala 
prevent elevations in glucocorticoids in response to psychological 
stressors, such as restraint in rats, but do not prevent elevations 
in response to physiological stressors, such as illness or injury 
(Feldman et al., 1994; Herman and Cullinan, 1997). There are a 
large number of CRH producing neurons and CRH receptors in 
the amygdala, and infusion of CRH to the amygdala (Rosen and 
Schulkin, 1998), amygdala stimulation (Mason, 1959), and stress 
(Baram and Hatalski, 1998; Bonaz and Rivest, 1998) produce large 
increases in glucocorticoids and corresponding increases in behav-
iors indicative of fear and anxiety. Developmental human neuroim-
aging studies have also shown that naturally occurring elevations in 
glucocorticoids are associated with amygdala hyperactivity (Maheu 
et al., 2008). Taken together, these fi ndings strongly support the 
notion that the HPA axis and amygdala CRH are involved in poten-
tiated fear responses following stress. Adverse experiences produce 
long-term changes in the amygdala structurally and functionally 
via high levels of circulating glucocorticoids and endogenously 
produced CRH, decreasing an individual’s threshold for reacting 
to emotional events. Animal models have provided evidence for 
this type of stress-induced kindling of the amygdala (where con-
tinual stimulation produces greater future excitability; Adamec and 
Shallow, 2000).

Numerous neuroimaging studies have demonstrated that the 
amygdala is altered structurally and functionally by psychosocial 
stress in humans as well. Many of these studies have been with 
adults who have experienced extremely traumatic events (e.g., com-
bat, physical assault) and show that in adults the amygdala is both 
smaller (Driessen et al., 2000; Schmahl et al., 2003) and more reac-
tive to emotional stimuli (Liberzon et al., 1999; Rauch et al., 2000; 
Shin et al., 2004; Armony et al., 2005; reviewed in Shin et al., 2006). 
The amygdala is infl uenced by trauma of less intensity as well. In 
one study, fi rst and second year undergraduates showed a correla-
tion between their parent’s social status, linked in previous studies 
to stress reactivity (Lupien et al., 2000; Evans and Kim, 2007) and 
their amygdala activation while viewing angry faces (Gianaros et al., 
2008). Although it is diffi cult to draw conclusions about causality 
from most human studies, directionality between adversity and 
amygdala structure and function has been confi rmed with animal 
models of stress, which have routinely identifi ed changes in the 
amygdala following stress administration (reviewed in Roozendaal 
et al., 2009).

Developmentally, there are some similarities and some differ-
ences in the associations between amygdala and stress. Studies that 
have manipulated the timing of stress, typically in non-human 
animals, have found that the amygdala is particularly sensitive to 
stress early in life. Poor caregiving in rodents results in increased 
anxiety- and aggressive-behaviors in adulthood, which is associated 
with acceleration of amygdala development (Kikusui and Mori, 
2009), including early myelination (Ono et al., 2008), increases in 
CRH-containing neurons (Becker et al., 2007), and sensitization 
of the amygdala in adulthood (Salzberg et al., 2007). Although the 
amygdala is functionally dormant in the rat neonatal period, signifi -
cantly stressful events and/or GR administration can precociously 
activate the amygdala (Moriceau et al., 2004), perhaps because of 
the early presence of CRH mRNA [present in day 2 (Avishai-Eliner 
et al., 1996; Fenoglio et al., 2004; Vazquez et al., 2006)], and such 
amygdala effects can last until adulthood (elevated CRH mRNA; 
Plotsky et al., 2005; reviewed in Caldji et al., 2000). Non-human 
primate work shows that maternal deprivation stress also alters 
amygdala development. These effects can be more devastating the 
earlier they in life they occur, and they include defi cits in socio-
emotional behaviors (e.g., decreased social behavior and increased 
self-comforting), which are mediated by stress-induced changes 
in amygdala gene expression (Sabatini et al., 2007). These stress-
related timing effects coincide with the early development of the 
amygdala (Payne et al., 2010), and suggests that amygdala vulner-
ability to stressors may be at a peak during the early postnatal period 
primates. This position is supported as well by rat models of early 
stress, which fi nd that the amount of CRH required to produce 
amygdala-originating seizures in developing animals is 200 times 
smaller than required for adult animals (reviewded in Baram and 
Hatalski, 1998) – another suggestion that the juvenile amygdala has 
heightened susceptibility to environmental pressure.

While there are a growing number of studies that have exam-
ined the role of stress on amygdala structure and function during 
development, most in humans have not been able to isolate the 
timing of stress to a discrete period in development (the way that 
animal models can). This diffi culty is common in human studies 
since adversity that occurs at one point in development is rarely 
isolated and typically is accompanied by a lifetime of adverse rear-
ing environment, making temporally-defi ned periods of stress 
diffi cult to identify. Studies in adults have often found decreased 
amygdala volumes in individuals with a history of stressful child-
hoods (Driessen et al., 2000; Schmahl et al., 2003 – note: these 
individuals also had borderline personality disorder). This type of 
fi nding seems to contradict animal studies, which have identifi ed 
larger amygdala cell size in addition to exaggerated amygdala activ-
ity (Vyas et al., 2002, 2004). In one human study that examined the 
effects of adverse caregiving restricted to the postnatal period (i.e., 
children reared in and then removed from orphanages) also found 
amygdala volume to be larger (once controlling for total brain 
volume), and did not fi nd hippocampal differences (Tottenham 
et al., 2009b). A second independent study replicated these fi nd-
ings of amygdala volume increases and a lack of hippocampal 
differences in adolescents who experienced institutional rearing 
in infancy (Mehta et al., 2009). Importantly, these populations of 
previously institutionalized children were studied years after the 
adversity ended, and children were adopted into families of very 
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Such a trajectory would explain why many studies in adults who 
experienced years of adversity show decreased amygdala volume. 
This hypothesized trajectory has been identifi ed in studies with 
depressed patients, who after the initial depressive episode show 
enlarged amygdala volume, but after living with depression for an 
extended period of time, show amygdala volume decreases (Frodl 
et al., 2002; Lange and Irle, 2004). These fi ndings point to the 
hypothesis that alterations of amygdala following neonatal stress 
are apparent early in life because of the amygdala’s early functional 
development, its early exposure to stress hormones (those associ-
ated with the HPA stress response), and its maximal expression of 
stress hormone (CRH) receptors early in life (reviewed in Baram 
and Hatalski, 1998).

STRESS AND A CONSIDERATION OF TIMING
Stressful events do not impact the whole brain in a uniform 
fashion, but instead the effects are region specifi c, exhibiting 
some of the largest effects in the amygdala and hippocampus. 
The amygdala and the hippocampus exhibit differential effects of 
stress that occurs in adulthood, and often contrasting, such that 
stress decreases size, complexity, and activity of the hippocam-
pus (reviewed in Lupien et al., 2007; Bremner et al., 2008) and 
shows the opposite effects in the amygdala (larger, more reac-
tive amygdala) (Liberzon et al., 1999; Rauch et al., 2000; Armony 
et al., 2005). The differences between the two structures seem to 
be partially related to the time course of the molecular events 
that occur between the two structures that follows stress. This 
cascade begins in the amygdala, which exerts molecular and 
chemical downstream effects on the hippocampus. Cells in the 
amygdala participate in the earliest reaction to environmental 
stressors, often initiating the HPA cascade. They are quickly acti-
vated by stress and express immediate-early genes (Honkaniemi 
et al., 1992), whereas the hippocampus begins to play its role 
later in the cascade, negatively feeding back on the HPA axis to 
inhibit its activity (Herman and Cullinan, 1997). CRH-induced 
seizures produce the earliest discharges in the amygdala (Baram 
et al., 1992), which propagate later to the hippocampus (Haas 
et al., 1990). Therefore, stress-induced changes in the amygdala 
may have downstream effects on the HPA axis that over time 
can change the structure and function of later stages in the axis 
(Brunson et al., 2001b), like the hippocampus. These timing dif-
ferences may contribute to the reasons why hippocampal altera-
tions tend to developmentally follow amygdala alterations from 
stress (Admon et al., 2009).

Observation of these effects may depend on when they are 
measured. The effects of early-life adversity have been observed 
in the amygdala during development (Sabatini et al., 2007; 
Mehta et al., 2009; Tottenham et al., 2009b). Although there 
is evidence for molecular-level stress-induced changes in the 
immature hippocampus (e.g., Hatalski et al., 2000; Chen et al., 
2006), stress-induced changes in the hippocampus are often dif-
fi cult to observe during the juvenile period, but may be apparent 
later in life. Maternal deprivation stress in non-human primates 
failed to show hippocampal differences as measured by structural 
MRI in the age-equivalent of childhood (Spinelli et al., 2009). 
Rodent studies that have manipulated timing of stress and time 
of measurement have found that hippocampal alterations may 

high socio-economic status. These data suggest that the amygdala 
can change as a function of early adverse experiences, but once it 
does it is resistant to ameliorative environmental infl uences – an 
interpretation supported by animal work showing that cellular 
growth in the amygdala following adult stress, unlike the hippoc-
ampus, fails to reverse during a recovery period (Vyas et al., 2004; 
Yang et al., 2007). Perhaps this heightened and biased sensitivity 
to emotionally-relevant events is one way the organism ensures 
that it is prepared for future adversity, in an environment that has 
already proved to be threatening. Longitudinal studies that vary the 
timing of stress in humans to include the neonatal period, child-
hood, adolescence, and adulthood are required to fully understand 
sensitive periods for environmental stress.

The amygdala is part of an extended neural network. In particu-
lar, it has rich connections with the vmPFC (Amaral et al., 1992; 
Milad and Quirk, 2002; Ghashghaei et al., 2007) and hippocampus 
(Ikegaya et al., 1996a,b). The vmPFC can modulate the activity of 
the amygdala through descending projections, perhaps via afferents 
to the intercalated cells of the amygdala that inhibit its own activity. 
Secondly, the amygdala and hippocampus co-modulate each other 
such that the amygdala can infl uence hippocampally- mediated 
memory formation and the hippocampus infl uences amygdala 
response when emotional stimuli are encountered (Phelps, 2004). 
The three structures (amygdala, hippocampus, and vmPFC) coor-
dinate during emotional learning. In new environmental contexts, 
the hippocampus inhibits the vmPFC, which releases the amygdala 
from vmPFC inhibition (reviewed in Kim and Richardson, 2010). 
Like the amygdala and hippocampus, stress alters vmPFC activ-
ity in adults, where signifi cantly stressful events leads to impaired 
vmPFC-dependent fear extinction learning (Milad et al., 2009). 
It has been demonstrated that chronic stress impairs extinction 
learning (Miracle et al., 2006) possibly via blockage of long-term 
potentiation (Maroun and Richter-Levin, 2003) and dendritic 
reorganization (Wellman, 2001; Izquierdo et al., 2006), including 
shortening of dendritic length caused by stress-induced reduction 
of the growth factor brain-derived neurotrophic factor (reviewed 
in Czeh et al., 2008). Also, chronic stress weakens vmPFC regula-
tion over amygdala and results in enhanced amygdala sensitivity 
to footshock (Correll et al., 2005). Additionally, the bidirectional 
and direct connections between amygdala and vmPFC suggest that 
stress-induced changes in the amygdala may, over the course of 
development, impair amygdala-vmPFC connectivity. Much less is 
known about the development of the vmPFC following early adver-
sity, although a small number of rodent studies shows that early-
life adversity alters vmPFC development both structurally (higher 
synaptic densities compared to controls – Ovtscharoff and Braun, 
2001) and functionally (reduced tyrosine hydroxylase-positive fi ber 
innervation – Braun et al., 1999). Because of its rich interconnect-
edness, early-life stress may act on this system through multiple 
pathways and future investigations will benefi t from a systems-level 
approach. At the current time, the literature has primarily focused 
on the effects of stress on each area.

Taken together, the developmental data and the human adult 
data suggest that early in life, the amygdala undergoes expan-
sive growth following a stressor. This growth is accompanied by 
hyperactivity, which after a prolonged period results in cellular 
atrophy and/or death (and smaller volumes as measured by MRI). 
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not fi nd amygdala differences following trauma exposure (Carrion 
et al., 2001; De Bellis et al., 2001, 1999b). These amygdala effects are 
typically unobservable, or have not been measured, in adults who 
experienced childhood stress (Bremner et al., 1997; Cohen et al., 
2006), where it has even been reported that childhood stress may 
actually result in smaller amygdala volumes in adulthood (Driessen 
et al., 2000). This pattern suggests that initial stress-induced hyper-
trophy and hyperactivity of amygdala neurons eventually leads to 
neuronal atrophy or cell death by adulthood (Teicher et al., 2003), 
a pattern identifi ed in other populations (e.g., autism spectrum 
disorders) who demonstrate amygdala hypertrophy in childhood 
followed by smaller volumes in adulthood (Schumann et al., 2004). 
Effects of trauma do not appear in amygdala volumetric measures 
in adulthood, while such effects are observable in the hippocam-
pus (reviewed in Lupien et al., 2007; Bremner et al., 2008), leav-
ing open the possibility that hippocampal effects may not emerge 
until adulthood, possibly as a result of stress-induced changes in 
the amygdala.

It is also possible that the hippocampus (perhaps due unique 
developmental timelines) is less vulnerable to stress effects early 
in life than the amygdala (at least as measured by volume). This 
may be related to the developmental timing of the structural 
development of these two structures. As noted earlier, there are 
data consistent with the hypothesis that amygdala development 
slightly precedes hippocampal development, and this develop-
mental differential may have consequences for each structure’s 
vulnerability. Alternatively, hippocampal effects may be masked 
during development. Perhaps measuring changes in volume 
caused by stress are diffi cult in the context of developmental 
changes (Giedd et al., 1996) as measured by MRI. The asser-
tion that the developing hippocampus is entirely invulnerable 
to environmental stressors is weakened by molecular studies 
in rodents that show that juvenile stress is followed by altered 
expression of molecules involved in neural development and syn-
aptic plasticity (i.e., neural cell adhesion molecules), effects that 
extend into adulthood (Tsoory et al., 2008) (Isgor et al., 2004). 
Perhaps volumetric studies may not be sensitive enough to show 
stress-induced hippocampal changes in childhood, although the 
effects in the amygdala are robust enough to be observed by 
this measure.

Technological advances are improving our ability to better 
address these questions in humans. Using diffusion tensor imaging, 
DTI, studies have replicated and extended fi ndings from volumetric 
studies of adversity. In one study young adults exposed to verbal 
abuse as children had signifi cant differences in the white matter 
tracts associating medial temporal lobe structures to the prefrontal 
cortex (cingulum bundle) and the fornix fi bers of the hippocam-
pus (Choi et al., 2009). DTI reveals the structural connectivity of 
neural structures and may aid researchers in better describing how 
associations between structures, such as the ones hypothesized here 
between the amygdala and hippocampus support developmental 
patterns in the effects of stress exposure. Other methods for explor-
ing associations between structures such as resting state fMRI, or 
resting state functional connectivity have not yet been employed 
in the service of understanding the effect of adversity on neural 
development. But these techniques have been used to great effect 
in understanding development generally (Fair and Dosenbach, 

be developmentally delayed and appear later in life; neonatal 
maternal deprivation did not result in a drop in hippocampal 
synaptophysin (a synapse related protein) until postnatal day 60 
(adulthood; Andersen and Teicher 2004). Behaviors that depend 
on the hippocampus follow a similar trajectory; early-life insults 
often result in “acquired” cognitive decline, only appearing in 
older animals, not younger (Brunson et al., 2005). During early-
adulthood, the hippocampally-mediated cognitive decline asso-
ciated with maternal deprivation was unobservable and were 
not apparent until animals were middle-aged. These behavioral 
impairments are accompanied by decreased hippocampal LTP, 
dendritic atrophy, and mossy fi ber expansion – hippocampal 
phenotypes typically associated with stress that occurs in adult-
hood (McEwen, 1999). It is noteworthy that, unlike with the 
mature hippocampus, which shows recovery after the termina-
tion of a stressor, stress administered early in life has long-term 
effects on the hippocampus.

Contributing to the differences between the two regions during 
development may be the differential emergence of HPA-related 
peptides following stress. Stress hormones and CRH mRNA pro-
duction in amygdala have a developmentally early onset, appear-
ing as early as postnatal day 2 in the rat (Avishai-Eliner et al., 1996; 
Vazquez et al., 2006), an earlier onset than in the hippocampus 
(Fenoglio et al., 2004). This discrepant time course between the 
amygdala and hippocampus maybe related to the modulatory 
role that the amygdala has over the hippocampus (Packard and 
Teather, 1998). These temporal discrepancies appear early in life, 
where stressful events produce elevations in CRH that occur fi rst 
in the amygdala and are observed only afterwards in the hippoc-
ampus (reviewed in Baram and Hatalski, 1998). Environmental 
manipulations that result in changes in stress-related gene expres-
sion (CRH/GR receptors) are apparent in the amygdala at an 
age when they are not present in the hippocampus (during the 
early postnatal period). Neonatal separation stress resulted in 
an increase in CRF containing neurons in the amygdala, but not 
the hippocampus in juvenile rodents (Becker et al., 2007). Taken 
together these data illustrate the interaction between develop-
mental timing and timing of stress exposure (Fenoglio et al., 
2004) and suggest that the amygdala response to stressors is a 
temporal prerequisite for hippocampal changes following stress 
(Kim et al., 2001). In support of this postulate, a rare prospective 
study with new recruits to the Israeli Defense Forces showed that 
while amygdala and hippocampal activity closely correlated with 
subjective reported stress, hippocampal vulnerability to stress 
depended on how hyperactive the initial amygdala response was 
(Admon et al., 2009).

If future studies continue to show that the effects of stress occur 
in the amygdala developmentally earlier than the hippocampus, 
it might shed some light on the timing effects often observed in 
human neuroimaging studies. Evidence from the human literature 
supporting this temporal hypothesis is mounting. The effects of 
adversity on these two regions vary by when the stressor was admin-
istrated and by age at which testing occurred. For example, larger 
amygdala volumes are observed during childhood following neo-
natal early adverse caregiving, although no hippocampal differences 
were observed (Tottenham et al., 2009b). Age at test is critical since 
developmental studies that include adolescent subjects often do 
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stress that may modify its impact on neural structures. Chief 
among these are the kind and duration of stress. Because stress 
is chiefl y a psychologically defi ned construct (Gunnar and 
Quevedo, 2007), one that is subjective in nature, determining 
which stressors (e.g., abuse vs. neglect) are “the worst” is diffi cult 
since there are multiple stressors that can present challenges to 
the individual’s homeostasis. However, certain aspects of stress, 
for example, controllability and predictability may be particularly 
effective at infl uencing HPA activity (Davis and Levine, 1982). 
Presumably the stressors described throughout this manuscript 
are unpredictable and uncontrollable from the standpoint of the 
infant or child experiencing them, thus  increasing the potential 
impact of early stressors. Stress duration should additionally be 
considered as a factor, since chronic stressors may affect neural 
development differently, often detrimentally, than single instance 
traumatic events (reviewed in Brunson et al., 2003). Again, 
the literature reviewed throughout this manuscript provides 
examples of chronically stressful environments. Nonetheless, 
dose-response relationships between stress duration and brain 
development have been reported (Brunson et al., 2001a; Mehta 
et al., 2009; Tottenham et al., 2009b). A fi nal variable that should 
be considered when examining the effect of adversity on neural 
development is the temporal context in which neural devel-
opment is tested. For example we argue here that amygdala 
development and its modifi cation by stress precedes that of the 
hippocampus. However many developmental studies of trau-
matic stressors (for example, studies of child abuse) may occur 
when children are still under a great deal of stress. Duration 
since stressor needs to be considered, since the amygdala and 
hippocampus may have different recovery rates (Vyas et al., 2004; 
Yang et al., 2007). For example, when measured almost a dec-
ade after removal from orphanages, post-institutionalized chil-
dren show amygdala hypertrophy and hyperactivity, but do not 
show differences in hippocampal structure (Mehta et al. 2009; 
Tottenham et al., 2009b). However, differences in duration since 
stressor cannot account for all of the data since many studies 
(in older individuals) show decreased hippocampus years after 
stress termination (Andersen et al., 2008), suggesting again that 
developmental timing of exposure will infl uence the outcome 
measure. Nonetheless, more control over duration since stres-
sor is warranted in order to better understand the effects of 
adversity. To summarize, we suggest that (1) early life is a period 
of increased vulnerability although the effects of stress may be 
diffi cult to detect for years (as seems to be the case with the 
hippocampus) (2) stress-induced changes in amygdala (initial 
increases in activity and growth) are apparent earlier in life and 
more robustly than the hippocampus (decreases in growth), and 
(3) later in life, when hippocampal changes are fi nally apparent, 
the initial amygdala volume increases may ultimately change to 
volumetric decreases (although it may remain hyperactive).

CONCLUSIONS
Adverse experiences shape brain development, and these changes 
are often global in nature. However in this manuscript, we have 
focused on the effects on amygdala and hippocampal develop-
ment, two regions that are particularly vulnerable to stress in adult 
 populations. We argue that a developmental approach is necessary 

2007; Fair and Cohen, 2008) and in defi ning functionally con-
nected regions of interest in individual subjects (Cohen et al., 2008) 
a technique which would be well suited to the investigation of 
individual differences associated with stress. In addition, resting 
state connectivity and DTI could be used in a range of ages down 
to children as young as 2 years who have been successfully stud-
ied while asleep (Redcay and Courchesne, 2008). Thus, through a 
combination of connectivity and volumetric studies, it would be 
possible to, in children as young as 2 and extending through adult-
hood, examine the structural and functional networks that underlie 
the embedding of adversity, and directly test the hypothesis, pro-
posed here, that amygdala changes lead and produce hippocampal 
effects of adversity.

The techniques proposed here have in common with volumetric 
studies that they can be performed in the same way with children, 
adolescents, and adults. Notably absent are functional neuroim-
aging techniques which require the use of a task. In examining 
the developmental effects of adversity the use of functional neu-
roimaging presents potential challenges. Examining functional 
differences across studies is diffi cult because subtle differences in 
experimental design disallow certain fi ndings. In addition, across 
ages the same task may be more salient and/or more diffi cult. For 
example a young child may not understand a task which includes a 
great deal of peer feedback about behavior where as an adolescent 
will both understand this task and peer feed back will be a very 
salient emotional stimulus. Including information like this in the 
interpretation of results can be diffi cult. These caveats aside, neural 
activation is most closely linked to behavior and obtaining func-
tional neuroimaging data as a function of early adversity would 
have the potential to expose important differences and similarities 
structure-function relationships.

Transitions between developmental stages have not been studied 
extensively with regard to early adversity, and longitudinal work 
that includes a close examination of transitions into childhood and 
adolescence is necessary to delineate the effects of early adversity. 
Indeed, there is some behavioral evidence that the effects of early 
adverse caregiving may exacerbate once children age into adoles-
cence. In a longitudinal study of children adopted from Romanian 
orphanages, Rutter and colleagues have shown that unlike other 
domains of development (e.g., cognitive development, height, head 
circumference) which show massive catch-up following removal 
from orphanage care, there was a signifi cant increase in emotional 
diffi culties caused by institutional care once children transitioned 
into adolescence (Colvert et al. 2008). These fi ndings are consist-
ent with the notion that the transition into adolescence potentially 
marks another period when the environment can exert large effects 
on the brain (Sisk and Foster, 2004; Schulz et al., 2009). Findings 
from the rodent suggest that pubertal onset may be an important 
agent in amplifying or making obvious environmental infl uences 
on brain development. For example, stress-induced sex difference 
in  hippocampally-dependent trace learning only emerge after ado-
lescence (Hodes and Shors, 2005), perhaps as a result of the organ-
izing effects of increased pubertal testosterone on the hippocampus 
(reviewed in Sisk and Zehr, 2005.

Thus far we have considered the timing of stress exposure as 
a variable that may moderate the effect this variable has on the 
hippocampus and amygdala. There are various other aspects of 
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in understanding how environmental conditions such as trauma 
can impact outcome in these structures. While this review is limited 
in its scope, the restriction was purposeful in that it allowed for 
greater discussion of how timing of exposure and age at meas-
urement can differentially infl uence these neural phenotypes. The 
hypothesis driving the manuscript was that developmental tim-
ing of adverse experiences and the age at testing would infl uence 
structure and function of the amygdala and hippocampus. The 
literature discussed in this review suggest that the amygdala and 
hippocampus are highly vulnerable to the effects of adverse early 
environments, although these effects may be more evident in the 
amygdala early in life, whereas the hippocampus effects may be 
more subtle early in life and may be more readily observable in 
humans studies later in life.

We included data from animal models of stress to address issues 
of timing and biological mechanism that are diffi cult to address 
with most human studies. Two of these issues in the human litera-
ture include methodological differences between studies and the 
methods of identifying the timing of stressful experiences. First, 
studies differ on how/whether they control for total brain volume 
when examining the effects of stress on regional morphometry. 
This difference will have a signifi cant impact on volume fi ndings 
since children with a history of trauma are more likely to have a 
smaller total brain volume relative to control samples (Casey et al., 
2009; De Bellis et al., 1999b). In addition, recognizing changes in 
the volume of subcortical structures over time may be diffi cult 
because cortical volume decreases rapidly across development. 
Controlling for total cortical volume across development while 
measuring changes in structure volume may inadvertently increase 
observed structure development.

Secondly, the overwhelming majority of studies on stress rely 
on retrospective data. This approach, while usually a necessary nui-
sance in human studies of stress, is problematic because researchers 
must rely on subject reporting, which may be inaccurate (Maughan 
and Rutter, 1997), particularly with respect to timing of events. 
Moreover, even if reporting is accurate, the  varying times and dura-
tions of the stressful events in most studies make it unclear how 
timing played a role in the observed effects. Human developmental 
studies are critical in order to understand how stressful experi-
ences specifi c to infants and children impact neural development. 
Drawing fi rm conclusions about the impact of stressful and trau-
matic events will rely on methodological advances. Longitudinal 
studies, where observation occurs at multiple time points allows for 
direct observation of change over time. Ideally, these studies would 
be prospective in nature, a design aspect that further complicates 
data collection. These types of studies are diffi cult and costly, but 
provide valuable information about developmental trajectories 
not often provided by cross-sectional design (Sowell et al., 2004; 
Durston et al., 2006; Gogtay et al., 2006; Giedd et al., 2008).

The main purpose of this manuscript is to highlight the impor-
tance of considering developmental timing, and the investigation 
into the short-term and long-term effects of adversity on neural 
development is only at its earliest stages. The hypotheses posited 
here will continue to be shaped by future results, and approaches 
like those described in this paper will help constrain interpreta-
tions of those data. This approach will be informative regarding the 
neural mechanisms that underlie mental health problems following 
early adversity and provide insight into the sensitive periods that 
defi ne the windows of opportunity and vulnerability to environ-
mental events, both adverse as well as ameliorative.
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